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1 Linear algebra

Most of the linear algebra listed here should be prerequisite material for you. The exceptions might

be vector and matrix norms and any notational changes.

1.1 Notation

Matrix notation: A ∈ RN×M :

A =


a1,1 a1,2 · · · a1,M
a2,1 a2,2 · · · a2,M
...

...
. . .

...

aN,1 aN,2 · · · aN,M


Summation notation:

Matrix multiplication with A ∈ RM×K , B ∈ RK×N , C ∈ RM×N . If C = AB, then Ci,j =∑K
k=1 ai,kbk,j . The number of columns in A must match the number of rows in B. C will have
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the same number of rows as A and the same number of columns as B.

Vector notation: v ∈ RN , in this course, we’ll assume all vectors are column vectors unless specified

otherwise:

v =


v1
v2
...

vN


Examples:

u ∈ RM×1 Column vector of length M

v ∈ R1×M Row vector of length M

z ∈ RM Ambiguous. In this course, assume column vector unless stated otherwise

1.2 Linear systems of equations

Consider matrix A ∈ RN×M and vectors v ∈ RM and u ∈ RN . The following is a linear system of

equations with N equations and M unknowns, v1, . . . , vM :

u = Av

u1 = a1,1v1 + a1,2v2 + · · ·+ a1,MvM

u2 = a2,1v1 + a2,2v2 + · · ·+ a2,MvM

...

u1 = aN,1v1 + aN,2v2 + · · ·+ aN,MvM

underdetermined: If there are fewer equations than variables, the system is underdetermined and

cannot have exactly 1 solution, it must have either infinitely many or no solutions.

overdetermined: A system with more equations than variables. An overdetermined system may

have 1 solution, 0 solutions, or infinitely many solutions.

inconsistent: when the system of equations does not have a solution.

consistent: when the system of equations has at least one solution.

1.3 Vectors

dot product: aTb = a1b1 + a2b2 + ... + aMbM for two vectors a,b ∈ RM . It is the sum of the

products of corresponding entries of the two vectors.

inner product (more general than dot product): is a way to multiply vectors, resulting in a scalar.

Let u,v,w be vectors and let α be a scalar. Then, the inner product satisfies the following properties:

\ ⟨u+ v,w⟩ = ⟨u,w⟩+ ⟨v,w⟩ \ ⟨αv,w⟩ = α⟨v,w⟩ \ ⟨v,w⟩ = ⟨w,v⟩ \ ⟨v,v⟩ ≥ 0 and ⟨v,v⟩ = 0 if

and only if v = 0

2



outer product: Outer product of vectors u and v is Y = u⊗ v = uvT , and Yi,j = uivj .

magnitude: Magnitude (length) of vector u is |u| = ∥u∥2 =
(∑

i u
2
i

) 1
2 .

L2 norm: Also known as Euclidean norm ∥v∥2 =
(∑

i v
2
i

) 1
2 =

(
vTv

) 1
2

L1 norm: The sum of absolute values of the entries of the vector ∥v∥1 =
∑

i |vi|

L0 “norm”: Number of non-zero entries in a vector (not technically a norm) ∥v∥0 =
∑

i |vi|0,
where 00 is defined as being equal to zero.

p-norm: ∥v∥p = (
∑

i |vi|p)
1
p (Only a norm for p ≥ 1).

span: Set of all linear combinations of a set of vectors. For example, given a set of vectors S =

{v1,v2,v3},vi ∈ RM , span(S) = {α1v1 + α2v2 + α3v3 | αi ∈ R}. Span is an example of a vector

space.

vector space: Span of a set of vectors is an example of a vector space. Vector space is a more

general term for the result of combining a set of vectors with addition and scalar multiplication. For

example, if we changed span to include multiplication by complex scalars, that would be a different

vector space.

linearly dependent: A vector, u, is linearly dependent with a set of vectors, S = {vk}Kk=1, if it

is possible to represent u as a linear combination of vectors in S. For example, if u = 3v1 − 3.5v3,

then u is linearly dependent with S.

A set of vectors in linearly dependent if any of the vectors in the set can be represented by a linear

combination of the remaining vectors in the set.

linearly independent: A vector, u is linearly independent from a set of vectors, S = {vk}Kk=1, if

it is not possible to represent u as a linear combination of vectors in S.

A set of vectors is linearly independent if no single vector in the set can be represented by a linear

combination of the remaining vectors in the set.

1.4 Matrices

identity matrix: A matrix with all ones on the diagonal and zeros elsewhere. Represented as I, or

more specifically IN , where the N indicates that it is an N ×N identity matrix. I3 =

1 0 0

0 1 0

0 0 1


matrix inverse: The inverse of matrix A ∈ RN×N is denoted A−1. A−1 is also an N ×N matrix.

The inverse of a square, N × N matrix will exist if the matrix is full rank, i.e., the column rank

and row rank is N . If the inverse of a square matrix exists then A−1A = AA−1 = I, where I is the

N ×N identity matrix.

column rank of a matrix: the maximal number of linearly independent vectors among the column

vectors in a given matrix. This is also the dimensionality of the vector space spanned by the column

vectors of the matrix.

row rank of a matrix: the maximal number of linearly independent vectors among the row vectors

in a given matrix. This is also the dimensionality of the vector space spanned by the row vectors of
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the matrix.

rank: the row rank and column rank of a matrix are always equal, so there are often just referred

to as matrix “rank”.

full rank: A matrix is full rank is the rank is equal to the minimum of its number of rows and

number of columns. If a matrix is square and full rank then the inverse of that matrix exists.

singular matrix: A square matrix is singular if it is not full rank and thus it’s inverse doesn’t exist.

Frobenius norm of a matrix: Basically the L2 norm if we were to flatten the matrix into a vector.

For matrix A ∈ RN×M ,

∥A∥F =

 N∑
i=1

M∑
j=1

ai,j
2

 1
2

∥A∥2F =

N∑
i=1

M∑
j=1

ai,j
2
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2 Multivariate calculus

While you may not have explicitly learned multivariate calculus, if very much just builds on top

of normal (scalar) calculus. In multivariate calculus, we are just shifting to working with functions

that have multiple inputs variables and potentially multiple outputs.

2.1 Partial derivatives

A partial derivative is when we take the derivative of a function f with respect to one of its many

input variables. Notation-wise, you’ll see it written as ∂
∂z f(x, z) or

∂f
∂z . (It could also be written as

fz(x, z), but we won’t use that in this course.)

When we take the partial derivative with respect to one variable, we just hold all other variables

constant.

For example:

f(x, z) = 2x3z5 (1)

∂f

∂x
= 6x2z5 (2)

∂f

∂z
= 10x3z4 (3)

(4)

You can think of linear algebra as having many individual variables. Take, for example, the L2 norm

squared of x ∈ R3:

f(x) = ∥x∥2 = xTx =
∑
i

xi
2 = x1

2 + x2
2 + x3

2 (5)

f(x1, x2, x3) = ∥x∥2 = xTx =
∑
i

xi
2 = x1

2 + x2
2 + x3

2 (6)

∂f

∂x1
= 2x1 (7)

∂f

∂x2
= 2x2 (8)

∂f

∂x3
= 2x3 (9)

(10)

2.2 Gradients

Given a scalar function with vector input, f : RM → R, f(x) = f(x1, ..., xM ), the gradient is a

column vector where the i-th entry is the partial derivative of the function with respect to the i-th

input entry in the input vector.

∇xf(x) =


∂f
∂x1
∂f
∂x2

...
∂f

∂xM


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We call this the gradient of f with respect to x. The x in the subscript is redundant if x is the only

argument to f and would typically be dropped, ∇f(x).

Using the same example from above, the L2 norm squared of x ∈ R3:

f(x) = ∥x∥2 =

x1
2

x2
2

x3
2

 (11)

∂f

∂x1
= 2x1 (12)

∂f

∂x2
= 2x2 (13)

∂f

∂x3
= 2x3 (14)

∇f(x) =


∂f
∂x1
∂f
∂x2
∂f
∂x3

 =

2x1

2x2

2x3

 = 2x (15)
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3 Optimization notation

We can formalize an optimization problem with the following form:

y∗ = min.
x∈X

f(x)

where

• f : RK → R is known as the objective function that we are trying to minimize

• X ⊂ RK is the set of feasible inputs that we are trying to minimize f over

• y∗ is the smallest value of f(x) for all possible values x ∈ X (which is why we have a min in

the formulation)

For all possible values x in the set X and return the x corresponding to the output of f(x) that

has the smallest value (i.e. return the argument, not the value of the function):

x∗ = argmin.
x∈X

f(x)

For example, suppose that we wanted to minimize the objective function f(x) = 3(x− 5)2 − 200:

y∗ = min
x∈R

3(x− 5)2 − 200 (16)

= −200 (17)

x∗ = argmin
x∈R

3(x− 5)2 − 200 (18)

= 5 (19)

(20)

Plot for the above example:

# Plot for above example

def f(x):

return 3*(x-5)**2 - 200

x_grid = np.linspace(-10, 10, 100)

y_grid = f(x_grid)

plt.plot(x_grid, y_grid, '-');
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