
Announcements
Assignments:

▪ HW4

▪ Due date Mon, 2/24, 11:59 pm

Midterm 

▪ Monday the 2nd of March from 5:00pm-6:30pm

Midterm Conflicts

▪ See Piazza post

▪ Due 11:59pm on Wednesday the 19th of February



Plan

Last time

▪ Naïve Bayes Assumptions

▪ Naïve Bayes MLE and MAP

▪ MLE vs MAP

▪ Generative vs Discriminative Models

Today

▪ Decision Boundaries

▪ Gaussian Generative Models

▪ Neural Networks



Introduction to 
Machine Learning

Generative Models
then

Intro to Neural Networks

Instructor: Pat Virtue



Decision Boundaries
Decision boundary

▪ The set of points in the domain of the input (𝒙) where the predicted 
classification changes

Two class decision boundary

▪ So far, we have decided to let the decision boundary be all 𝒙 such 
that:

𝑝(𝑦 = 0 | 𝒙) = 𝑝(𝑦 = 1 | 𝒙)

▪ What assumptions are we making here?

▪ This assumes that the cost of predicting it wrong is the same for 
both classes



Piazza Poll 1
Which of the following also define the decision boundary for two 
classes when we just want 𝑝(𝑌 = 0 | 𝒙) = 𝑝(𝑌 = 1 | 𝒙)?

A. All 𝒙, s.t. 𝑝(𝒙 | 𝑌 = 0) = 𝑝(𝒙 | 𝑌 = 1)
B. All 𝒙, s.t. 𝑝(𝒙, 𝑌 = 0) = 𝑝(𝒙, 𝑌 = 1)
C. All 𝒙, s.t. 𝑝(𝑌 = 0) = 𝑝(𝑌 = 1)
D. All 𝒙, s.t. 𝑝(𝑌 = 1 | 𝒙) = 0.5
E. All 𝒙, s.t. 𝑝(𝒙 | 𝑌 = 1) = 0.5
F. All 𝒙, s.t. 𝑝(𝒙, 𝑌 = 1) = 0.5
G. All 𝒙, s.t. log 𝑝(𝒙, 𝑌 = 1) − log 𝑝(𝒙, 𝑌 = 0) = 0
H. None of the above
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Piazza Poll 2
True/False: Logistic regression always produces a linear decision 
boundary.

A. I don’t know

B. True

C. False
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Generative Models
SPAM:

▪ Class distribution: 𝑌 ∼ 𝐵𝑒𝑟𝑛(𝜙)

▪ Class conditional distribution: 𝑋𝑚 ∼ 𝐵𝑒𝑟𝑛(𝜃𝑚,𝑦)

▪ Naïve Bayes 𝑋𝑖 conditionally independent 𝑋𝑗 given 𝑌 for all 𝑖 ≠ 𝑗
𝑝(𝑋𝑖 , 𝑋𝑗 | 𝑌) = 𝑝(𝑋𝑖 | 𝑌) | 𝑝(𝑋𝑗 | 𝑌)

Digits:

▪ Class distribution: 𝑌 ∼ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝜙, 1)

▪ Class conditional distribution: 𝑋𝑚 ∼ 𝐵𝑒𝑟𝑛(𝜃𝑚,𝑦)

▪ Naïve Bayes 𝑋𝑖 conditionally independent 𝑋𝑗 given 𝑌 for all 𝑖 ≠ 𝑗
𝑝(𝑋𝑖 , 𝑋𝑗 | 𝑌) = 𝑝(𝑋𝑖 | 𝑌) | 𝑝(𝑋𝑗 | 𝑌)

Recitation?



Fisher Iris Dataset
https://en.wikipedia.org/wiki/Iris_flower_data_set
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Generative Models with Continuous Features
Iris dataset:

▪ Class distribution: 𝑌 ∼ 𝐵𝑒𝑟𝑛(𝜙)

▪ Class conditional distribution: 𝑿 ∼ 𝒩(𝝁𝑦 , 𝚺𝑦)

▪ Naïve Bayes assumption?



Piazza Poll 3

Which of the following pairs of Gaussian class conditional distributions 
satisfy the Naïve Bayes assumptions? Select ALL that apply.

A. 𝝁𝑦=0 =
−1
0

, 𝚺𝑦=0 =
1 0
0 1

,         𝝁𝑦=1 =
1
0
, 𝚺𝑦=1 =

1 0
0 1

B. 𝝁𝑦=0 =
−1
0

, 𝚺𝑦=0 =
1 0
0 1

,         𝝁𝑦=1 =
1
0
, 𝚺𝑦=1 =

3 0
0 3

C. 𝝁𝑦=0 =
−1
0

, 𝚺𝑦=0 =
1 −1
1 1

,         𝝁𝑦=1 =
1
0
, 𝚺𝑦=1 =

1 −1
1 1

D. 𝝁𝑦=0 =
−1
0

, 𝚺𝑦=0 =
1 −1
1 1

,         𝝁𝑦=1 =
1
0
, 𝚺𝑦=1 =

1 0
0 1
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Decision Boundaries
Iris dataset:

▪ Class distribution: 𝑌 ∼ 𝐵𝑒𝑟𝑛(𝜙)

▪ Class conditional distribution: 𝑿 ∼ 𝒩(𝝁𝑦 , 𝚺𝑦)

▪ Naïve Bayes assumption:

▪ Linear Decision Boundary:

▪ Quadradic Decision Boundary:



Introduction to 
Machine Learning

Intro to Neural Networks

Instructor: Pat Virtue



Neural Networks from HW2
1-D Regression



Neural Networks from HW2
Digit Classification



Neural Networks
Inspired by actual human brain

Image: https://en.wikipedia.org/wiki/Neuron

Output

Signal
Input 
Signal DOG

CAT

TREE

CAR

SKY



Neural Networks
Simple single neuron example:

▪ Selling my car



Neural Networks
Many layers of neurons, millions of parameters
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Neural Networks
Many layers of neurons, millions of parameters
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Very Loose Inspiration: Human Neurons

Axon

Cell body or Soma

Nucleus

Dendrite

Synapses

Axonal arborization

Axon from another cell

Synapse

Slide from UC Berkeley AI



Simple Model of a Neuron (McCulloch & Pitts, 
1943)

Inputs ai come from the output of node i to this node j (or from “outside”)

Each input link has a weight wi,j

There is an additional fixed input a0 with bias weight w0,j

The total input is inj = i wi,j ai

The output is aj = g(inj) = g(i wi,j ai) = g(w.a)

Output

S

Input
Links

Activation
Function

Input
Function

Output
Links

a0 = 1 aj = g(inj)

aj

g
injwi,j

w0,j

Bias Weight

ai

Slide from UC Berkeley AI



Single Neuron

Single neuron system
▪ Perceptron (if 𝑔 is step function)

▪ Logistic regression (if 𝑔 is sigmoid)

Computed Value
𝑧1∑ 𝑔

𝑥1

𝑥2

𝑤1

𝑤2

True Label
𝑦

ℎ𝒘 𝒙 = 𝑧1

ℎ𝒘 𝒙 = 𝑔 ෍

𝑖

𝑤𝑖𝑥𝑖



Optimizing
How do we find the “best” set of weights?

ℎ𝒘 𝒙 = 𝑔 ෍

𝑖

𝑤𝑖𝑥𝑖



Multilayer Perceptrons

A multilayer perceptron is a feedforward neural network with at least one 
hidden layer (nodes that are neither inputs nor outputs)

MLPs with enough hidden nodes can represent any function

Slide from UC Berkeley AI



Neural Network Equations

∑𝑥1 𝑔
𝑧11

𝑥2
𝑧12

𝑥3
𝑧13

𝑤111

𝑤121

𝑤131

𝑧21

∑ 𝑔

𝑤112

𝑧22

∑ 𝑔
w133

𝑤113

𝑤123

𝑧23

∑ 𝑔

𝑤212

𝑧32

𝑤232

∑ 𝑔
𝑤221

𝑤211

𝑧31

𝑤221

𝑧41
∑ 𝑔

𝑤311

𝑤321

ℎ𝑤 𝒙 = 𝑧4,1

𝑧4,1 = 𝑔 ∑𝑖𝑤3,𝑖,1 𝑧3,𝑖

𝑧3,1 = 𝑔 ∑𝑖𝑤2,𝑖,1 𝑧2,𝑖

𝑧𝑑,1 = 𝑔 ∑𝑖𝑤𝑑−1,𝑖,1 𝑧𝑑−1,𝑖

𝑧1,1 = 𝑥1

ℎ𝑤 𝑥 = 𝑔 ෍

𝑘

𝑤3,𝑘,1 𝑔 ෍

𝑗

𝑤2,𝑗,𝑘 𝑔 ෍

𝑖

𝑤1,𝑖,𝑗 𝑥𝑖



Optimizing
How do we find the “best” set of weights?

ℎ𝑤 𝑥 = 𝑔 ෍

𝑘

𝑤3,𝑘,1 𝑔 ෍

𝑗

𝑤2,𝑗,𝑘 𝑔 ෍

𝑖

𝑤1,𝑖,𝑗 𝑥𝑖



Neural Networks Properties
Practical considerations

▪ Large number of neurons

▪ Danger for overfitting

▪ Modelling assumptions vs data assumptions trade-off

▪ Gradient descent can get stuck in bad local optima

What if there are not non-linear activations?

▪ A deep neural network with only linear layers can be reduced to an exactly 
equivalent single linear layer

Universal Approximation Theorem:

▪ A two-layer neural network with a sufficient number of neurons can 
approximate any continuous function to any desired accuracy.


