15-281 Notes
Adversarial Search

Carnegie Mellon University
Artificial Intelligence

Contents
1 Adversarial Search 1
1.1 Game Playing and Game Types 1
1.1.1 Historical Context 2
1.1.2 Classifying Games i 2
1.1.3 Zero-Sum versus General Games L0 2
1.1.4 Standard Game Formulation 0L 2
1.2 The Minimax Game Trees i 3
1.2.1 Exampleo 3
1.2.2 Generic Minimax Pseudocode oL 4
1.2.3 Computational Efficiency o o 4
1.3 Games with Chance: Expectimax 4
1.3.1 Motivation 4
1.3.2 Probabilities and Random Variables 4
1.3.3 Expected Value 5
1.3.4 Expectimax Algorithm 5
1.3.5 Expectiminimax Pseudocode 6

1 Adversarial Search

1.1 Game Playing and Game Types

In adversarial search, we consider scenarios where multiple agents have conflicting goals. These
situations arise naturally in competitive games, where one player’s gain is another player’s loss.

1.1.1 Historical Context

Game-playing Al has a rich history of milestones:

Checkers: In 1950, the first computer player was developed. By 1994, Chinook became the first
computer world champion, ending Marion Tinsley’s 40-year reign using a complete 8-piece endgame
database. In 2007, checkers was completely solved with an endgame database of 39 trillion states.

Chess: Early work began in 1945-1960 with pioneers like Zuse, Wiener, Shannon, Turing, Newell,
Simon, and McCarthy. Gradual improvement continued under the ”standard model” through the
1960s onward. In 1997, Deep Blue defeated human champion Gary Kasparov in a six-game match,
examining 200 million positions per second and extending search up to 40 ply. Current programs
running on a PC rate above 3200 Elo (compared to 2870 for Magnus Carlsen).

Go: Zobrist’s 1968 program could play legal Go moves, though barely competently given the enor-
mous branching factor (b > 300). From 2005-2014, Monte Carlo tree search enabled rapid advances,
with programs beating strong amateurs and professionals with handicaps.

1.1.2 Classifying Games
Games can be categorized along several axes:

e Deterministic versus stochastic: Does randomness play a role?

Perfect information versus imperfect information: Can players see the complete game
state?

Number of players: One, two, or more?

Turn-taking versus simultaneous: Do players alternate moves or act simultaneously?

e Zero-sum versus general-sum: Are players’ utilities strictly opposed?

1.1.3 Zero-Sum versus General Games

Zero-sum games represent pure competition. Agents have opposite utilities (they sum to zero, so
we can formulate the problem based on player one’s utility, where player one maximizes while the
other minimizes. Examples include chess, checkers, and Go.

General games involve agents with independent utilities. These games can exhibit cooperation,
indifference, competition, shifting alliances, or combinations thereof. Examples include many multi-
player games and real-world scenarios.

1.1.4 Standard Game Formulation

We focus on standard games, which are deterministic, observable, two-player, turn-taking, and
zero-sum. These games are formulated as:

Initial state: sy represents the starting configuration

Players: Player(s) indicates whose turn it is in state s

Actions: Actions(s) gives available moves for the player at state s

Transition model: Result(s, a) specifies the state resulting from action a in state s

e Terminal test: Terminal-Test(s) determines if the game has ended

e Terminal values: Utility(s, p) gives the payoff for player p at terminal state s

Our goal is to calculate a contingent plan, also called a strategy or policy, which recommends
a move for every possible game state.

1.2 The Minimax Game Trees

The minimax algorithm computes optimal play in zero-sum games by assuming both players play
optimally. Each game state has a minimax value, which represents the best outcome the current
player can guarantee with optimal play.

We can represent minimax games as a tree of MAX and MIN nodes, where branches are actions
available to the player at that state, leading to the next state where it is the next player’s turn.

At MAX nodes (often represented by blue, upward-pointing triangles), the value is the maximum
over the values of the children.

At MIN nodes (often represented by red, downward-pointing triangles), the value is the minimum
over the values of the children

At terminal states, the value is given directly by the utility function. Note that this is always
with respect to the player associated with the MAX nodes; (the value of the MIN player is simply
the negation of this value).

1.2.1 Example

Consider the following game where the blue player goes first. The blue player is trying to maximize
the utilities at the leaves of the tree by choosing action Left, Center, or Right. Then, the red player
chooses among its available actions, trying to minimize the values of the resulting state.

Jump Hide Jump Run Hide Run
[3] [41 [e] [2]

Working from the leaves:

The left MIN node computes min(3,12) = 3

The center MIN node computes min(4,6) = 4
The right MIN node computes min(15,2) = 2
The root MAX node computes max(3,4,2) =4

Therefore, the minimax value at the root is 4... But the number 4 isn’t quite the answer we are
looking for at the root... We need to select an action! Specifically, the blue MAX player should
select the Center action, which leads to this minimax value being 4.

1.2.2 Generic Minimax Pseudocode

The minimax algorithm can be implemented recursively:

function max_decision(state):
return the action in state.actions that gives the max value(state.result(action))

function value(state):
if state.is_leaf:
return state.value
if state.player is MAX:
return max over value(state.result(a)) for a in state.actions
if state.player is MIN:
return min over value(state.result(a)) for a in state.actions

1.2.3 Computational Efficiency

Minimax operates similarly to exhaustive depth-first search with the following complexity:

e Time complexity: O(b") where b is the branching factor and m is the maximum depth

e Space complexity: O(bm) when using depth-first exploration

For chess with b ~ 35 and m ~ 100, exact solution is completely infeasible. This illustrates the
concept of bounded rationality (Herbert Simon): intelligent agents, including humans, cannot
always compute optimal solutions and must make decisions with limited computational resources.
More on this in lecture!

1.3 Games with Chance: Expectimax
1.3.1 Motivation

Not all games involve purely adversarial opponents. Some games include elements of chance (dice,
card draws), and even in deterministic games, opponents may not play optimally. Making worst-case
assumptions about stochastic or suboptimal opponents leads to poor decisions.

1.3.2 Probabilities and Random Variables

A random variable represents an event whose outcome is unknown. A probability distribution
assigns weights to possible outcomes, where probabilities sum to one.

Example: Traffic on the freeway can be modeled as a random variable T" with outcomes T €
{none, light, heavy} and distribution:

P(T = none) = 0.25

P(T = light) = 0.50
P(T = heavy) = 0.25

1.3.3 Expected Value

The expected value of a function of a random variable is the average of the values weighted by
their probabilities:

Ex[f(X)] =) P(X =x)f(x)

Time: 20 min 30 min 60 min
X + X + X
Probability: 0.25 0.50 0.25
= _ — 0.25 0.25

5 Gy 05
4 4 4 5w

Example: Let f(traffic) map the Traffic outcome to the time it take to get to the airport:

Traffic (T): none light heavy
Probability: 0.25 0.50 0.25
f(traffic): 20 min 30 min 60 min

Expected value of time over Traffic is:

=0.25 x 20 + 0.50 x 30 4 0.25 x 60 = 35 minutes

1.3.4 Expectimax Algorithm

Expectimax (or expectiminim) extends minimax to handle chance nodes. Instead of assuming the
opponent minimizes our utility, we compute expected values over stochastic outcomes.

We can essentially model chance as a player in our game tree. Instead of s’ being the deterministic
result of taking action a, s’ is one of the possible outcomes of the next state. Then, MAX nodes,
MIN nodes, and CHANCE (or EXPECTATION) nodes compute values as follows:

o At MAX nodes: V(s) = max, V(s')
e At MIN nodes: V(s) = min, V(s')
e At CHANCE nodes: V(s) = >, P(s)V(s)

Left Right

Center

1/4 2/3

(2] [e] [&] [&] [e] [22] [¢]

Example: Consider choosing among three actions (Left, Center, Right) where each leads to a chance
node with specified probabilities and terminal values. Computing expected values:

Left: Leads to outcomes with terminal values; expected value = 7

e Center: Leads to outcomes with terminal values; expected value = 7

Right: Leads to outcomes with terminal values; expected value = 8

Therefore, the optimal action is Right with expected value 8

The key insight is that we select the action leading to the highest expected value, not the highest
individual outcome.

1.3.5 Expectiminimax Pseudocode

Adding a case for an expectation node, we start to have an even more general game tree implemen-
tation:

function value(state):
if state.is_leaf:
return state.value
if state.player is MAX:
return max over value(state.result(a)) for a in state.actions
if state.player is MIN:
return min over value(state.result(a)) for a in state.actions
if state.player is CHANCE:
return sum over P(s)*value(s) for s in state.next_states

vl.l

	Adversarial Search
	Game Playing and Game Types
	Historical Context
	Classifying Games
	Zero-Sum versus General Games
	Standard Game Formulation

	The Minimax Game Trees
	Example
	Generic Minimax Pseudocode
	Computational Efficiency

	Games with Chance: Expectimax
	Motivation
	Probabilities and Random Variables
	Expected Value
	Expectimax Algorithm
	Expectiminimax Pseudocode

