Announcements

Assignments:

= HWA4
= Due date Mon, 2/24, 11:59 pm

= HWS5
= Qut tomorrow
= Due date Thu, 2/27, 11:59 pm

Midterm Conflicts
= See Piazza post
" Due 11:59pm on Wednesday the 19th of February

Plan

Last time

= Decision Boundaries

" Gaussian Generative Models
= Neural Networks

Today

"= Neural Networks
= Universal Approximation
= Optimization / Backpropagation
= (Convolutional Neural Networks)

Introduction to
Machine Learning

Neural Networks

Instructor: Pat Virtue

Single Neuron

Single neuron system
" Perceptron (if g is step function)
= Logistic regression (if g is sigmoid)

Computed Value True Label
Z1 y

hy, (x) = A

hy(x) = g z WiX;

7

Optimizing

How do we find the “best” set of weights?

hy(x) =g (2 WX

Ny———

Activation Functions

It would be really helpful to have a g(z) that was nicely differentiable

1 z=0 d_g_{() z=0 -

* Hard threshold: g(z) = {O z<0 dz |0 z<0

= Sigmoid: g(z) = 1;_2 Z—“z = g(Z)(l — g(Z)) /

= (Softmax)

= RelLU: g(z) = max(0,z) Z—i = {(1) ;i 8

Loss Functions

Regression

= MSE (SSE): 2(y, %) = lly — 915 = 20 — Vn)?

Classification
= Cross entropy: f(y, ?) = — Zn Vn log ¥,

Multilayer Perceptrons

A multilayer perceptron is a feedforward neural network with at least one
hidden layer (nodes that are neither inputs nor outputs)

MLPs with enough hidden nodes can represent any function

Neural Network Equations

Zqq Wi11

Zyq = g(ZiWS,i,l ZB,i)
Z31 = Q(Zi Waii1 Zz,i)

Zg1 = Q(Zin—1,i,1 Zd—l,i)

W311

W321

Optimizing

How do we find the “best” set of weights?

hy(x) =g z W3k1 9 z Waik 9 (z Wi.i,j xi)
k j i

Neural Network Equations

Z11 Wi11 3 g

9 W311

g W321

How would you represent this specific network in PyTorch?

Neural Networks Properties

Practical considerations

" Large number of neurons
» Danger for overfitting
* Modelling assumptions vs data assumptions trade-off

* Gradient descent can easily get stuck local optima

What if there are no non-linear activations?

= A deep neural network with only linear layers can be reduced to an exactly
equivalent single linear layer

Universal Approximation Theorem:

= Atwo-layer neural network with a sufficient number of neurons can
approximate any continuous function to any desired accuracy.

Network to Approximate a 1-D Function

||||||||||
0000000000000000000000000

Network to Approximate a 1-D Function

Design a network to approximate this function using:
Linear, Sigmoid, Step, or RelLU

Network to Approximate a 1-D Function

Design a network to approximate this function using:
Linear, Sigmoid, Step, or RelLU

Network to Approximate a 1-D Function

| |
W

T T
——————

Network to Approximate Binary Classification

Approximate function f(x{,x,) = X1 A X,

Network to Approximate Binary Classification

Approximate function f(x{,x,) = x; D x5

Network to Approximate Binary Classification

Approximate arbitrary decision boundary

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Network to Approximate Binary Classification

Approximate arbitrary decision boundary

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Network Optimization

Reminder: Calculus Chain Rule (scalar version)

y = f(2)
z=g(x)

dy dydz
dx dzdx

Network Optimization
J(w) = z3

z3 = f3(W3, 2;3)
zy = fo(wy, z1)

z1 = f1(wy, x)

Backpropagation (so-far)

Compute derivatives per layer, utilizing previous derivatives
Objective: J(w)

Arbitrary layer: y = f(x, w)

Need:

a9 _ 9]0y
dx dy 0x

a0l _0]0y

ow dy ow

