07-280 Notation Guide

Based on 10-301/601 Notation Guide by Matt Gormley

1 Scalars, Vectors, Matrices

Scalars are either lowercase letters x,y, z, «, 8, or uppercase Latin letters N, M,T. The latter
are typically used to indicate a count (e.g. number of examples, features, timesteps) and are often
accompanied by a corresponding index n,m,t (e.g. current example, feature, timestep). Vectors

are bold lowercase letters x = [x1,29,...,237] and are typically assumed to be column vectors—
hence the transposed row vector in this example. When handwritten, a vector is indicated by an
over-arrow Z = [r1,T2,..., 2y . Matrices are uppercase letters:

U171 ’LL172 . ul,M

U1 U22

UN,1 <o UNM

As in the examples above, subscripts are used as indices into structured objects such as vectors or
matrices.

2 Sets

Sets are represented by caligraphic uppercase letters X', ), D. We often index a set by labels in
parenthesized superscripts S = {s(1), s, ... 591 where S = |S|. A shorthand for this equiva-
lently defines S = {s(*)}5_ . This shorthand is convenient when defining a set of training exam-
ples: D = {(x),yM), (x?) 4@y . (x™) 4N} is equivalent to D = {(x(™),y™)}NV_,.

3 Random Variables

Random variables are also uppercase Latin letters X,Y, Z, but their use is typically apparent
from context. When a random variable X; and a scalar x; are upper/lower-case versions of each
other, we typically mean that the scalar is a value taken by the random variable.

When possible, we try to reserve Greek letters for parameters 6, ¢ or hyperparameters «, 3, .

For a random variable X, we write X ~ Gaussian(u, 0?) to indicate that X follows a 1D Gaussian
distribution with mean g and variance o?. We write 2 ~ Gaussian(u, 02) to say that z is a value
sampled from the same distribution.

A conditional probability distribution over random variable X given Y and Z is written P(X |
Y, Z) and its probability mass function (pmf) or probability density function (pdf) is p(z |
y, z). If the probability distribution has parameters a, 3, we can write its pmf/pdf in at least three
equivalent ways: A statistician might prefer p(z | y, z;a, 8) to clearly demarcate the parameters.
A graphical models expert prefer p(z | y, 2z, «, 3) since said parameters are really just additional



random variables. A typographer might prefer to save ink by writing p, g(x | y, 2). To refer to this
pmf/pdf as a function over possible values of a we would elide it as in po g(- | ¥, 2). Using our ~
notation from above, we could then write that X follows the distribution X ~ p,g(- | y,2) and «
is a sample from it  ~ p, g(- | y, 2).

The expectation of a random variable X is E[X]. When dealing with random quantities for which
the generating distribution might not be clear we can denote it in the expectation. For example,
Eimpa s(ly.2) [f(x,y,2)] is the expectation of f(z,y, z) for some function f where x is sampled from
the distribution p, g(- | ¥, 2) and y and z are constant for the evaluation of this expectation.

4 Functions and Derivatives

Suppose we have a function f(x). We write its partial derivative with respect to x as %Ef) or

% We also denote its first derivative as f’(z), its second derivative as f”(x), and so on. For
a multivariate function f(x) = f(x1,...,znm), we write its gradient with respect to x as Vxf(x)
and frequently omit the subscript, i.e. V f(x), when it is clear from context—it might not be for a
gradient such as Vyg(x,y).

5 Common Conventions

The table below lists additional common conventions we follow:

Notation Description

N number of training examples
M  number of feature types
K number of classes
n or ¢ current training example
m or j current feature
k  current class
Z.  set of integers
R set of reals
RM  set of real-valued vectors of length M
{0,1}M  set of binary vectors of length M
x feature vector (input) where x = [x1, 29,..., 2] ; typically
x € RM or x € {0,1}M
label / regressand (output); for classification y €
{1,2,...,K}; for binary classification y € {0,1} or y €
{41, —1}; for regression, y € R
X input space, i.e. x € X
Y output space, i.e. y € Y
) the ith feature vector in the training data
y®  the ith true output in the training data
)

<

the mth feature of the ith feature vector
(x® y®)  the ith training example (feature vector, true output)

D set of training examples; for supervised learning D =
{(x®, y@)}N | : for unsupervised learning D = {x(M}N

Note that a more careful notation system would always use a](;;x) for partial derivatives, since

reserved for total derivatives. However, only partial derivatives make an appearance herein.

d{l(;) is typically



O'xorx'0

design matrix; the ith row contains the features of the ith
training example x(; i.e the ith row contains mgi), . ,mg\i/[)
random variables corresponding to feature vector x; (note:
notation gets dicey when we start to have a vector-valued
random variable X = [X1, Xo,..., X/]", which will easily
be confused with the design matrix; we’ll try to make these
cases as clear as possible.)

random variable corresponding to predicted class y
probability of random variable Y taking value y given that
random variable X takes value x

shorthand for P(Y =y | X = x)

model parameters

model parameters (weights of linear model)

model parameter (bias term of linear model)

log-likelihood of the data; depending on context, this might
alternatively be the log- conditional likelihood or log-
marginal likelihood

objective function

example ¢’s contribution to the objective function; typically
7(0) = 4 XL, 79(8)

gradient of the objective function with respect to model pa-
rameters 6

gradient of J(*) (@) with respect to model parameters 0
stepsize in numerical optimization

dot product of model parameters and features (0 - x is too
ambiguous)

hg(x) decision function / decision rule / hypothesis
‘H  hypothesis space; we say that h € H
¢ prediction of a decision function, e.g. § = hg(x)
6 model parameters that result from learning
(y,9) loss function
p*(x,y) unknown data generating distribution of labeled examples
p*(x) unknown data generating distribution of feature vectors only
c*(x) true unknown hypothesis (i.e. oracle labeling function), e.g.
y =c"(x)
z Values of unknown variables (latent)
Z1,...,Z¢ random variables (latent) corresponding to z
y predicted structure (output) for structured prediction
Y1,...,Ye random variables corresponding to predicted structure y
I(a = b) indicator function which returns 1 when a equals b and 0

otherwise—other notations are also possible I(a = b) =
1la=0b) =1,
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