

Announcements

Assignments:

- HW4
 - Due date Mon, 2/24, 11:59 pm

Midterm

- Monday the 2nd of March from 5:00pm-6:30pm

Midterm Conflicts

- See Piazza post
- Due 11:59pm on Wednesday the 19th of February

Plan

Last time

- Naïve Bayes Assumptions
- Naïve Bayes MLE and MAP
- MLE vs MAP
- Generative vs Discriminative Models

Today

- Decision Boundaries
- Gaussian Generative Models
- Neural Networks

$$\begin{bmatrix} p(y|x) \\ p(x|y) p(y) \end{bmatrix}$$

Introduction to Machine Learning

Generative Models

then

Intro to Neural Networks

Instructor: Pat Virtue

Decision Boundaries

Decision boundary

- The set of points in the domain of the input (x) where the predicted classification changes

Two class decision boundary

- So far, we have decided to let the decision boundary be all x such that:

$$p(y = 0 | x) = p(y = 1 | x)$$

- What assumptions are we making here?
 - This assumes that the cost of predicting it wrong is the same for both classes

Piazza Poll 1

$$P(Y=0|x) \propto \underline{P(x, Y=0)} = P(x|Y=0)P(Y=0)$$

Which of the following also define the decision boundary for two classes when we just want $p(Y = 0 | x) = p(Y = 1 | x)$?

A. All x , s.t. $p(x | Y = 0) = p(x | Y = 1)$

B. All x , s.t. $\underline{p(x, Y = 0)} = \underline{p(x, Y = 1)}$

C. All x , s.t. $p(Y = 0) = p(Y = 1)$

D. All x , s.t. $p(Y = 1 | x) = 0.5$

E. All x , s.t. $p(x | Y = 1) = 0.5$

F. All x , s.t. $p(x, Y = 1) = 0.5$

G. All x , s.t. $\log p(x, Y = 1) - \log p(x, Y = 0) = 0$

H. None of the above

$$P(Y=0) = P(Y=1)$$

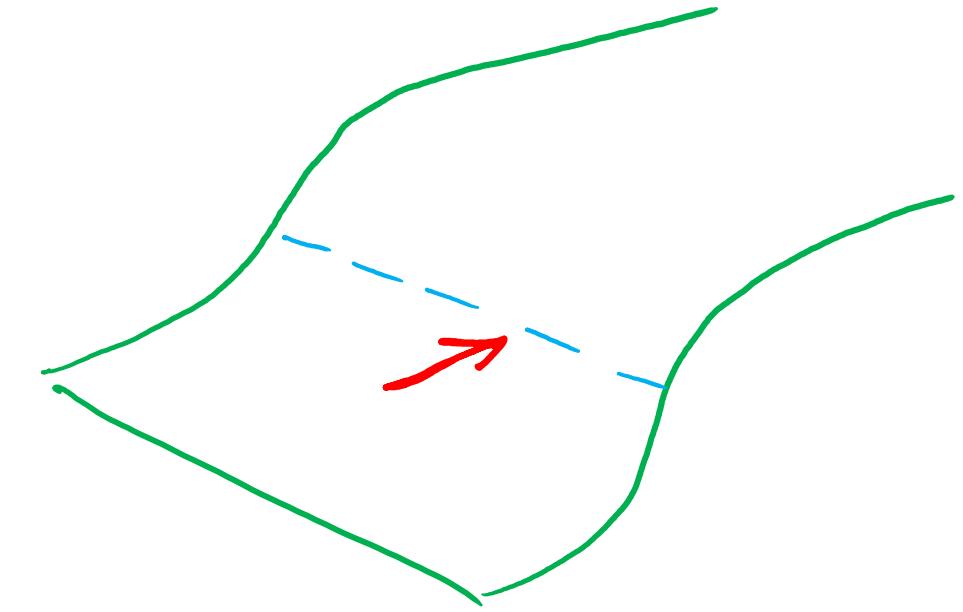
$$p(x, Y=0) = p(x, Y=1)$$

Piazza Poll 2

$$\hat{y} = g(w^T x)$$

True/False: Logistic regression always produces a linear decision boundary.

- A. I don't know
- B. True
- C. False



Piazza Poll 2

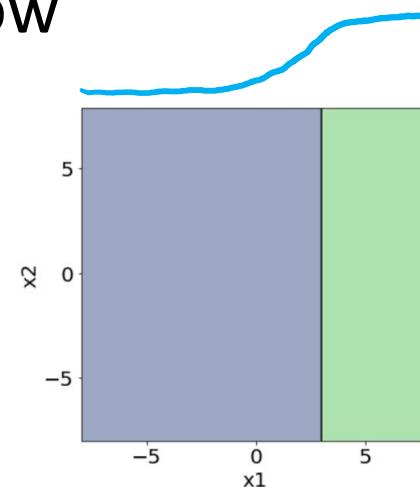
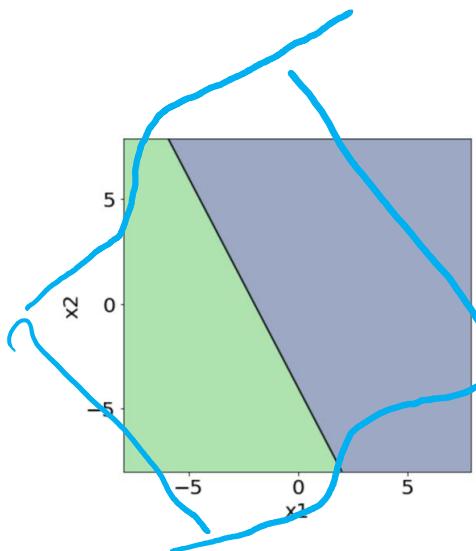
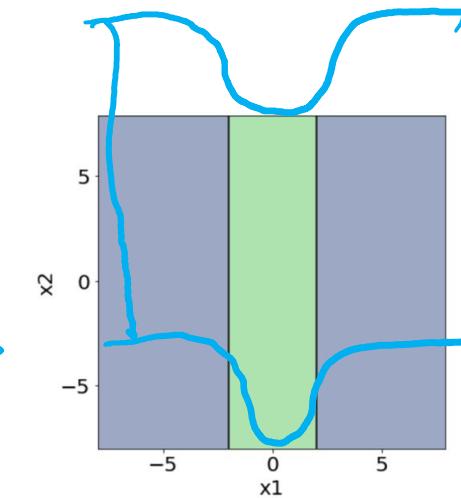
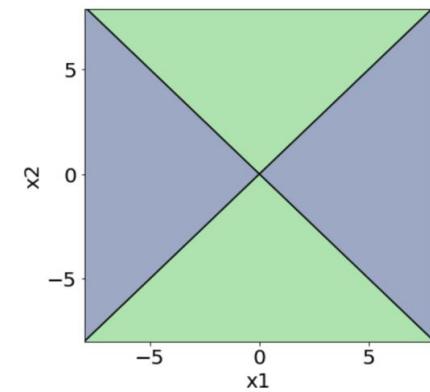
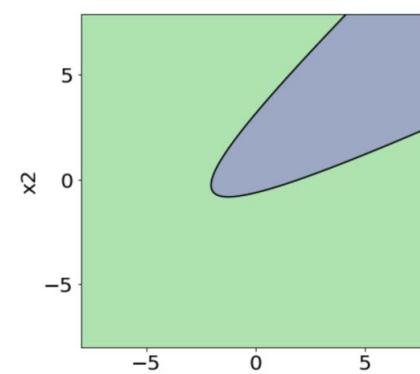
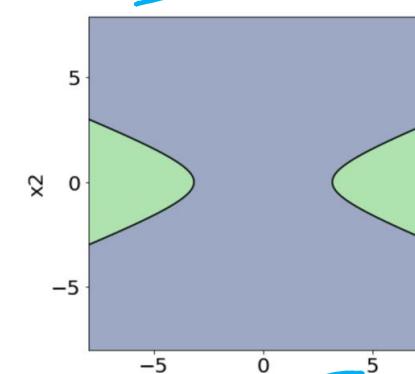
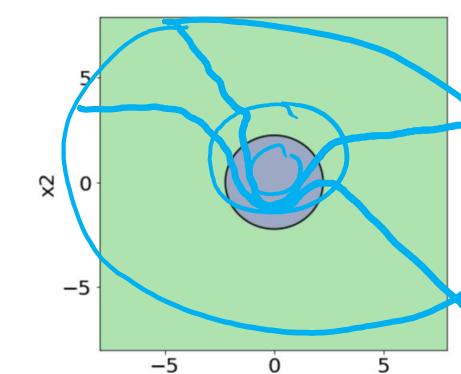
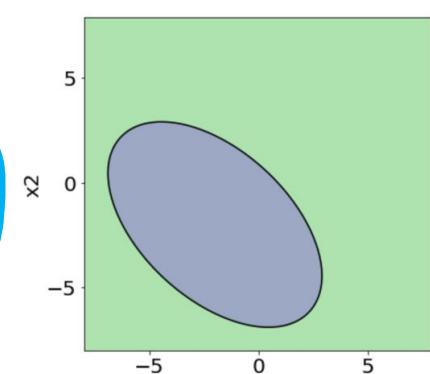
$$\hat{y} = g(\underline{w^T \phi(x)})$$

True/False: Logistic regression always produces a linear decision boundary.

A. I don't know

B. True

C. False



E

F

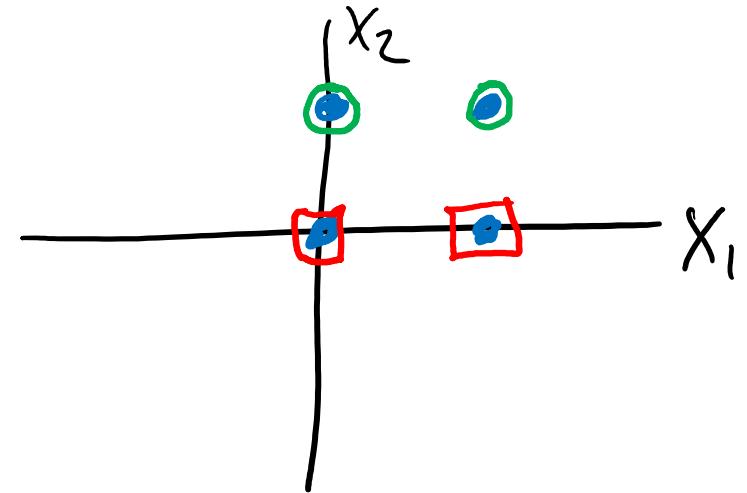
G

H

Generative Models

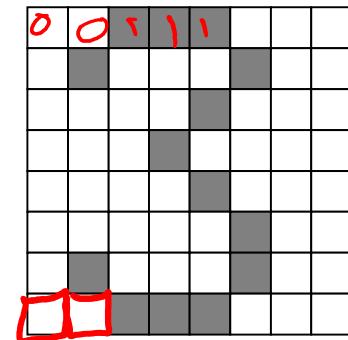
SPAM:

- Class distribution: $Y \sim Bern(\phi)$
- Class conditional distribution: $X_m \sim Bern(\theta_{m,y})$
- Naïve Bayes X_i conditionally independent X_j given Y for all $i \neq j$
$$p(X_i, X_j | Y) = p(X_i | Y) | p(X_j | Y)$$



Digits:

- Class distribution: $\boxed{Y} \sim Multinomial(\phi, 1)$
- Class conditional distribution: $\underline{X_m} \sim Bern(\theta_{m,y})$
- Naïve Bayes $\underline{X_i}$ conditionally independent $\underline{X_j}$ given Y for all $i \neq j$
$$p(X_i, X_j | Y) = p(X_i | Y) | p(X_j | Y)$$



Recitation?

Fisher Iris Dataset

https://en.wikipedia.org/wiki/Iris_flower_data_set

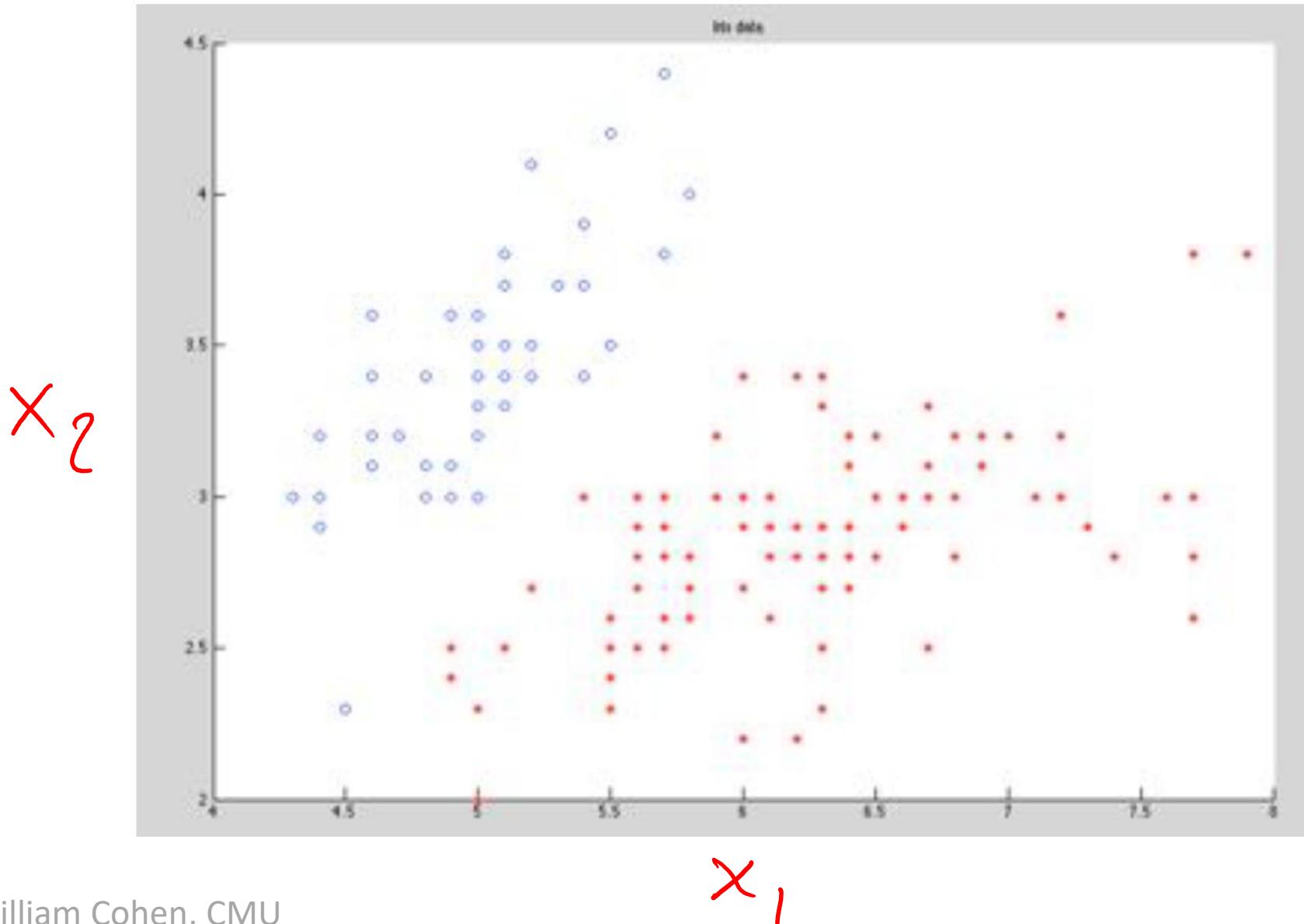
Fisher Iris Dataset

https://en.wikipedia.org/wiki/Iris_flower_data_set

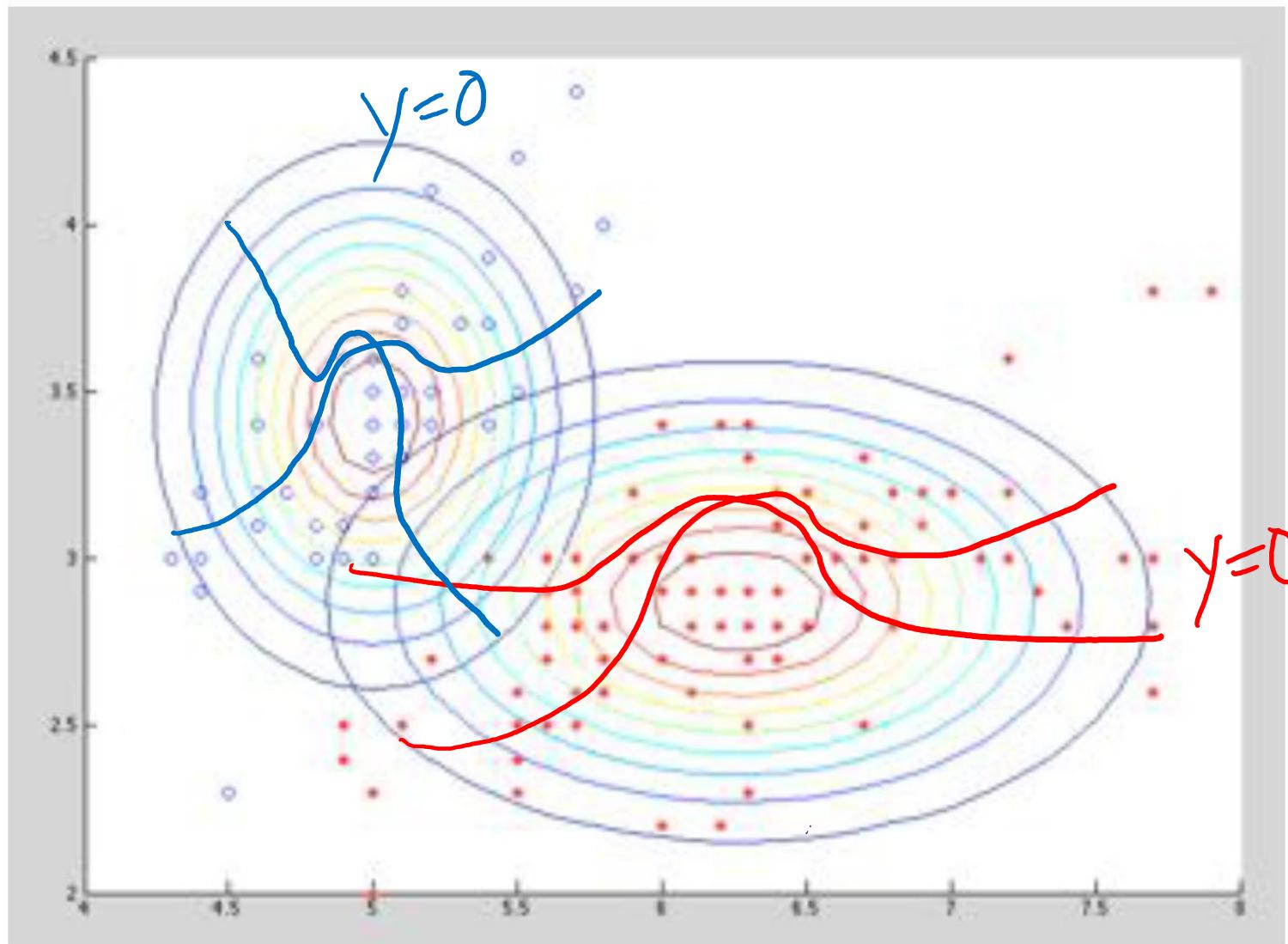
Fisher (1936) used 150 measurements of flowers from 3 different species: Iris setosa (0), Iris virginica (1), Iris versicolor (2) collected by Anderson (1936)

Species	Sepal Length	Sepal Width	Petal Length	Petal Width
0	4.3	3.0	1.1	0.1
0	4.9	3.6	1.4	0.1
0	5.3	3.7	1.5	0.2
1	4.9	2.4	3.3	1.0
1	5.7	2.8	4.1	1.3
1	6.3	3.3	4.7	1.6
1	6.7	3.0	5.0	1.7

Fisher Iris Dataset



Fisher Iris Dataset



$p(x|y)$
 $f(x|y)$
 $f(x|y=0)$
 $f(x|y=1)$

Generative Models with Continuous Features

Iris dataset:

- Class distribution: $Y \sim \text{Bern}(\phi)$
- Class conditional distribution: $X \sim \mathcal{N}(\underline{\mu}_y, \underline{\Sigma}_y)$
- Naïve Bayes assumption?

Piazza Poll 3

Iris dataset:

- Class distribution: $Y \sim \text{Bern}(\phi)$
- Class conditional distribution: $X \sim \mathcal{N}(\mu_y, \Sigma_y)$
- Naïve Bayes assumption?

Which of the following pairs of Gaussian class conditional distributions satisfy the Naïve Bayes assumptions? Select ALL that apply.

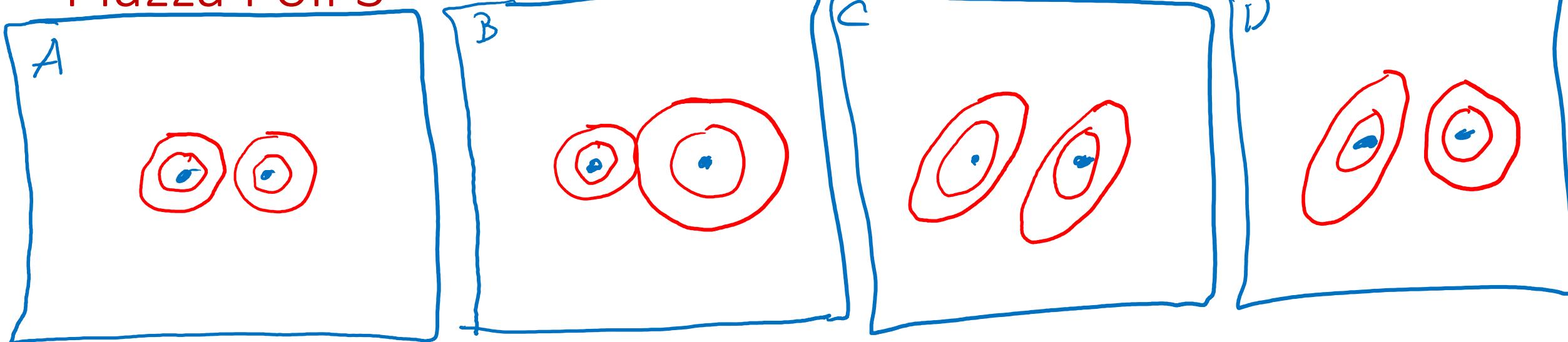
A. $\mu_{y=0} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \Sigma_{y=0} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \mu_{y=1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \Sigma_{y=1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

B. $\mu_{y=0} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \Sigma_{y=0} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \mu_{y=1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \Sigma_{y=1} = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$

C. $\mu_{y=0} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \Sigma_{y=0} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}, \quad \mu_{y=1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \Sigma_{y=1} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$

D. $\mu_{y=0} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \Sigma_{y=0} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}, \quad \mu_{y=1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \Sigma_{y=1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

Piazza Poll 3



A. $\mu_{y=0} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \Sigma_{y=0} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \mu_{y=1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \Sigma_{y=1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

B. $\mu_{y=0} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \Sigma_{y=0} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \mu_{y=1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \Sigma_{y=1} = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$

C. $\mu_{y=0} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \Sigma_{y=0} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}, \quad \mu_{y=1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \Sigma_{y=1} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$

D. $\mu_{y=0} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \Sigma_{y=0} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}, \quad \mu_{y=1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \Sigma_{y=1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

Decision Boundaries

Iris dataset:

- Class distribution: $Y \sim \text{Bern}(\phi)$
- Class conditional distribution: $X \sim \mathcal{N}(\mu_y, \Sigma_y)$

- Naïve Bayes assumption:

$$\text{diagonal } \Sigma_y$$

- Linear Decision Boundary:

$$\Sigma_{y=0} = \Sigma_{y=1}$$

- Quadratic Decision Boundary:

$$\Sigma_{y=0} \neq \Sigma_{y=1}$$

P(Y|X)

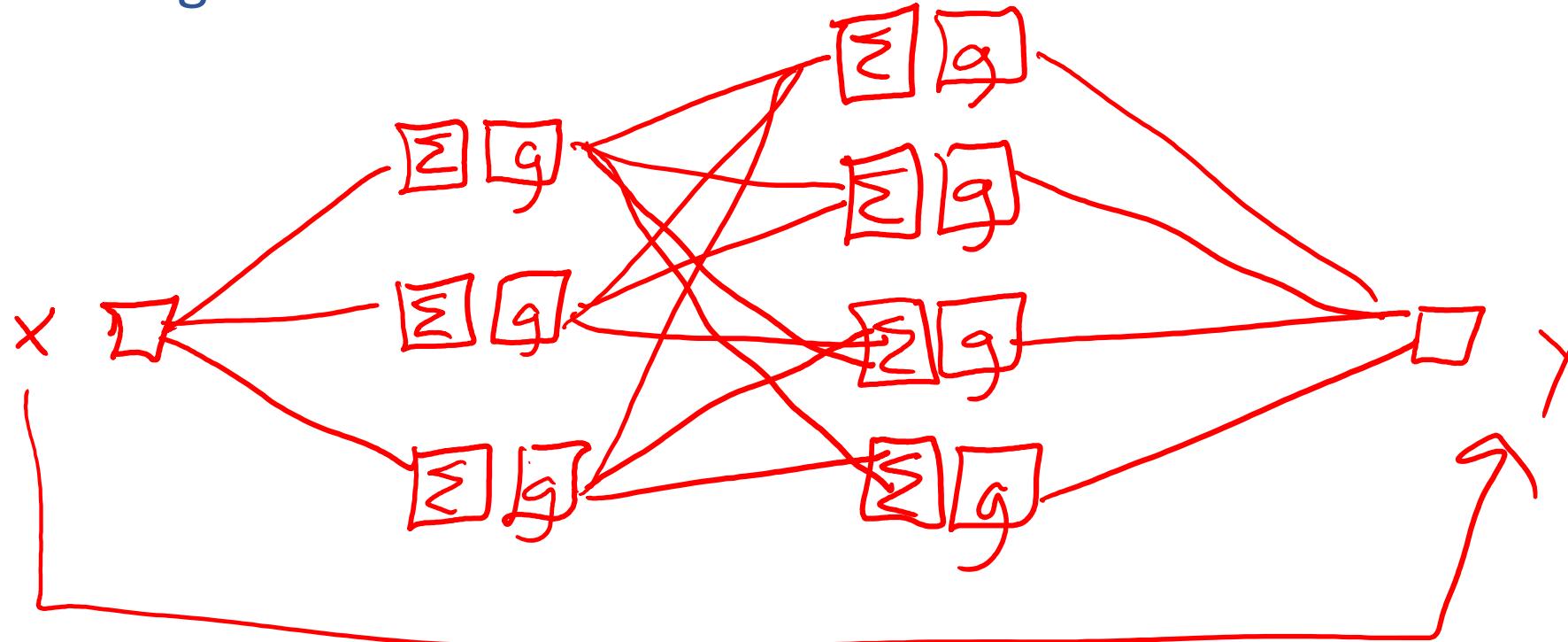
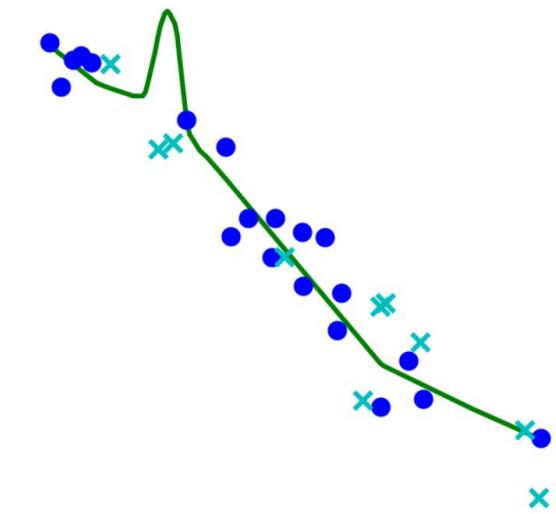
Introduction to Machine Learning

Intro to Neural Networks

Instructor: Pat Virtue

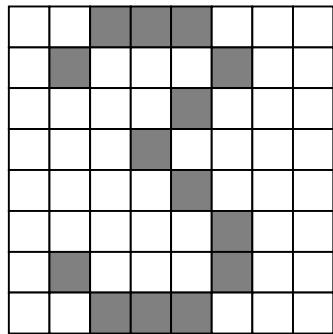
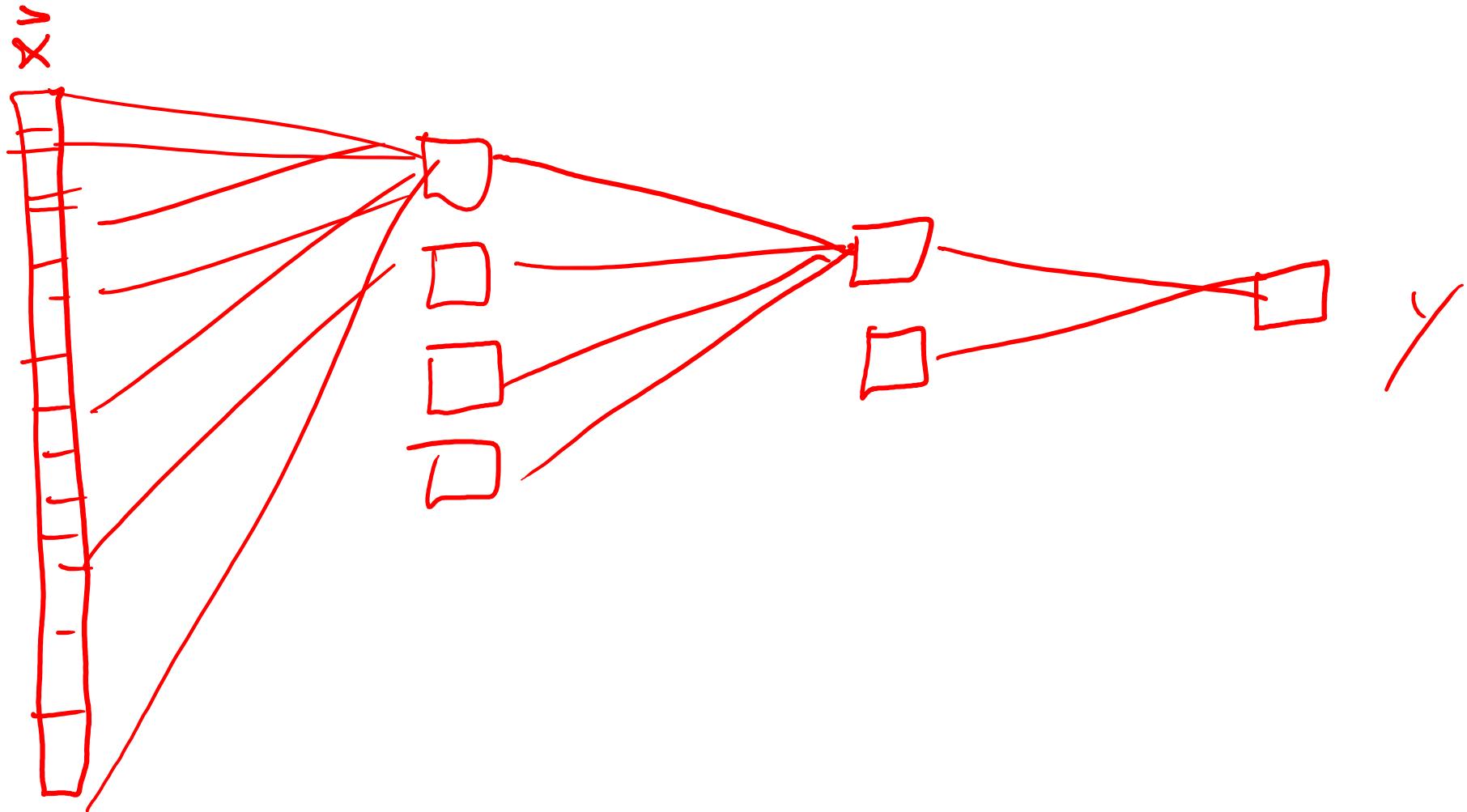
Neural Networks from HW2

1-D Regression



Neural Networks from HW2

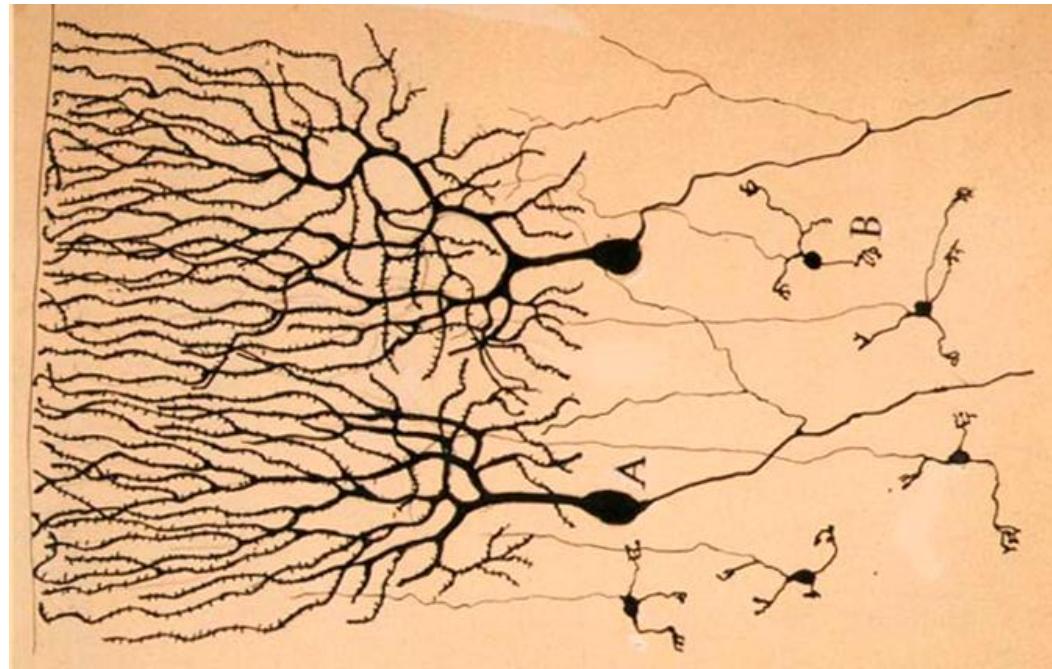
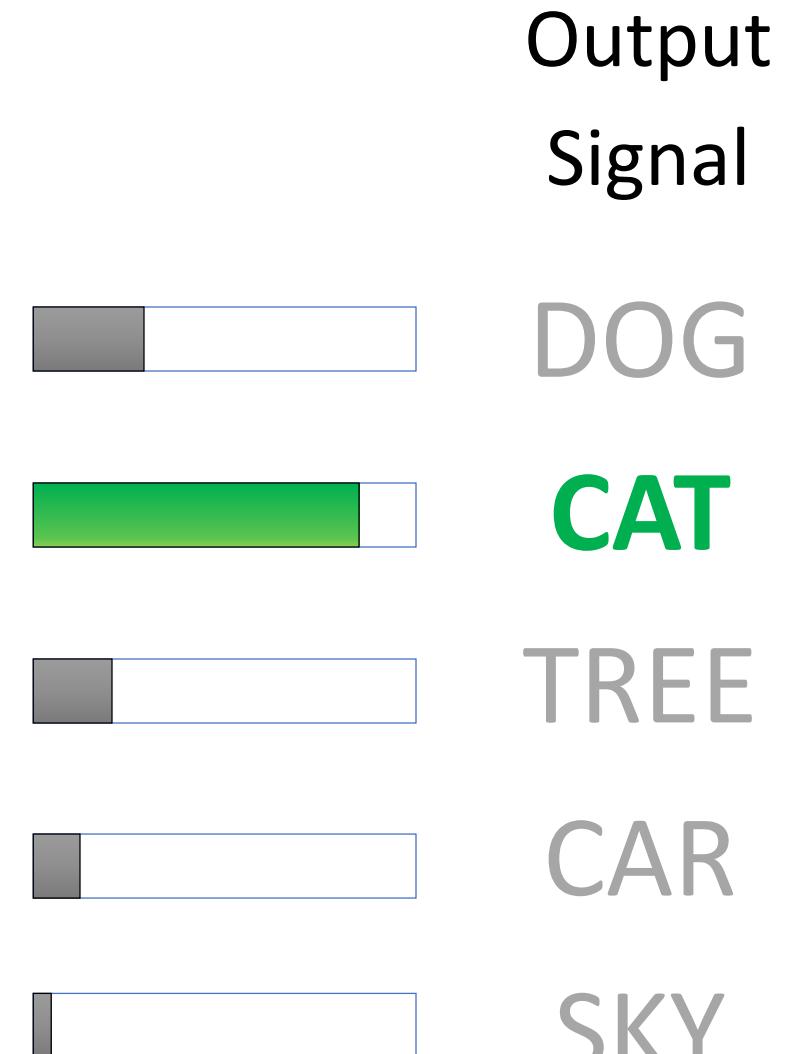
Digit Classification



Neural Networks

Inspired by actual human brain

Input
Signal

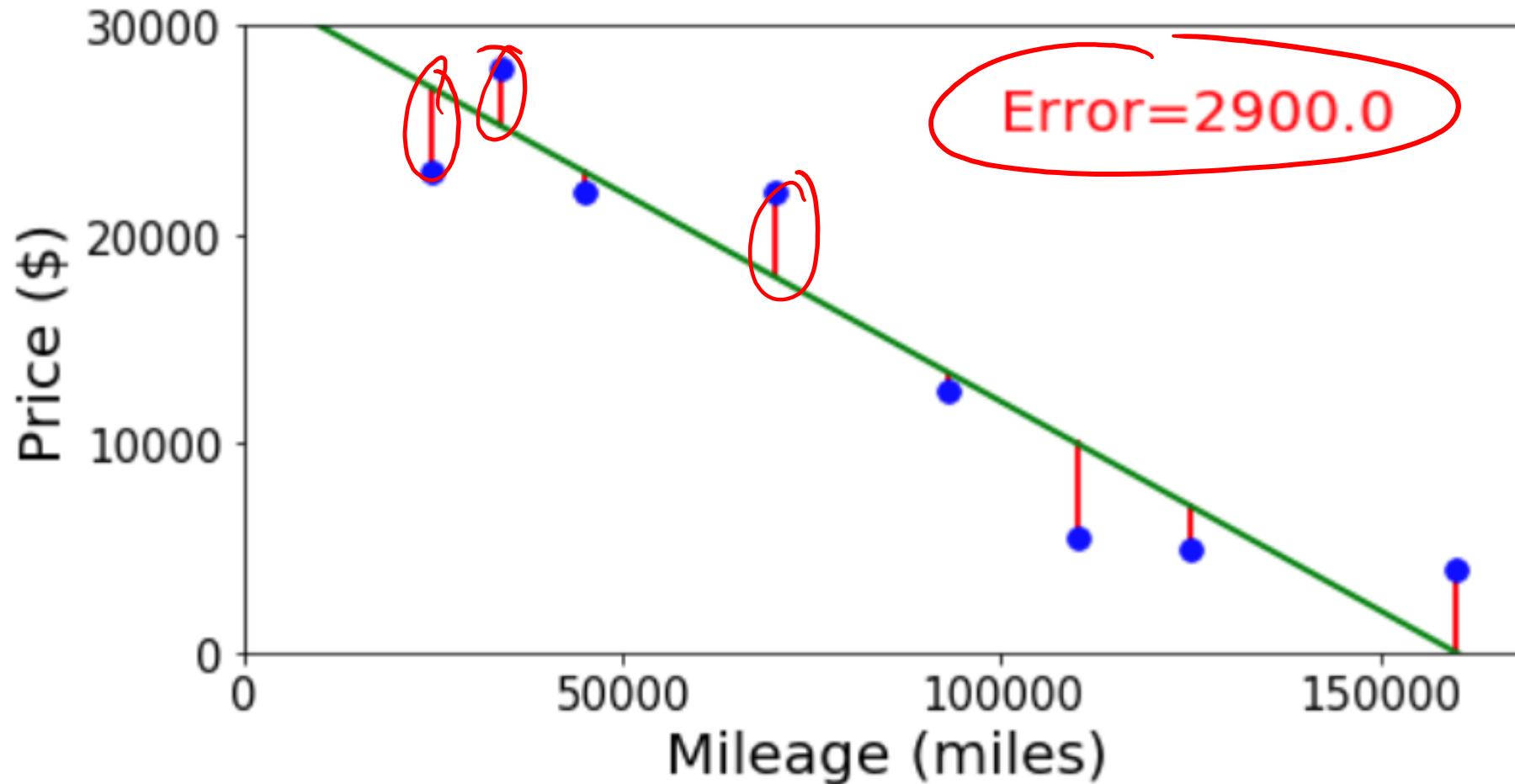


Neural Networks

Simple single neuron example:

- Selling my car

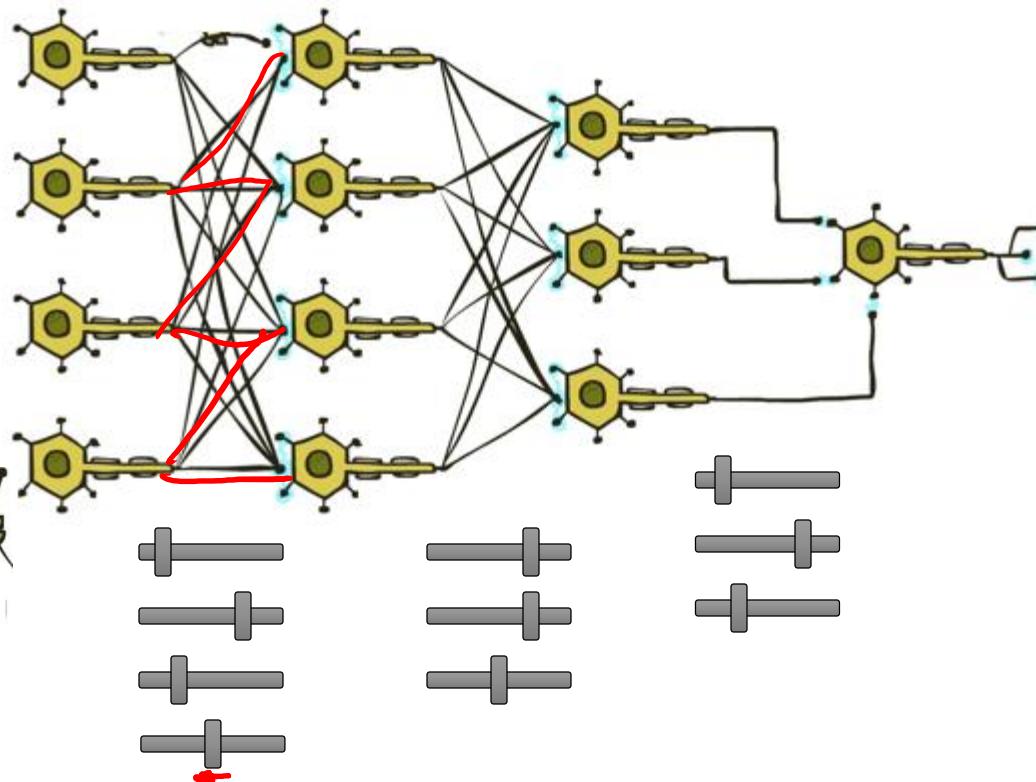
$$\begin{bmatrix} w_0 \\ w_1 \end{bmatrix}$$



Neural Networks

Many layers of neurons, millions of parameters

Input
Signal



Output
Signal

DOG

CAT

TREE

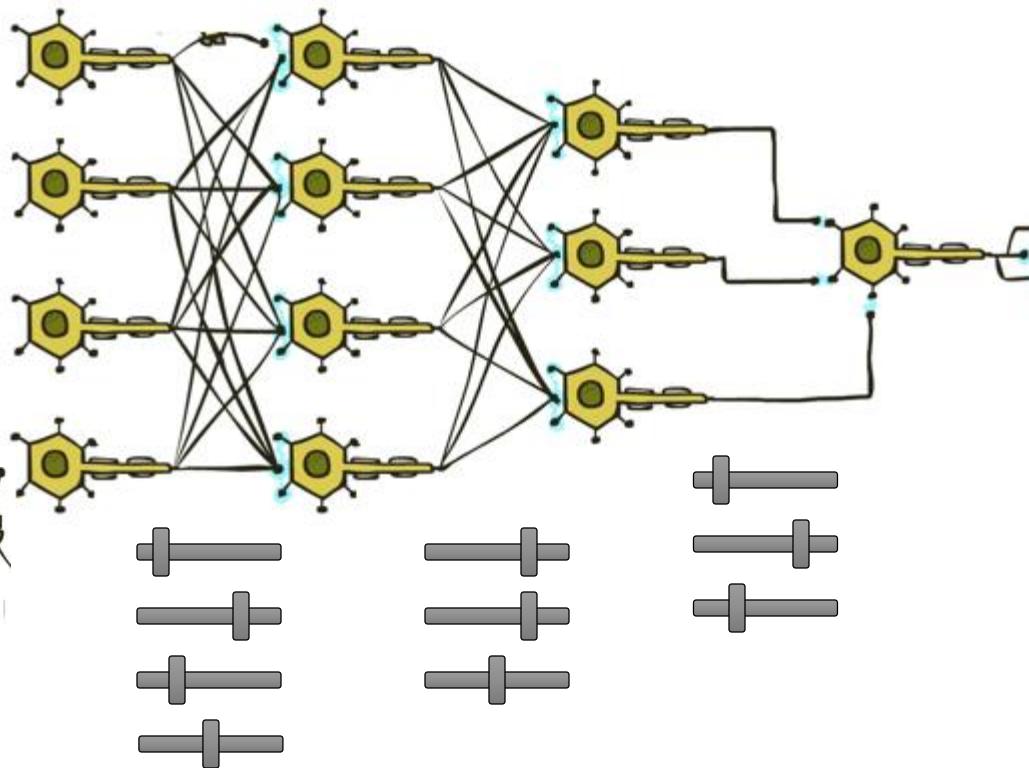
CAR

SKY

Neural Networks

Many layers of neurons, millions of parameters

Input
Signal



Output
Signal

DOG

CAT

TREE

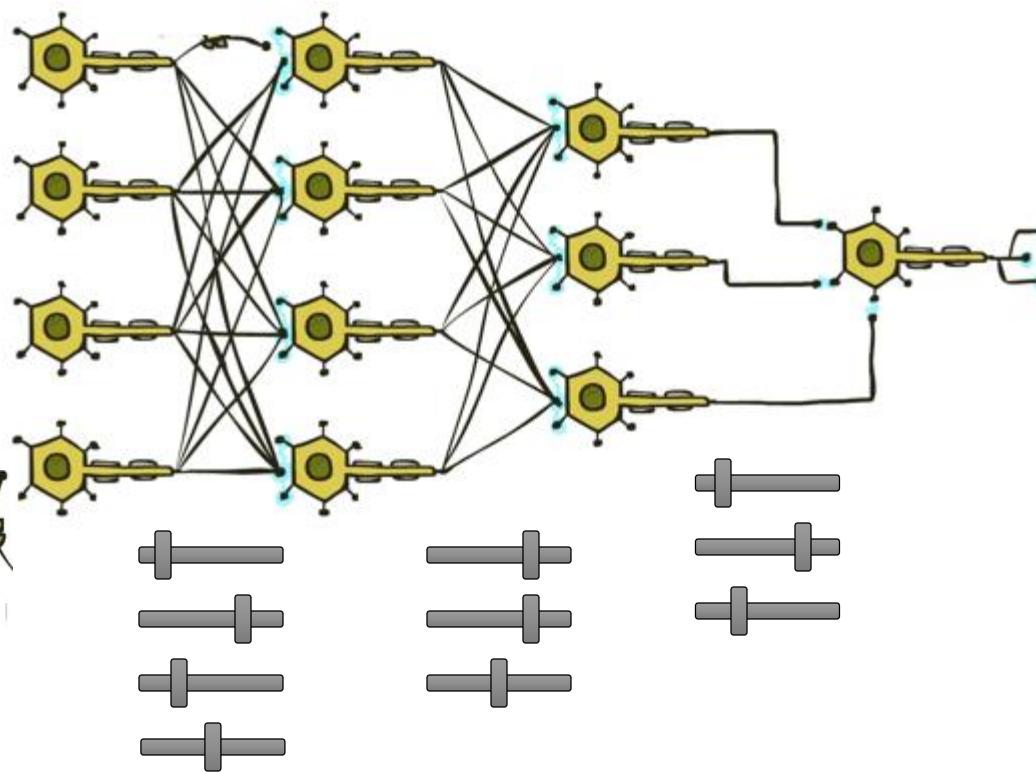
CAR

SKY

Neural Networks

Many layers of neurons, millions of parameters

Input
Signal



Output
Signal

LEFT

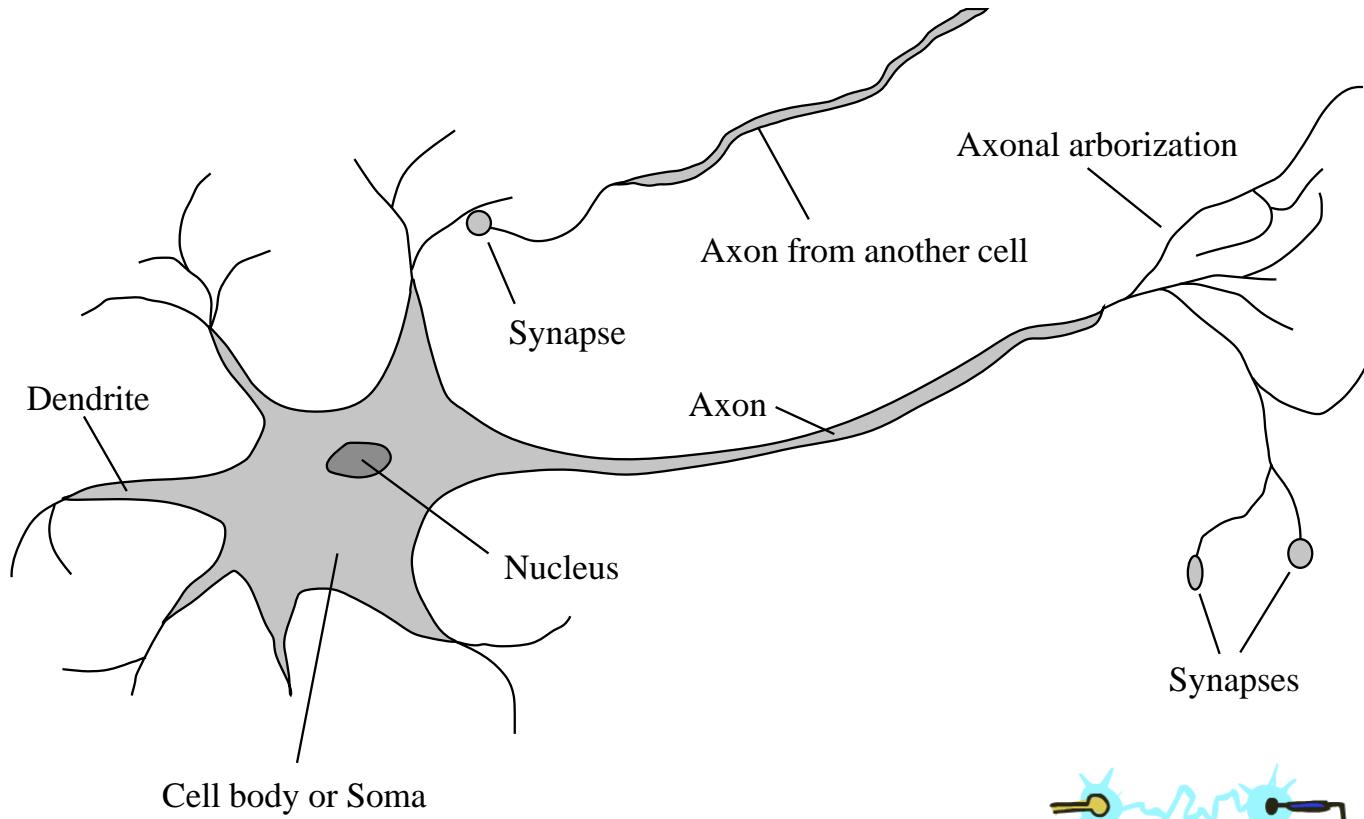
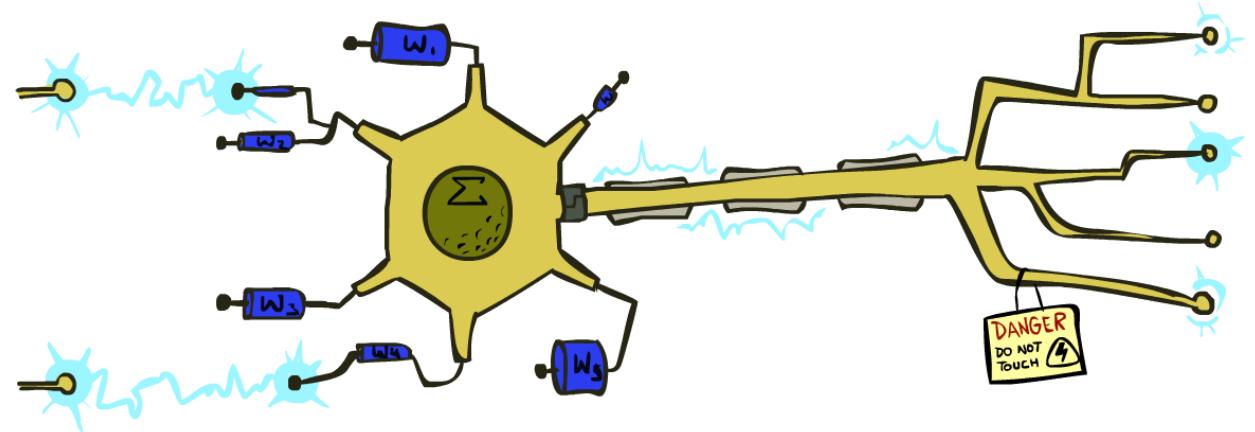
RIGHT

UP

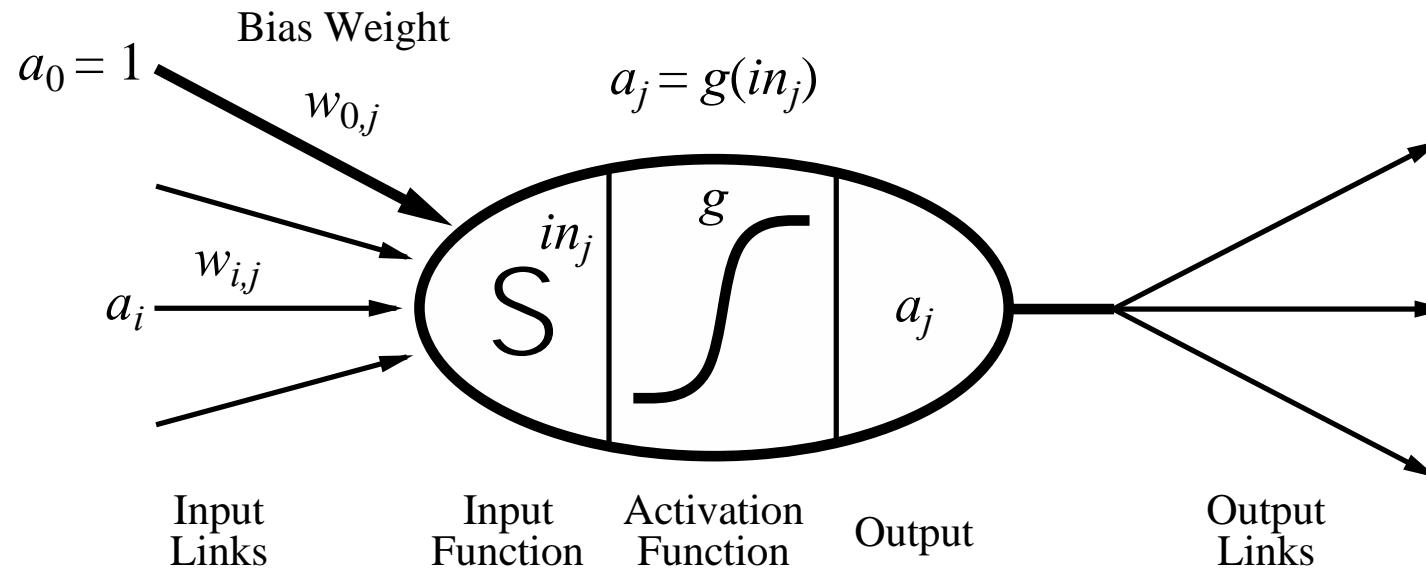
DOWN

BUTTON

Very Loose Inspiration: Human Neurons



Simple Model of a Neuron (McCulloch & Pitts, 1943)



Inputs a_i come from the output of node i to this node j (or from “outside”)

Each input link has a **weight** $w_{i,j}$

There is an additional fixed input a_0 with **bias** weight $w_{0,j}$

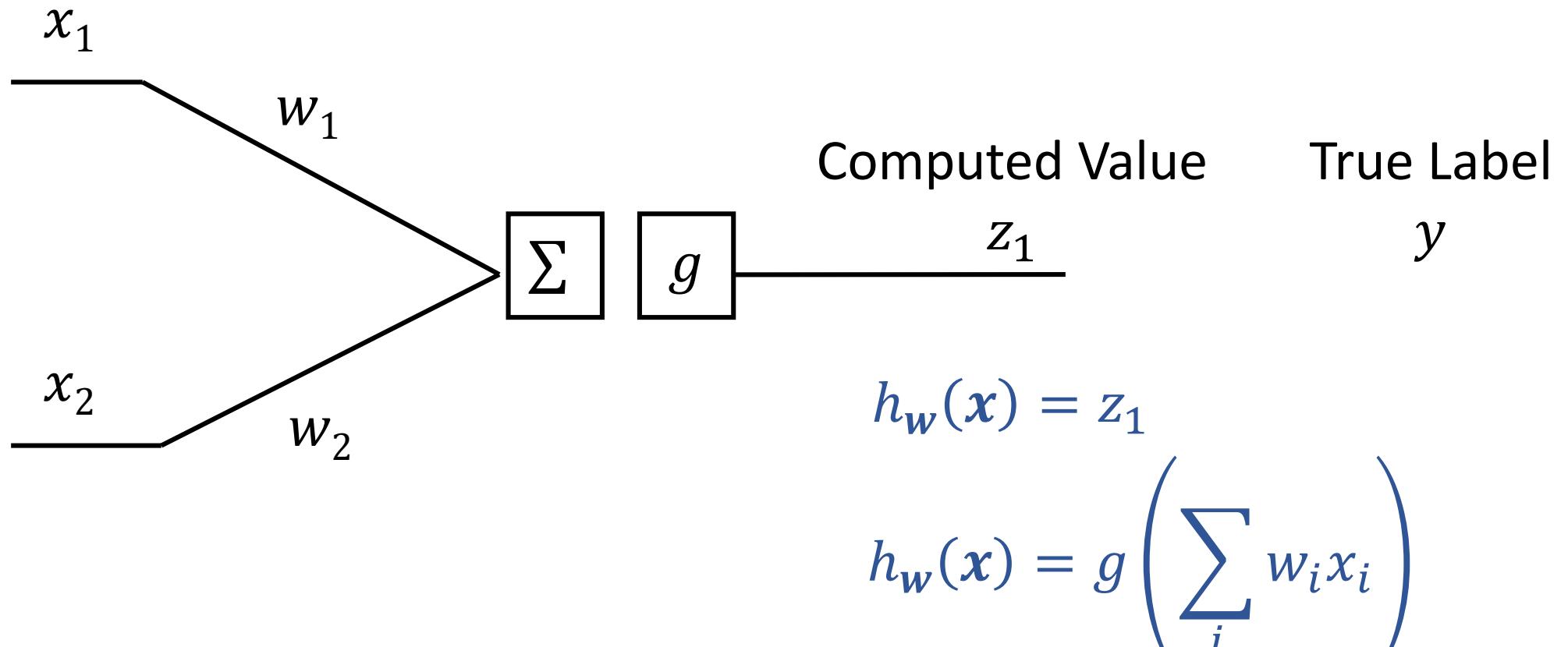
The total input is $in_j = \sum_i w_{i,j} a_i$

The output is $a_j = g(in_j) = g(\sum_i w_{i,j} a_i) = g(w \cdot a)$

Single Neuron

Single neuron system

- Perceptron (if g is step function)
- Logistic regression (if g is sigmoid)



Optimizing

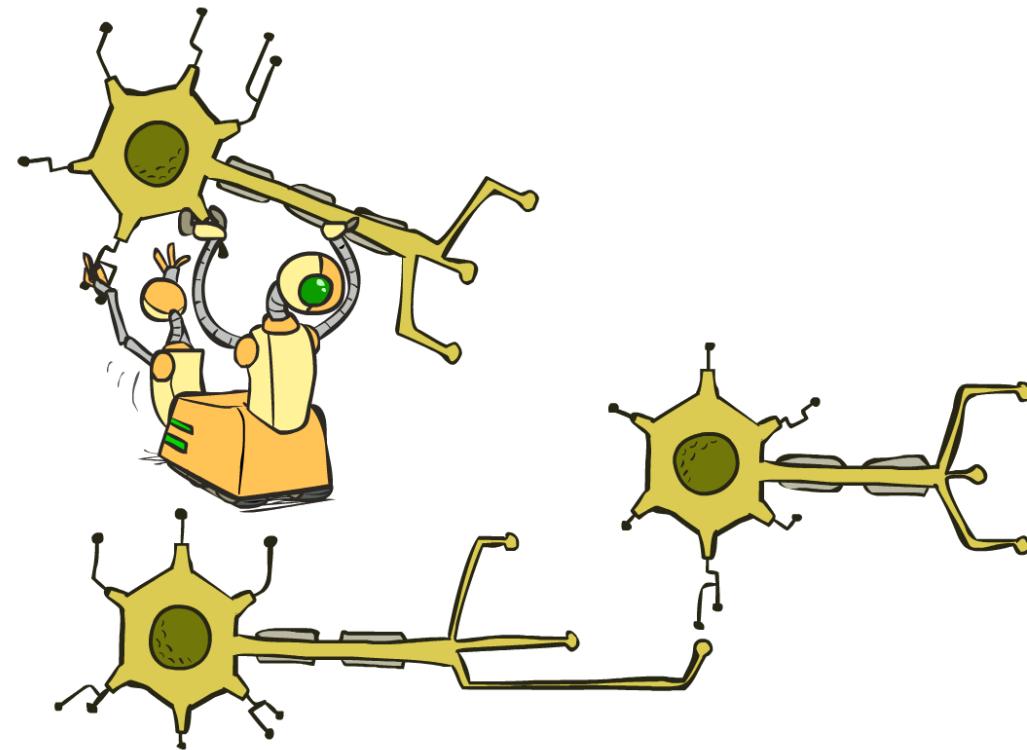
How do we find the “best” set of weights?

$$h_{\mathbf{w}}(\mathbf{x}) = g\left(\sum_i w_i x_i\right)$$

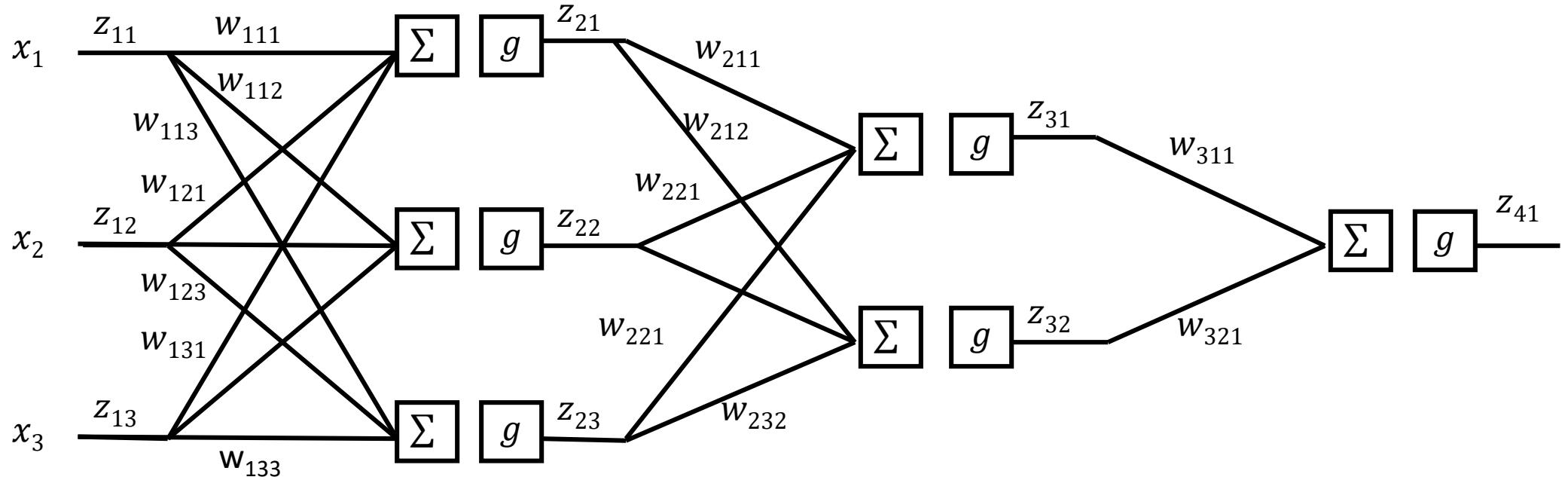
Multilayer Perceptrons

A **multilayer perceptron** is a feedforward neural network with at least one **hidden layer** (nodes that are neither inputs nor outputs)

MLPs with enough hidden nodes can represent any function



Neural Network Equations



$$h_w(\mathbf{x}) = z_{4,1}$$

$$z_{1,1} = x_1$$

$$z_{4,1} = g\left(\sum_i w_{3,i,1} z_{3,i}\right)$$

$$z_{3,1} = g\left(\sum_i w_{2,i,1} z_{2,i}\right)$$

$$z_{d,1} = g\left(\sum_i w_{d-1,i,1} z_{d-1,i}\right)$$

$$h_w(\mathbf{x}) = g\left(\sum_k w_{3,k,1} g\left(\sum_j w_{2,j,1} g\left(\sum_i w_{1,i,1} x_i\right)\right)\right)$$

Optimizing

How do we find the “best” set of weights?

$$h_w(x) = g \left(\sum_k w_{3,k,1} \ g \left(\sum_j w_{2,j,k} \ g \left(\sum_i w_{1,i,j} \ x_i \right) \right) \right)$$

Neural Networks Properties

Practical considerations

- Large number of neurons
 - Danger for overfitting
- Modelling assumptions vs data assumptions trade-off
- Gradient descent can get stuck in bad local optima

What if there are no non-linear activations?

- A deep neural network with only linear layers can be reduced to an exactly equivalent single linear layer

Universal Approximation Theorem:

- A two-layer neural network with a sufficient number of neurons can approximate any continuous function to any desired accuracy.