NumPy Overview

Courses: Machine Learning in Nutshell (15-288), Al & ML 1 (07-280)

By: Mohammed Yusuf Ansari, PhD

Carnegie Mellon

Machine Learning Data

* Nature of Machine Learning Data:
e Data is typically stored and processed in tabular form
» Tabular data is naturally represented as a matrix of values
e Each row corresponds to a single data example
* Each column corresponds to a specific property/attribute/feature of the data

Data fields

—> index age sex bmi children smoker region charges
0 19 female 27.9 0 yes southwest 16884.924
il 18 male 33.77 1 no southeast 1725.5523
Row0 lcol 1fcol 2]col 3|col 4 String Labels 2 28 male 33 3 no southeast 4449.462
Data records 3 33 male 22.705 0 no northwest 21984.4706
row 1 4 32 male 28.88 0 no northwest 3866.8552
5 31 female 25.74 0 no southeast 3756.6216
—— 6 46 female 33.44 1 no southeast 8240.5896
7 37 female 27.74 3 no northwest 7281.5056
8 37 male 29.83 2 no northeast 6406.4107
row 3 9 60 female 25.84 0 no northwest 28923.1369
10 25 male 26.22 0 no northeast 2721.3208

Insurance Charges Dataset

Deep Learning Data

* Nature of Deep Learning Data:
* Deep learning models operate on raw or minimally processed data
* Unlike Machine Learning, features are often not handcrafted/engineered.
* Models learn representations directly from dats

S
o

Ultrasound image ECG Signal. Computed Tomography
(2D Matrix) (1D vector) (3D Matrix)

Why NumPy?

 Why Python Lists Are Not Enough?

* Machine learning requires operations on large vectors, matrices, and tensors

Typical operations include:

<

* Element-wise arithmetic <o O

175 NumPy

* Vector and matrix multiplication

y
g

e Reductions such as sum, mean, and norms

These operations must be expressive and efficient.

List often require explicit loops for these operations (verbose, error-prone)

Lists stores pointers to objects, incurring significant compute and memory overhead

NumPy provides numerical computational functionality with operations in
mathematical form, offering performance, clarity!

NumPy Overview Roadmap

NumPy arrays for numerical computing
Creation and initialization of an array
ndexing and slicing

ndexing and slicing with arrays of indices
terating in arrays

Arithmetic operations

Multiplication, matrix multiplication, and dot product

Aggregate measures

Relational operators

10. Logical (bitwise) operators

11. Indices of elements that satisfy a condition & Sorting

O 0 N U AEWNRE

1. NumPy arrays for numerical computing

* The ndarray implements a multi-dimensional array object and serves as the core data
container for all NumPy operations.

* Universal functions (ufuncs) operate automatically on ndarray in an element-by-element
manner, without requiring explicit loops.

e Structure and Properties of a NumPy array (ndarray)

* A ndarray represents data arranged along one or more dimensions (ndim)
Each dimension has a length, forming the array shape (shape)

The total number of elements in the array is given by (size) axis |

All elements in a NumPy array share the same data type (dtype) USRI S

Array values are stored in a contiguous memory buffer (data) axis O

row 1

NumPy supports multiple numerical data types
« Common integer types include: int8, intl6, int32, int64

row 2

row 3

 Common floating-point types include: float32, float64 \ 4

Ndim and Axes

1. NumPy arrays for numerical computing

array = np.array([[1, 2, 31, [4, 5, 611)

ndim = array.ndim
shape = array.shape
size = array.size

y of dimensions (ndim):
dtype = array.dtype Shape of the array: (2, 3)
Total of elements (size):

(dtype): inted

data = array.data

Memory buffer : <memory at 0x7fd4dcb5d8ce>

Output

Sample Code

2. Creation and initialization of ndarray

From Python List or Tuple: Create an array using np.array() with a list or tuple.

Zero-filled Array: Use np.zeros() to create an array filled with zeros, with a defined shape.
One-filled Array: Use np.ones() to create an array filled with ones, with a defined shape.
Constant-filled Array: Use np.full() to create an array filled with a constant value.

Identity Matrix: Use np.eye() to create an identity matrix of a specified size.

Arbitrarily-filled Array: Use np.empty() to create an uninitialized array with arbitrary values.

Range of Values: Use np.arange() to create an array with a

specified range of values.

Linearly spaced values: Use np.linspace() to create an array of
linearly spaced values between a start and stop point.

Array Reshaping: Use np.reshape() to change the shape of an
array without changing its data.

¢

"é\‘@%

0 W

Random Array Creation: Use np.random to create arrays T\

filled with random numbers from various distributions. (

2. Creation and initialization of ndarray

Array from list:

Zero-filled array:

1

list_array = np.array([1, 2, 2, 4])

print(, list array)

One-filled array:

]

zero_array = np.zeros((2, 3))

print(, Zero_array) Constant-filled array:

one_array = np.ones((2, 2))

. Identity matrix:
print(, one_array)

constant_array = np.full((z, 2), 7) Arbitrarily-filled array:

print(, constant_array) 1 # (values will vary as it's u WV .tialized)

identity_matrix = np.eye(3)

print(, identity_matrix)

Sample Code

2. Creation and initialization of ndarray obj

empty_array .empty((2, 3))

print(, empty_array) Arbitrarily-filled array:

1 # (values will vary as it's uninitialized)

range_array .arange(l, 6) Range array:

print(, range_array)

Linearly spaced array:

linspace_array np.linspace(@, 5 5)
Reshaped array:

]

print(, linspace array)

reshaped_array = np.arange(1l, 7).reshape((2, 3)) Random array:

print(, reshaped_array) 1 # (values will vary as they random)

Output

random_array = np.random.random((2, 2))

print(, random_array)

Sample Code

3. Indexing and slicing

* Indexing: Accessing a specific element in a NumPy array, using
row/column indices
* Indexing syntax differs from lists (i.e., array[i, j] for ndarray vs array[i][j] for lists).

* Slicing: Extracting a subset of an array, by
specifying start, stop, and step values
for each axis.

* Multi-dimensional ndarrays: Both indexing
and slicing can be applied to arrays with
multiple dimensions (e.g., 2D, 3D).

3. Indexing and slicing

Accessed Row: [
element = array[1, 2]

print(, element) Accessed Column: [

Sliced Subset (©:2 rows, 9:2 columns):

row = array[@]

print(

Sliced Every Other Element:
column

print(, column)

Output

subset

print(, Subset)

sliced_every_other = array[::2, ::

print(, slice J/'ery_other)

Sample Code

4. Indexing and slicing with arrays of indices

* Index Arrays: Instead of using a single index, we can use an array of
indices to access multiple elements or rows/columns simultaneously
in multi-dimensional arrays.

* Boolean Masks: Boolean indexing allows
you to filter or select elements in an array
based on a condition, where True values
correspond to selected elements.

30(31|32)33 |34 35

4. Indexing and slicing with arrays of indices

prray = np.array([[1,
[5.
[3.

Indexed Elements (
index_array = np.array([[2, 2], [1, 311)

Masked Elements (

indexed_elements = array[index_array]

, indexed_elements)

asked_elements = array[boolean_mask]

rint(masked_elements)

Sample Code

5. Iterating in arrays

o flat:
e Returns a flat iterator over the array.
* It provides a one-dimensional view of the array, but it's not a copy

e Useful for accessing or iterating over all elements in the array without altering
the original structure.

e .ravel():

* Returns a flattened array (1D) from the original array, but unlike .flat(), ravel()
creates a view whenever possible (i.e., no memory copy).

* It is more efficient for operations where you want a flattened view of the
array and will modify the result.

Aview in NumPy is a lightweight reference to the original array,
sharing its data, where modifications affect both the view and the original array.

5. Iterating in arrays

array = np.array([[1, 2, 3, 4],
[5, 6, 7, 81,
N 1,
[1=,

Flattened Array using .flat:

1 3 5 7 9 11 13 15
flat_array = array.flat

print(Flattened Array using .ravel(): [
value flat_array:

print(value, end=

Flattened Array using .flatten(): [

print(

Output

ravel _array = array.ravel()

print(, ravel_array)

flatten_array = array.flatten()

print(, flatten_array)

Sample Code

6. Arithmetic operations

Perform operations on each element of the array individually. These operations are applied
element by element and return a new array.

e Addition: +

e Subtraction: -

* Multiplication: *
* Division: /

* Exponentiation: **

In-place Operations: Modify the array in-place, meaning the original array is updated directly
without creating a new one.

In-place Addition: +=
In-place Subtraction: -=
In-place Multiplication: *=
In-place Division: /=

6. Arithmetic operations (not in-place)

array = np.array([[1, 2, 3],
[El El]J
[7, 8 911

array_plus_element = array +

print(

array2 = np.array([[1, 1, 1],

[> >]J
[1, 1, 11D

array_minus_array = array - array2

print(

array_times_element = array *

print(

, array_plus_element)

, array_minus_array)

, array_times_element)

array_divided by array = array / array2

print(

, array_divided_by_array)

Sample Code

(array + element):

Array (array - array):

(array * element):

Array (array / array):

Output

6. Arithmetic operations (in-place

In-place addition (array += 2):

array = np.array([[
[
[

In-place subtraction (array -= array2):

array -= array2
print(

array = np.array([[
[
[

In-place multiplication (array *= 3):

Output
Sample Code

7. Multiplication, matrix multiplication, & dot product

* Element-wise Multiplication: Each element in one array is multiplied
by the corresponding element in another array using the * operator.

* Dot Product: Computes the sum of the product of two vectors. It’s
used for vector dot products and can be done with np.dot().

* Matrix Multiplication: Follows linear algebra rules for matrix
multiplication, where the number of columns in the first matrix must
equal the number of rows in the second. This can be done using
np.matmul() or the @ operator.

7. Multiplication, matrix multiplication, & dot product

np.array([[1, 11, [
np.array([[2, @1, [

Dot product, np.a@lbl:

dot_product = np.dot(A[©], B[1])

print(, dot_product)
Element-wise product, np.a * np.b:

elementwise_product = A Matrix product using @ operator, np.a @ np.b:

print(, elementwise product)

Matrix product with np.matmul(), np.matmul(np.a, np.b):

matrix_product_operator

print(, matrix_product_operator)

Output

matrix_product_method = np.matmul(A, B)

, matrix product method

Sample Code

8. Aggregate measures

* Operate element-wise across NumPy arrays (and, when applicable, along specified axes), enabling efficient
aggregation over large datasets.

* Aggregator Functions:

* sum():
Computes the sum of all elements in an array (or along a specified axis).

* min():
Computes the minimum value of an array (or along a specified axis).

* max():
Computes the maximum value of an array (or along a specified axis).

e argmin():
Returns the index of the minimum value in the array (or along a specified axis).

e argmax():
Returns the index of the maximum value in the array (or along a specified axis).

* average():
Computes the weighted average of an array.

* median():
Computes the median of an array, a robust statistic against outliers.

8. Aggregate measures

Shape =(3,3,2)

Aggregate Across Axes:
’ Axes 0: (3,2)
Axes 1: (3,2)
Depth = Channel Axes 2: (3,3)
Width o Ais2
Axis 1

Shape =(H,W,C)

8. Aggregate measures

Sum of all elements:

max_all = np.max(array)
array = np.array([[1, 2, 21, —— , max_all) Sum along axis (columns):

[: 3]: []
[7. 8, 211)

Sum along axis rows):
argmin_all = np.argmin(array) g ()

print(, argmin_all) [1

-sum(array)
Minimum of all elements:

argmax_all = np.argmax(array)

print(, argmax_all) Maximum of all elements:
np.sum(array, axis=0)

, sum_axis_@)
Index of the minimum
average_all = np.average(array)

np.sum(array, axis=1)

. print(, average_all) Index of the maximum
, sum_axis_1)

Average of all elements:

median_all = np.median(array)

print(» median_all) Median of all elements:

-min(array)

, min_all)

Sample Code

9. Relational Operators

* Element-wise Comparison: Compare an array to a single element (scalar),
producing a Boolean array as the result.

* Array-to-Array Comparison: Operators can also be applied between two
arrays, performing element-wise comparisons and returning a Boolean
array indicating the result of each comparison.

* Common Relational Operators:
* Greater than or equal to (>=)
* Less than or equal to (<=)
* Equal to (==)
* Not equal to (!=)

9. Relational Operators

Array >=
array = np.array([[1, 2, 3], [[False

[4, 5, €], [False
[> El]])

[True

Array <=

greater_than_or_equal = array >= [[True

print(, greater_than_or_equal) [True

[True

1. Array == 6 (

array2 = np.array([[2, 3,
[5, 6, 71, [[False False False]
[2, 2, 181]1) [False False True]

less_than_or_equal = array <= array2 [False False False]]

print(> less_than_or_equal)

Array l= (
[[True True True]

equal_to_element = [True True True]

print(, equal_to_element) [True True True]]

not_equal to array = array != array2 0

print(, not_equal to_array)

Sample Code

10. Logical (bitwise) Operators

* Bitwise logical operators work on boolean arrays that result from
relational comparisons and allow efficient operations on these arrays.

* Common Operators:
e & (and): Performs AND operation on boolean
* | (or): Performs OR operation on boolean arrays
e ~(not): Performs NOT operation, flipping the bits of a boolean array.

e A (xor): Performs XOR operation, which returns True only when the inputs differ.

10. Logical (bitwise) Operators

Array >=
array = np.array([[[[False
[[True

[[True

False

relational_result = array >= True

print(, relational result) True

[[False

logical _and = relational_result & (array % 2 == 0) [True

print(, logical_and) [True

logical or = relational result | (array % 1= (

print(» logical_or) [[True True True]
[False False False]
[False False False]]

logical_not = ~relational_result

print(, logical not)

Sample Code

11. Indices of elements that satisfy a condition & Sorting

* Finding Indices with np.where: Returns the indices of the elements in
an array that satisfy a given condition. It can be used in two forms:

* np.where(condition): Returns the indices where the condition is True.

* np.where(condition, x, y): Selects values from x where the condition is True,
and from y otherwise.

* Sorting an Array:

* In-place Sorting: Use a.sort() to sort the array in place, meaning the original
array is modified and no new array is returned.

* Not in-place Sorting: Use np.sort(a) to return a new sorted array, leaving the
original array unchanged

11. Indices of elements that satisfy a condition & Sorting

Indices of elements > 5:

(array([1, 2, 2, 2]), array([2, @, 1, 2]))

array = np.array([[1, 2, 2],
[+ 5 5L,
[7, 3 91D)
Modified array with np.where (condition, x, y):

[[e o o]
[@ o 10]
[1e 1e 10]]

indices = np.where(array > 5)
print(» indices)
Sorted array (not in-place):
[1234567 8 9]
modified array = np.where(array > 5,
In-place sorted array (array.sort()):
[[1 2 3]
[4 5 6]
211

print(, modified array)

sorted array = np.sort(array, axis=)

print(, sorted_array)

array by rows (not in-place):
3]

6]

911

array.sort(axis=
print{

array by columns (not in-place):
3]
6]
211

sorted by rows = np.sort(array, axis=1)

print{ , sorted_by_rows)

sorted by columns = np.sort(array, axis=0)

print(, sorted by columns) O ut p u t
Sample Code

| hope you found this session useful.
Keep exploring NumPy!

	Slide 1: NumPy Overview
	Slide 2: Machine Learning Data
	Slide 3: Deep Learning Data
	Slide 4: Why NumPy?
	Slide 5: NumPy Overview Roadmap
	Slide 6: 1. NumPy arrays for numerical computing
	Slide 7: 1. NumPy arrays for numerical computing
	Slide 8: 2. Creation and initialization of ndarray
	Slide 9: 2. Creation and initialization of ndarray
	Slide 10: 2. Creation and initialization of ndarray obj
	Slide 11: 3. Indexing and slicing
	Slide 12: 3. Indexing and slicing
	Slide 13: 4. Indexing and slicing with arrays of indices
	Slide 14: 4. Indexing and slicing with arrays of indices
	Slide 15: 5. Iterating in arrays
	Slide 16: 5. Iterating in arrays
	Slide 17: 6. Arithmetic operations
	Slide 18: 6. Arithmetic operations (not in-place)
	Slide 19: 6. Arithmetic operations (in-place)
	Slide 20: 7. Multiplication, matrix multiplication, & dot product
	Slide 21: 7. Multiplication, matrix multiplication, & dot product
	Slide 22: 8. Aggregate measures
	Slide 23: 8. Aggregate measures
	Slide 24: 8. Aggregate measures
	Slide 25: 9. Relational Operators
	Slide 26: 9. Relational Operators
	Slide 27: 10. Logical (bitwise) Operators
	Slide 28: 10. Logical (bitwise) Operators
	Slide 29: 11. Indices of elements that satisfy a condition & Sorting
	Slide 30: 11. Indices of elements that satisfy a condition & Sorting
	Slide 31: I hope you found this session useful. Keep exploring NumPy!

