
07-280 Notation Guide

Based on 10-301/601 Notation Guide by Matt Gormley

1 Scalars, Vectors, Matrices

Scalars are either lowercase letters x, y, z, α, β, γ or uppercase Latin letters N,M, T . The latter
are typically used to indicate a count (e.g. number of examples, features, timesteps) and are often
accompanied by a corresponding index n,m, t (e.g. current example, feature, timestep). Vectors
are bold lowercase letters x = [x1, x2, . . . , xM ]⊤ and are typically assumed to be column vectors—
hence the transposed row vector in this example. When handwritten, a vector is indicated by an
over-arrow x⃗ = [x1, x2, . . . , xM ]⊤. Matrices are uppercase letters:

U =


u1,1 u1,2 . . . u1,M
u2,1 u2,2

...
. . .

...
uN,1 . . . uN,M


As in the examples above, subscripts are used as indices into structured objects such as vectors or
matrices.

2 Sets

Sets are represented by caligraphic uppercase letters X ,Y,D. We often index a set by labels in
parenthesized superscripts S = {s(1), s(2), . . . , s(S)}, where S = |S|. A shorthand for this equiva-
lently defines S = {s(s)}Ss=1. This shorthand is convenient when defining a set of training exam-
ples: D = {(x(1), y(1)), (x(2), y(2)), . . . , (x(N), y(N))} is equivalent to D = {(x(n), y(n))}Nn=1.

3 Random Variables

Random variables are also uppercase Latin letters X,Y, Z, but their use is typically apparent
from context. When a random variable Xi and a scalar xi are upper/lower-case versions of each
other, we typically mean that the scalar is a value taken by the random variable.

When possible, we try to reserve Greek letters for parameters θ,ϕ or hyperparameters α, β, γ.

For a random variable X, we write X ∼ Gaussian(µ, σ2) to indicate that X follows a 1D Gaussian
distribution with mean µ and variance σ2. We write x ∼ Gaussian(µ, σ2) to say that x is a value
sampled from the same distribution.

A conditional probability distribution over random variable X given Y and Z is written P (X |
Y,Z) and its probability mass function (pmf) or probability density function (pdf) is p(x |
y, z). If the probability distribution has parameters α, β, we can write its pmf/pdf in at least three
equivalent ways: A statistician might prefer p(x | y, z;α, β) to clearly demarcate the parameters.
A graphical models expert prefer p(x | y, z, α, β) since said parameters are really just additional
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random variables. A typographer might prefer to save ink by writing pα,β(x | y, z). To refer to this
pmf/pdf as a function over possible values of a we would elide it as in pα,β(· | y, z). Using our ∼
notation from above, we could then write that X follows the distribution X ∼ pα,β(· | y, z) and x
is a sample from it x ∼ pα,β(· | y, z).

The expectation of a random variable X is E[X]. When dealing with random quantities for which
the generating distribution might not be clear we can denote it in the expectation. For example,
Ex∼pα,β(·|y,z)[f(x, y, z)] is the expectation of f(x, y, z) for some function f where x is sampled from
the distribution pα,β(· | y, z) and y and z are constant for the evaluation of this expectation.

4 Functions and Derivatives

Suppose we have a function f(x). We write its partial derivative with respect to x as ∂f(x)
∂x or

df(x)
dx .1 We also denote its first derivative as f ′(x), its second derivative as f ′′(x), and so on. For

a multivariate function f(x) = f(x1, . . . , xM ), we write its gradient with respect to x as ∇xf(x)
and frequently omit the subscript, i.e. ∇f(x), when it is clear from context—it might not be for a
gradient such as ∇yg(x,y).

5 Common Conventions

The table below lists additional common conventions we follow:

Notation Description

N number of training examples
M number of feature types
K number of classes

n or i current training example
m or j current feature

k current class
Z set of integers
R set of reals

RM set of real-valued vectors of length M
{0, 1}M set of binary vectors of length M

x feature vector (input) where x = [x1, x2, . . . , xM ]⊤; typically
x ∈ RM or x ∈ {0, 1}M

y label / regressand (output); for classification y ∈
{1, 2, . . . ,K}; for binary classification y ∈ {0, 1} or y ∈
{+1,−1}; for regression, y ∈ R

X input space, i.e. x ∈ X
Y output space, i.e. y ∈ Y

x(i) the ith feature vector in the training data
y(i) the ith true output in the training data
x
(i)
m the mth feature of the ith feature vector

(x(i), y(i)) the ith training example (feature vector, true output)
D set of training examples; for supervised learning D =

{(x(i), y(i))}Ni=1; for unsupervised learning D = {x(i)}Ni=1

1Note that a more careful notation system would always use ∂f(x)
∂x

for partial derivatives, since df(x)
dx is typically

reserved for total derivatives. However, only partial derivatives make an appearance herein.
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X design matrix; the ith row contains the features of the ith
training example x(i); i.e the ith row contains x

(i)
1 , . . . , x

(i)
M

X1, . . . , XM random variables corresponding to feature vector x; (note:
notation gets dicey when we start to have a vector-valued
random variable X = [X1, X2, . . . , XM ]⊤, which will easily
be confused with the design matrix; we’ll try to make these
cases as clear as possible.)

Y random variable corresponding to predicted class y
P (Y = y | X = x) probability of random variable Y taking value y given that

random variable X takes value x
p(y | x) shorthand for P (Y = y | X = x)

θ model parameters
w model parameters (weights of linear model)
b model parameter (bias term of linear model)

ℓ(θ) log-likelihood of the data; depending on context, this might
alternatively be the log- conditional likelihood or log-
marginal likelihood

J(θ) objective function
J (i)(θ) example i’s contribution to the objective function; typically

J(θ) = 1
N

∑N
i=1 J

(i)(θ)
∇J(θ) gradient of the objective function with respect to model pa-

rameters θ

∇J (i)(θ) gradient of J (i)(θ) with respect to model parameters θ
λ stepsize in numerical optimization

θ⊤x or x⊤θ dot product of model parameters and features (θ · x is too
ambiguous)

hθ(x) decision function / decision rule / hypothesis
H hypothesis space; we say that h ∈ H
ŷ prediction of a decision function, e.g. ŷ = hθ(x)

θ̂ model parameters that result from learning
ℓ(y, ŷ) loss function

p∗(x, y) unknown data generating distribution of labeled examples
p∗(x) unknown data generating distribution of feature vectors only
c∗(x) true unknown hypothesis (i.e. oracle labeling function), e.g.

y = c∗(x)

z Values of unknown variables (latent)
Z1, . . . , ZC random variables (latent) corresponding to z

y predicted structure (output) for structured prediction
Y1, . . . , YC random variables corresponding to predicted structure y

I(a = b) indicator function which returns 1 when a equals b and 0
otherwise—other notations are also possible I(a = b) =
1(a = b) = 1a=b
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