HOMEWORK 6 (PROGRAMMING): NEURAL NETWORKS

10-315 Introduction to Machine Learning (Spring 2020)
Carnegie Mellon University

Summary In this assignment, you will build a handwriting recognition system using a neural network.
As a warmup, the written component of the assignment will lead you through an on-paper example of how
to implement a neural network. Then, you will implement an end-to-end system that learns to perform

handwritten letter classification.

Begin by downloading and unzipping https://www.cs.cmu.edu/~10315/assignments/hw6/
programming/hwé6_programming.zip. This contains the skeleton code, data, and autograder for
this assignment.

This assignment includes an autograder for you to grade your some aspects of your code on your machine.
This can be run with the command:

python3.6 autograder.py

The code for this assignment consists of several Python files, some of which you will need to read and
understand in order to complete the assignment, and some of which you can ignore.

Files you will edit
* neural_network.py: Your code to implement, train, and execute your neural network.

* additional_code.py: Add additional code that you will need to write to answer various ques-
tions will go here. This code should be runnable by calling python3.6 additional_code.py,
but there are no requirements on the format and it will not be executed by the autograder.

Files you might want to look at

* test_cases/Qx/x.py These are the unit tests that the autograder runs. Ideally, you would be
writing these unit tests yourself, but we are saving you a bit of time and allowing the autograder to
check these things. You should definitely be looking at these to see what is and is not being tested.
The autograder on Gradescope may run a different version of these unit tests.

* test_utils.py Utility file used by the test case code.

* Reference_Outputs Data files used by the test case code.
Files you can safely ignore

* autograder.py Autograder infrastructure code.
Files to Edit and Submit:

You will fill in portions of neural network.py and additional_code.py during the assignment.
You should submit this file containing your code and comments to the Programming component on Grade-

https://www.cs.cmu.edu/~10315/assignments/hw6/programming/hw6_programming.zip
https://www.cs.cmu.edu/~10315/assignments/hw6/programming/hw6_programming.zip

Homework 6 (Programming): Neural Networks 10-315 Introduction to Machine Learning (Spring 2020)

scope. Please do not change the other files in this distribution or submit any of our original files other than
these files. Please do not change the names of any provided functions or classes within the code, or you will
wreak havoc on the autograder.

Report:

The Written component of this assignment contains questions that require additional programming but are
not autograded. You will place the requested results in the appropriate locations within the PDF of the
Written component of this assignment.

Evaluation:

Your assignment will be assessed based on your code, the output of the autograder, and the required contents
of in the Written component.

Academic Dishonesty:

We will be checking your code against other submissions in the class for logical redundancy. If you copy
someone else’s code and submit it with minor changes, we will know. These cheat detectors are quite hard
to fool, so please don’t try. We trust you all to submit your own work only; please don’t let us down. If you
do, we will pursue the strongest consequences available to us.

Getting Help:

You are not alone! If you find yourself stuck on something, contact the course staff for help. Office hours,
recitation, and Piazza are there for your support; please use them. If you can’t make our office hours, let
us know and we will schedule more. We want these assignments to be rewarding and instructional, not
frustrating and demoralizing. But, we don’t know when or how to help unless you ask.

Homework 6 (Programming): Neural Networks 10-315 Introduction to Machine Learning (Spring 2020)

1 Task: Neural Network Implementation

ATITENZLT
NAHERRELR
JEHOREEAR
S HIHHER

TTHEEEY

==
=
——
= K
=—1
-—
—
—
—

[|
{
L 5 |
i =
3
s
Finl

3
AaNMiGaah
1422005111
ANANAAADEQ

Figure 1.1: 10 Random Images of Each of 10 Letters in OCR

-

=N
LU |
L]

Your goal in this assignment is to label images of handwritten letters by implementing a Neural Network
from scratch. You will implement all of the functions needed to initialize, train, evaluate, and make predic-
tions with the network.

1.1 The Task and Datasets
Datasets We will be using a subset of an Optical Character Recognition (OCR) dataset. This data includes

images of all 26 handwritten letters; our subset will include only the letters “a,” “e,” “g,” “i,” “L,” “n,” “0,”
“r,” “t,” and “u.” The handout contains three datasets drawn from this data: a small dataset with 60 samples
per class (50 for training and 10 for test), a medium dataset with 600 samples per class (500 for training and
100 for test), and a large dataset with 1000 samples per class (900 for training and 100 for test). Figure 1.1

shows a random sample of 10 images of few letters from the dataset.

File Format Each dataset (small, medium, and large) consists of two csv files—train and test. Each row
contains 129 columns separated by commas. The first column contains the label and columns 2 to 129
represent the pixel values of a 16 x 8 image in a row major format. Label O corresponds to “a,” 1 to “e,” 2
to “g,” 3to “i,” 4 to “l,” 5 to “n,” 6 to “0,” 7 to “r;” 8 to “t,” and 9 to “u.” Because the original images are
black-and-white (not grayscale), the pixel values are either O or 1. However, you should write your code
to accept arbitrary pixel values in the range [0,1]. The images in Figure 1.1 were produced by converting
these pixel values into .png files for visualization. Observe that no feature engineering has been done here;

instead the neural network you build will learn features appropriate for the task of character recognition.

Homework 6 (Programming): Neural Networks 10-315 Introduction to Machine Learning (Spring 2020)

1.2 Model Definition

In this assignment, you will implement a single-hidden-layer neural network with a sigmoid activation
function for the hidden layer, and a softmax on the output layer. Let the input vectors x be of length M, the
hidden layer z consist of D hidden units, and the output layer y be a probability distribution over K classes.
That is, each element y;, of the output vector represents the probability of x belonging to the class k.

G = exp(by)
- K
>_i—1 €xp(by)
D
br = Bro+ > Brjzi
j=1
1
Zi= —————
I T oxp(—ay)
M
a; = 50+ Z A jmTm
m=1

We can compactly express this model by assuming that g = 1 is a bias feature on the input and that z5 = 1
is also fixed. In this way, we have two parameter matrices o € RP*(M+1) and g € REX(P+1) The extra
Oth column of each matrix (i.e. a. ¢ and ﬁ,ﬂ) hold the bias parameters.

G = exp(by.)
Sois exp(br)
D

by = Z Brjz;
=0

1
Zi= ——
71+ exp(—a;)

M
aj = g QjmTm
m=0

The objective function we will use for training the neural network is the average cross entropy over the
training dataset D = {(x(¥, y(®)}:

1 N K
(e, B) =~ 2>y log(d (1.1)

i=1 k=1

i s implicitly a function of

x(), a, and @ since it is the output of the neural network applied to x(*). Of course, g),(f) and y,(f) are the kth
components of y(*) and y(® respectively.

In Equation 1.2, J is a function of the model parameters o and 3 because ;.

To train, you should optimize this objective function using stochastic gradient descent (SGD), where the
gradient of the parameters for each training example is computed via backpropagation. Note that SGD has

Homework 6 (Programming): Neural Networks 10-315 Introduction to Machine Learning (Spring 2020)

a slight impact on the objective function, where we are “summing” over just the current point, i:
K . .
Jsap(a,B) = — Zy;(;) log(3,") (1.2)
k=1

1.2.1 Initialization

In order to use a deep network, we must first initialize the weights and biases in the network. This is typically
done with a random initialization, or initializing the weights from some other training procedure. For this
assignment, we will be using two possible initialization:

RANDOM The weights are initialized randomly from a uniform distribution from -0.1 to 0.1.
The bias parameters are initialized to zero.

ZERO All weights are initialized to 0.

You must support both of these initialization schemes.
1.3 Implementation

Implement the t rain_and_-test () functionin neural _network.py to train and validate your neural
network implementation. See the docstring in the code for more details. You may implement any helper
code you like outside of t rain_and_test () within neural_network.py.

Implements an optical character recognizer using a one hidden layer neural network with sigmoid activa-
tions. Your program should learn the parameters of the model on the training data, report the cross-entropy
at the end of each epoch on both train and validation data, and at the end of training write out its predictions
and error rates on both datasets.

Your implementation must satisfy the following requirements:

* Use a sigmoid activation function on the hidden layer and softmax on the output layer to ensure it
forms a proper probability distribution.

* Number of hidden units for the hidden layer will be determined by the num_hidden argument to
the train_and_test function.

» Support two different initialization strategies, as described in Section 1.2.1, selecting between them
based on the init_rand argument to the train_and_test function.

* Use stochastic gradient descent (SGD) to optimize the parameters for one hidden layer neural network.
The number of epochs will be determined by the num_epoch argument to the train_and_test
function.

* Use the learning rate specified by the learning_rate argument to the train_and_test func-
tion.

* Perform stochastic gradient descent updates on the training data in the order that the data is given
in the input file. Although you would typically shuffle training examples when using stochastic gra-
dient descent, in order to autograde the assignment, we ask that you DO NOT shuffle trials in this
assignment.

* You may assume that the input data will always have the same number of features (i.e. number of
columns) and the same output label space (i.e. {0, 1,...,9}). Other than these assumptions, do not
hard-code any aspects of the data sets into your code. We will autograde your programs on multiple
(hidden) data sets that include different examples.

Homework 6 (Programming): Neural Networks 10-315 Introduction to Machine Learning (Spring 2020)

* Do not use any machine learning libraries. You may use NumPy.

Implementing a neural network can be tricky: the parameters are not just a simple vector, but a collection
of many parameters; computational efficiency of the model itself becomes essential; the initialization strat-
egy dramatically impacts overall learning quality; other aspects which we will not change (e.g. activation
function, optimization method) also have a large effect. These tips should help you along the way:

* Try to “vectorize” your code as much as possible. In Python, you want to avoid for-loops and instead
rely on numpy calls to perform operations such as matrix multiplication, transpose, subtraction, etc.
over an entire numpy array at once. Why? Because these operations are actually implemented in fast
C code, which won’t get bogged down the way a high-level scripting language like Python will.

* Implement a finite difference test to check whether your implementation of backpropagation is cor-
rectly computing gradients. If you choose to do this, comment out this functionality once your back-
ward pass starts giving correct results and before submitting to Gradescope, since it will otherwise
slow down your code.

1.4 Submission

Upload neural network.py and additional_code.py to Gradescope. Your submission should
finish running within 20 minutes, after which it will time out on Gradescope.

Don’t forget to include any request results in the PDF of the Written component, which is to be submitted
on Gradescope as well.

You may submit to Gradescope as many times as you like. You may also run the autograder on your own
machine to speed up the development process. Just note that the autograder on Gradescope will be slightly
different than the local autograder. The autograder can be invoked on your own machine using the command:

python3.6 autograder.py

Note that running the autograder locally will not register your grades with us. Remember to submit your
code when you want to register your grades for this assignment.

The autograder on Gradescope might take a while but don’t worry; so long as you submit before the deadline,
it’s not late.

Homework 6 (Programming): Neural Networks 10-315 Introduction to Machine Learning (Spring 2020)

A Implementation Details for Neural Networks

This section provides a variety of suggestions for how to efficiently and succinctly implement a neural
network and backpropagation.

A.1 SGD for Neural Networks

Consider the neural network described in Section 1.3 applied to the ith training example (x,y) where y
is a one-hot encoding of the true label. Our neural network outputs y = hq g(x), where o and 3 are
the parameters of the first and second layers respectively and hq, g(+) is a one-hidden layer neural network
with a sigmoid activation and softmax output. The loss function is negative cross-entropy J = /(y,y) =
—yTlog(y). J = Jxy(ax, B)is actually a function of our training example (x, y), and our model parameters
o, B though we write just J for brevity.

In order to train our neural network, we are going to apply stochastic gradient descent. Because we want
the behavior of your program to be deterministic for testing on Autolab, we make a few simplifications: (1)
you should not shuffle your data and (2) you will use a fixed learning rate. In the real world, you would not
make these simplifications.

SGD proceeds as follows, where F is the number of epochs and +y is the learning rate.

Algorithm 1 Stochastic Gradient Descent (SGD) without Shuffle

1: procedure SGD(Training data D, test data Dy)
2 Initialize parameters o, 3 > Use either RANDOM or ZERO from Section 1.2.1
3 fore € {1,2,...,F} do > For each epoch
4: for (x,y) € D do > For each training example (No shuffling)
5: Compute neural network layers:
6 o = object(x,a,b,z,y,J) = NNFORWARD(X, y, a, 3)
7 Compute gradients via backprop:
oJ
Sa = %
8: o) (= NNBACKWARD(x,y, «, 3, 0)
g3 = 98
9: Update parameters:
10: a— o — Y8y
11: B+« B—8s
12: Evaluate training mean cross-entropy Jp (o, 3)
13: Evaluate test mean cross-entropy Jp, (c, 3)
14: return parameters o, 3

At test time, we output the most likely prediction for each example:

Algorithm 2 Prediction at Test Time

procedure PREDICT(Unlabeled train or test dataset D’, Parameters «, (3)

1:

2 forx € D' do

3: Compute neural network prediction y = h(x)

4 Predict the label with highest probability | = argmax;, Jx

The gradients we need above are themselves matrices of partial derivatives. Let M be the number of input

Homework 6 (Programming): Neural Networks 10-315 Introduction to Machine Learning (Spring 2020)

features, D the number of hidden units, and K the number of outputs.

dal de de
a1p @11 ... Q1M dily 0 d(c;iy P dad1 P
Q@20 Q21 -e. O2pm oJ doog daay T doonr
o = 8a = = (A.1)
: : - : oo : : - :
dal de de
apyg a&p1 ... ODM dapo dap] “+ dapum
e de de
Bio B ... Bip dBio dBi1 " dBip
,6 ,B B dal dal dal
20 21 .- DP2p aJ dB2 dB21 " dBap
= g3 = % = (A.2)
dal dal dal
Bro Br1 --- Bkb s B - Des

Observe that we have (in a rather tricky fashion) defined the matrices such that both & and g, are D x (M +
1) matrices. Likewise, 3 and gg are K x (D + 1) matrices. The +1 comes from the extra columns c. o
and 3. ; which are the bias parameters for the first and second layer respectively. We will always assume
xg = 1 and 29 = 1. This should greatly simplify your implementation as you will see in Section A.3.

A.2 Recursive Derivation of Backpropagation

In class, we described a very general approach to differentiating arbitrary functions: backpropagation. One
way to understand how we go about deriving the backpropagation algorithm is to consider the natural con-
sequence of recursive application of the chain rule.

In practice, the partial derivatives that we need for learning are 4t and 4
dov dBy;

A.2.1 Symbolic Differentiation

Note In this section, we motivate backpropagation via a strawman: that is, we will work through the
wrong approach first (i.e. symbolic differentiation) in order to see why we want a more efficient method (i.e.
backpropagation). Do not use this symbolic differentiation in your code.

Suppose we wanted to find % using the method we know from high school calculus. That is, we will
analytically solve for an equation representing that quantity.

1. Considering the computational graph for the neural network, we observe that «;; has exactly one child
aj = Zn]‘f:o QO jmTm. That is a; is the first and only intermediate quantity that uses «;;. Applying the

chain rule, we obtain
¢ dl da; dl

= — = —2;
daij dai dOéZ‘j dai J

2. So far so good, now we just need to compute %. Not a problem! We can just apply the chain

rule again. a; just has exactly one child as well, namely z; = o(a;). The chain rule gives us that
% = %% = %zj (1 — z;). Substituting back into the equation above we find that
at al

= —(2;(1 — z:))x;
dov; dz; (Z] (Zj)

8

Homework 6 (Programming): Neural Networks 10-315 Introduction to Machine Learning (Spring 2020)

3. How do we get %‘? You guessed it: apply the chain rule yet again. This time, however, there are
multiple children of z; in the computation graph; they are by, bo, . . . bi. Applying the chain rule gives
us that %ﬂ_ = Zszl d”éi ZZ’; = Zk 1 db 5k; Substituting back into the equation above gives:

dt de

4. Next we need ddbe ,

which we again obtain via the chain rule: W Zl | ¥ . — Zl 1 c(lizfz oIk =
] — Ok)- Substltutmg back in above gives:

dyy db,

dl dl
= — g1 (Llk =1 — 9x) Bri (75 (1 — z;))x;
Tay = 2o 2 g 0l = U= 3Pk (41 = 29)
5. Finally, = =% which we can again substitute back in to obtain our final result
df KK Ui
=Y > =il = 1] = §x)Br;(z(1 = 2)))as
dasij]

Although we have successfully derived the partial derivative w.r.t. oy;;, the result is far from satisfying.
It is overly complicated and requires deeply nested for-loops to compute.

The above is an example of symbolic differentiation. That is, at the end we get an equation representing the
partial derivative w.r.t. «;;. At this point, you should be saying to yourself: What a mess! Isn’t there a better
way? Indeed there is and its called backpropagation. The algorithm works just like the above symbolic
differentiation except that we never subsitute the partial derivative from the previous step back in. Instead,
we work “backwards” through the steps above computing partial derivatives in a top-down fashion.

A.3 Matrix / Vector Operations for Neural Networks

Some programming languages are fast and some are slow. Below is a simple benchmark to show this
concretely. The task is to compute a dot-product a’’b between two vectors a € R%%? and b € R>% one
thousand times. Table A.1 shows the time taken for several combinations of programming language and
data structure.

language data structure time (ms)
Python list 200.99
Python numpy array 1.01
Java float[] 4.00
C++ vector<float> 0.81

Table A.1: Computation time required for dot-product in various languages.

Notice that Java' and C++ with standard data structures are quite efficient. By contrast, Python differs dra-
matically depending on which data structure you use: with a standard list object
(e.g.a = [float (i) for x in range (500)]) the computation time is an appallingly slow 200+

!Java would approach the speed of C++ if we had given the just-in-time (JIT) compiler inside the JVM time to “warm-up”.

Homework 6 (Programming): Neural Networks 10-315 Introduction to Machine Learning (Spring 2020)

milliseconds. Simply by switching to a numpy array (e.g. a = np.arange (500, dtype=float))
we obtain a 200x speedup. This is because a numpy array is actually carrying out the dot-product computa-
tion in pure C, which is just as fast as our C++ benchmark, modulo some Python overhead.

Thus, you should convert all the deeply nested for-loops into efficient “vectorized” math via numpy. Doing
so will ensure efficient code.

A.4 Procedural Method of Implementation

Perhaps the simplest way to implement a 1-hidden-layer neural network is procedurally. Note that this
approach has some drawbacks that we’ll discuss below (Section A.4.1).

The procedural method: one function computes the outputs of the neural network and all intermediate
quantities o = NNFORWARD(X,y, o, 3) = object(x,a,b,z,y, J), where the object is just some struct.
Then another function computes the gradients of our parameters g, g3 = NNBACKWARD(X,y, o, 3,0),
where o is a data structure that stores all the forward computation.

One must be careful to ensure that functions are vectorized. For example, your Sigmoid function should be
able to take a vector input and return a vector output with the Sigmoid function applied to all of its elements.
All of these operations should avoid for-loops when working in a high-level language like Python / Octave.
We can compute the softmax function in a similar vectorized manner.

A.4.1 Drawbacks to Procedural Method

As noted in Section A.0, it is possible to use a finite difference method to check that the backpropaga-
tion algorithm is correctly computing the gradient of its corresponding forward computation. We strongly
encourage you to do this.

There is a big problem however: what if your finite difference check informs you that the gradient is not
being computed correctly. How will you know which part of your NNFORWARD() or NNBACKWARD()
functions has a bug? There are two possible solutions here:

1. As usual, you can (and should) work through a tiny example dataset on paper. Compute each inter-
mediate quantity and each gradient. Check that your code reproduces each number. The one that does
not should indicate where to find the bug.

2. Replace your procedural implementation with a module-based one (as described in Section A.5) and
then run a finite-difference check on each layer of the model individually. The finite-difference check
that fails should indicate where to find the bug.

Of course, rather than waiting until you have a bug in your procedural implementation, you could jump
straight to the module-based version—though it increases the complexity slightly (i.e. more lines of code)
it might save you some time in the long run.

A.5 Module-based Method of Implementation

Module-based automatic differentiation (AD) is a technique that has long been used to develop libraries for
deep learning. Dynamic neural network packages are those that allow a specification of the computation
graph dynamically at runtime, such as Torch?, PyTorch?, and DyNet*—these all employ module-based AD
in the sense that we will describe here.’

Mttp://torch.ch/

*http://pytorch.org/

*nttps://dynet.readthedocs.io

SStatic neural network packages are those that require a static specification of a computation graph which is subsequently
compiled into code. Examples include Theano, Tensorflow, and CNTK. These libraries are also module-based but the particular

10

http://torch.ch/
http://pytorch.org/
https://dynet.readthedocs.io

Homework 6 (Programming): Neural Networks 10-315 Introduction to Machine Learning (Spring 2020)

The key idea behind module-based AD is to componentize the computation of the neural-network into
layers. Each layer can be thought of as consolidating numerous nodes in the computation graph (a subset of
them) into one vector-valued node. Such a vector-valued node should be capable of the following and we
call each one a module:

1. Forward computation of output b = [b1,...,bg| given inputa = [a1, ..., a4] via some differentiable
function f. Thatis b = f(a).

2. Backward computation of the gradient of the input g, = % = [%, cees %] given the gradient of
output gp = g—i = [%, ceey %}, where J is the final real-valued output of the entire computation

graph. This is done via the chain rule ddTi- = ijl %% foralli e {1,..., A}

A.5.1 Module Definitions

The modules we would define for our neural network would correspond to a Linear layer, a Sigmoid layer,
a Softmax layer, and a Cross-Entropy layer. Each module defines a forward function b = *FORWARD(a),
and a backward function g, = *BACKWARD(a, b, g},) method. These methods accept parameters if ap-
propriate. You’ll want to pay close attention to the dimensions that you pass into and return from your
modules.

Linear Module The linear layer has two inputs: a vector a and parameters w € RZ*4. The output b is not
used by LINEARBACKWARD, but we pass it in for consistency of form.

1: procedure LINEARFORWARD(a, w)

2 Compute b

3 return b

4. procedure LINEARBACKWARD(a, a, b, gp)
5 Compute g,

6 Compute g,

7 return gq, ga

It’s also quite common to combine the Cross-Entropy and Softmax layers into one. The reason for this is the
cancelation of numerous terms that result from the zeros in the cross-entropy backward calculation. (Said
trick is not required to obtain a sufficiently fast implementation for Autolab.)

A.5.2 Module-based AD for Neural Network

Using these modules, we can re-define our functions NNFORWARD and NNBACKWARD as follows.

Algorithm 3 Forward Computation

1: procedure NNFORWARD(Training example (x, y), Parameters «, 3)
2 a = LINEARFORWARD(x, x)

3: z = SIGMOIDFORWARD(a)

4: b = LINEARFORWARD(z, 3)

5 ¥ = SOFTMAXFORWARD(b)

6 J = CROSSENTROPYFORWARD(y, ¥)

7 o = object(x,a,z,b,y,J)

8 return intermediate quantities o

form of implementation is different from the dynamic method we recommend here.

11

Homework 6 (Programming): Neural Networks 10-315 Introduction to Machine Learning (Spring 2020)

Algorithm 4 Backpropagation

1: procedure NNBACKWARD(Training example (x, y), Parameters «, 3, Intermediates o)

2 Place intermediate quantities x, a, z, b, y, J in o in scope

3 gJ:%:l > Base case
4: gy = CROSSENTROPYBACKWARD(y, ¥, J,g7)

5: gb = SOFTMAXBACKWARD(b, y, g¢)

6 g3, 8z = LINEARBACKWARD(z, b, g},)

7 ga = SIGMOIDBACKWARD(a, z, g5)

8 8o, 8x = LINEARBACKWARD(X, a, ga) > We discard gy
9 return parameter gradients g, g3

Here’s the big takeaway: we can actually view these two functions as themselves defining another module!
It is a 1-hidden layer neural network module. That is, the cross-entropy of the neural network for a single
training example is itself a differentiable function and we know how to compute the gradients of its inputs,
given the gradients of its outputs.

A.6 Testing Backprop with Numerical Differentiation

Numerical differentiation provides a convenient method for testing gradients computed by backpropagation.
The centered finite difference approximation is:
0 (JO+e-d;))—J(O—¢c-d;))

(A.3)

where d; is a 1-hot vector consisting of all zeros except for the ith entry of d;, which has value 1. Unfortu-
nately, in practice, it suffers from issues of floating point precision. Therefore, it is typically only appropriate
to use this on small examples with an appropriately chosen e.

In order to apply this technique to test the gradients of your backpropagation implementation, you will
need to ensure that your code is appropriately factored. Any of the modules including NNFORWARD and
NNBACKWARD could be tested in this way.

For example, you could use two functions: forward (x,y,theta) computes the cross-entropy for a
training example. backprop (%, vy, theta) computes the gradient of the cross-entropy for a training
example via backpropagation. Finally, finite_diff as defined below approximates the gradient by the
centered finited difference method. The following pseudocode provides an overview of the entire procedure.

def finite diff(x, y, theta):

epsilon = le-5

grad = zero_vector (theta.length)

for m in [1, ..., theta.length]:
d = zero_vector (theta.length)
d[m] = 1
v = forward(x, y, theta + epsilon x d)
v —= forward(x, y, theta - epsilon x d)
v /= 2xepsilon
grad[m] = v

Compute the gradient by backpropagation
grad_bp = backprop(x, y, theta)

12

Homework 6 (Programming): Neural Networks 10-315 Introduction to Machine Learning (Spring 2020)

Approximate the gradient by the centered finite difference method
grad_fd = finite_ diff(x, y, theta)

Check that the gradients are (nearly) the same
diff = grad_bp - grad_fd # element-wise difference of two vectors
print 12_norm(diff) # this value should be small (e.g. < le-7)

A.6.1 Limitations

This does not catch all bugs—the only thing it tells you is whether your backpropagation implementation
is correctly computing the gradient for the forward computation. Suppose your forward computation is
incorrect, e.g. you are always computing the cross-entropy of the wrong label. If your backpropagation is
also using the same wrong label, then the check above will not expose the bug. Thus, you always want to
separately test that your forward implementation is correct.

A.6.2 Finite Difference Checking of Modules

Note that the above would test the gradient for the entire end-to-end computation carried output by the neural
network. However, if you implement a module-based automatic differentiation method (as in Section A.5),
then you can test each individual component for correctness. The only difference is that you need to run the
finite-difference check for each of the output values (i.e. a double for-loop).

13

	Task: Neural Network Implementation
	The Task and Datasets
	Model Definition
	Initialization

	Implementation
	Submission

	Implementation Details for Neural Networks
	SGD for Neural Networks
	Recursive Derivation of Backpropagation
	Symbolic Differentiation

	Matrix / Vector Operations for Neural Networks
	Procedural Method of Implementation
	Drawbacks to Procedural Method

	Module-based Method of Implementation
	Module Definitions
	Module-based AD for Neural Network

	Testing Backprop with Numerical Differentiation
	Limitations
	Finite Difference Checking of Modules

