

07-280 Notation Guide

Based on 10-301/601 Notation Guide by Matt Gormley

1 Scalars, Vectors, Matrices

Scalars are either lowercase letters $x, y, z, \alpha, \beta, \gamma$ or uppercase Latin letters N, M, T . The latter are typically used to indicate a **count** (e.g. number of examples, features, timesteps) and are often accompanied by a corresponding **index** n, m, t (e.g. current example, feature, timestep). **Vectors** are bold lowercase letters $\mathbf{x} = [x_1, x_2, \dots, x_M]^\top$ and are typically assumed to be *column* vectors—hence the transposed row vector in this example. When handwritten, a vector is indicated by an over-arrow $\vec{x} = [x_1, x_2, \dots, x_M]^\top$. **Matrices** are uppercase letters:

$$U = \begin{bmatrix} u_{1,1} & u_{1,2} & \dots & u_{1,M} \\ u_{2,1} & u_{2,2} & & \\ \vdots & & \ddots & \vdots \\ u_{N,1} & & \dots & u_{N,M} \end{bmatrix}$$

As in the examples above, subscripts are used as **indices** into structured objects such as vectors or matrices.

2 Sets

Sets are represented by caligraphic uppercase letters $\mathcal{X}, \mathcal{Y}, \mathcal{D}$. We often index a set by **labels** in parenthesized superscripts $\mathcal{S} = \{s^{(1)}, s^{(2)}, \dots, s^{(S)}\}$, where $S = |\mathcal{S}|$. A shorthand for this equivalently defines $\mathcal{S} = \{s^{(s)}\}_{s=1}^S$. This shorthand is convenient when defining a set of **training examples**: $\mathcal{D} = \{(\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), \dots, (\mathbf{x}^{(N)}, y^{(N)})\}$ is equivalent to $\mathcal{D} = \{(\mathbf{x}^{(n)}, y^{(n)})\}_{n=1}^N$.

3 Random Variables

Random variables are also uppercase Latin letters X, Y, Z , but their use is typically apparent from context. When a random variable X_i and a scalar x_i are upper/lower-case versions of each other, we typically mean that the scalar is a **value** taken by the random variable.

When possible, we try to reserve Greek letters for **parameters** θ, ϕ or **hyperparameters** α, β, γ .

For a random variable X , we write $X \sim \text{Gaussian}(\mu, \sigma^2)$ to indicate that X **follows** a 1D Gaussian distribution with mean μ and variance σ^2 . We write $x \sim \text{Gaussian}(\mu, \sigma^2)$ to say that x is a value **sampled** from the same distribution.

A **conditional probability distribution** over random variable X given Y and Z is written $P(X | Y, Z)$ and its **probability mass function** (pmf) or **probability density function** (pdf) is $p(x | y, z)$. If the probability distribution has parameters α, β , we can write its pmf/pdf in at least three equivalent ways: A statistician might prefer $p(x | y, z; \alpha, \beta)$ to clearly demarcate the parameters. A graphical models expert prefer $p(x | y, z, \alpha, \beta)$ since said parameters are really just additional

random variables. A typographer might prefer to save ink by writing $p_{\alpha,\beta}(x | y, z)$. To refer to this pmf/pdf as a function over possible values of a we would elide it as in $p_{\alpha,\beta}(\cdot | y, z)$. Using our \sim notation from above, we could then write that X follows the distribution $X \sim p_{\alpha,\beta}(\cdot | y, z)$ and x is a sample from it $x \sim p_{\alpha,\beta}(\cdot | y, z)$.

The **expectation** of a random variable X is $\mathbb{E}[X]$. When dealing with random quantities for which the generating distribution might not be clear we can denote it in the expectation. For example, $\mathbb{E}_{x \sim p_{\alpha,\beta}(\cdot | y, z)}[f(x, y, z)]$ is the expectation of $f(x, y, z)$ for some function f where x is sampled from the distribution $p_{\alpha,\beta}(\cdot | y, z)$ and y and z are constant for the evaluation of this expectation.

4 Functions and Derivatives

Suppose we have a function $f(x)$. We write its partial derivative with respect to x as $\frac{\partial f(x)}{\partial x}$ or $\frac{df(x)}{dx}$.¹ We also denote its first derivative as $f'(x)$, its second derivative as $f''(x)$, and so on. For a multivariate function $f(\mathbf{x}) = f(x_1, \dots, x_M)$, we write its gradient with respect to \mathbf{x} as $\nabla_{\mathbf{x}} f(\mathbf{x})$ and frequently omit the subscript, i.e. $\nabla f(\mathbf{x})$, when it is clear from context—it might not be for a gradient such as $\nabla_{\mathbf{y}} g(\mathbf{x}, \mathbf{y})$.

5 Common Conventions

The table below lists additional common conventions we follow:

Notation	Description
N	number of training examples
M	number of feature types
K	number of classes
n or i	current training example
m or j	current feature
k	current class
\mathbb{Z}	set of integers
\mathbb{R}	set of reals
\mathbb{R}^M	set of real-valued vectors of length M
$\{0, 1\}^M$	set of binary vectors of length M
\mathbf{x}	feature vector (input) where $\mathbf{x} = [x_1, x_2, \dots, x_M]^\top$; typically $\mathbf{x} \in \mathbb{R}^M$ or $\mathbf{x} \in \{0, 1\}^M$
y	label / regressand (output); for classification $y \in \{1, 2, \dots, K\}$; for binary classification $y \in \{0, 1\}$ or $y \in \{+1, -1\}$; for regression, $y \in \mathbb{R}$
\mathcal{X}	input space, i.e. $\mathbf{x} \in \mathcal{X}$
\mathcal{Y}	output space, i.e. $y \in \mathcal{Y}$
$\mathbf{x}^{(i)}$	the i th feature vector in the training data
$y^{(i)}$	the i th true output in the training data
$x_m^{(i)}$	the m th feature of the i th feature vector
$(\mathbf{x}^{(i)}, y^{(i)})$	the i th training example (feature vector, true output)
\mathcal{D}	set of training examples; for supervised learning $\mathcal{D} = \{(\mathbf{x}^{(i)}, y^{(i)})\}_{i=1}^N$; for unsupervised learning $\mathcal{D} = \{\mathbf{x}^{(i)}\}_{i=1}^N$

¹Note that a more careful notation system would *always* use $\frac{\partial f(x)}{\partial x}$ for partial derivatives, since $\frac{df(x)}{dx}$ is typically reserved for total derivatives. However, only partial derivatives make an appearance herein.

X	design matrix; the i th row contains the features of the i th training example $\mathbf{x}^{(i)}$; i.e the i th row contains $x_1^{(i)}, \dots, x_M^{(i)}$ random variables corresponding to feature vector \mathbf{x} ; (note: notation gets dicey when we start to have a vector-valued random variable $X = [X_1, X_2, \dots, X_M]^\top$, which will easily be confused with the design matrix; we'll try to make these cases as clear as possible.)
Y	random variable corresponding to predicted class y
$P(Y = y \mid X = \mathbf{x})$	probability of random variable Y taking value y given that random variable X takes value \mathbf{x}
$p(y \mid \mathbf{x})$	shorthand for $P(Y = y \mid X = \mathbf{x})$
$\boldsymbol{\theta}$	model parameters
\mathbf{w}	model parameters (weights of linear model)
b	model parameter (bias term of linear model)
$\ell(\boldsymbol{\theta})$	log-likelihood of the data; depending on context, this might alternatively be the log- conditional likelihood <i>or</i> log-marginal likelihood
$J(\boldsymbol{\theta})$	objective function
$J^{(i)}(\boldsymbol{\theta})$	example i 's contribution to the objective function; typically $J(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^N J^{(i)}(\boldsymbol{\theta})$
$\nabla J(\boldsymbol{\theta})$	gradient of the objective function with respect to model parameters $\boldsymbol{\theta}$
$\nabla J^{(i)}(\boldsymbol{\theta})$	gradient of $J^{(i)}(\boldsymbol{\theta})$ with respect to model parameters $\boldsymbol{\theta}$
λ	stepsize in numerical optimization
$\boldsymbol{\theta}^\top \mathbf{x}$ or $\mathbf{x}^\top \boldsymbol{\theta}$	dot product of model parameters and features ($\boldsymbol{\theta} \cdot \mathbf{x}$ is too ambiguous)
$h_{\boldsymbol{\theta}}(\mathbf{x})$	decision function / decision rule / hypothesis
\mathcal{H}	hypothesis space; we say that $h \in \mathcal{H}$
\hat{y}	prediction of a decision function, e.g. $\hat{y} = h_{\boldsymbol{\theta}}(\mathbf{x})$
$\boldsymbol{\theta}$	model parameters that result from learning
$\ell(y, \hat{y})$	loss function
$p^*(\mathbf{x}, y)$	unknown data generating distribution of labeled examples
$p^*(\mathbf{x})$	unknown data generating distribution of feature vectors only
$c^*(\mathbf{x})$	true unknown hypothesis (i.e. oracle labeling function), e.g. $y = c^*(\mathbf{x})$
<hr/>	
\mathbf{z}	Values of unknown variables (latent)
Z_1, \dots, Z_C	random variables (latent) corresponding to \mathbf{z}
\mathbf{y}	predicted structure (output) for structured prediction
Y_1, \dots, Y_C	random variables corresponding to predicted structure \mathbf{y}
$\mathbb{I}(a = b)$	indicator function which returns 1 when a equals b and 0 otherwise—other notations are also possible $\mathbb{I}(a = b) = \mathbf{1}(a = b) = \mathbf{1}_{a=b}$
<hr/>	