
Git pt.2 & GitHub:
Squid Game
Octocat

Doggo Tax
 Squid

Announcements
Congrats on finishing the midterm!!

Extratation: Crash Course w/ ScottyLabs
(Registration link at the end of slides)

Review
Git: Version Control System

add, commit, branch, checkout

Let’s Play A
Game

You just broke your sugar honeycomb!

Git Ready For...
Undoing Mistakes

Unstaged Changes
(before using git add)

● Scenario:
○ you’re working on trainerlab and accidentally delete the

professor
○ you haven’t staged or committed since pulling the lab
○ you want to fix your sugar honeycomb

● Use:
○ git checkout <file_name>

Staged Changes
(after git add, before git commit)

● Scenario:
○ you’re working on sportslab and accidentally delete a

paragraph of big-league.txt and :wq
○ you finished other tasks and don’t want to redo them
○ you’ve staged everything

● Unstage: git reset HEAD <file name>
● Save for later: git stash
● Retrieving the stash:

○ git stash list
○ git stash apply stash@{n}

After committing

● nuke changes: git reset --hard origin/<branch, commit
hash/HEAD~n>
○ n is the num of commits you want to go back

● remove commits:
○ git reset HEAD~n
○ git revert <commit hash>

● revert vs reset
○ striking out vs erasing
○ revert = new commit undoing past changes

■ past changes still in log
○ reset removes evidence of old changes

Rebasing

● Rewrite history!
○ git rebase <branch_to_base_on>

● Visual Demo time!

https://learngitbranching.js.org/?NODEMO

Rebase vs. Merge

● Both integrate changes from one branch into another
● git merge:

○ Creates a “merge commit” to tie together the history of
the two branches

○ Existing branches are not changed
○ Generally safer!

● git rebase:
○ Moves the entire branch to the tip of current branch
○ Can result in a cleaner git log
○ Do NOT use on public branches!! (more on that with

remotes later)

Rebase vs. Merge

Remotes and
Github

What is GitHub?

● Super useful tool for development!
● Lets you host “remotes” in the cloud

○ What’s a remote? Next slide lol
● Development features:

○ Issues, code review tools, an ice vault in the
Arctic Circle to save your code in the event of
an apocalypse, etc.

● Great way to host and share open source projects
● Other ways to host remotes:

○ bitbucket (competitor to github)
○ host your own on your own servers

https://archiveprogram.github.com/

Remotes

● Remotes are “copies” of your repository stored in the cloud
○ Specifically versions of the git graph that have the

same initial commit
○ DEFAULT REMOTE NAME IS ORIGIN

● ✅ Goal: use these copies to backup and store code, enable
collaboration, deploy and manage code better

● ❌ Problem: maintaining consistency across these
different versions

Lets get started with
a Github Repository
● Step 0: make a GitHub account

○ While you’re there, sign-up for the education
program and git a tone of free stuff

● Make a repository using the gui (super easy)

https://education.github.com/
https://education.github.com/

Lets get started with
a Github Repository
● Step 0: make a GitHub account

○ While you’re there, sign-up for the education
program and git a tone of free stuff

● Make a repository using the gui (super easy)

https://education.github.com/
https://education.github.com/

Lets get started with
a Github Repository

● Step 0: make a GitHub account
○ While you’re there, sign-up for the education

program and git a tone of free stuff
● Make a repository using the gui (super easy)

○ Things to know about making repos
■ Public vs Private

● Public to show of and flex on them
recruiters

● Private to be sneky and follow
academic integrity

https://education.github.com/
https://education.github.com/

Lets get started with
a Github Repository
● Step 0: make a GitHub account

○ While you’re there, sign-up for the education
program and git a tone of free stuff

● Make a repository using the gui (super easy)
○ Things to know about making repos

■ Public vs Private
● Public to show of and flex on them

recruiters
● Private to be academically integritous

or when you don't want people to see
how bad your code is

https://education.github.com/
https://education.github.com/

Lets get started with
a Github Repository

● More things to know about making your first repo
○ README.md

■ write-up about your code, instructions, things for
collaborators to know

■ Written in markdown
○ .gitignore

■ Remember those? Github provides you with some starters

https://www.markdownguide.org/cheat-sheet/

GitHub Licenses
Explained

● If your code is public, what rights people have who use your code
● Common Licenses:

○ MIT License: very open and gives rights to everyone while
protecting you from being sued if your code breaks something

○ Apache License (2.0): also very open, explicitly protects your code’s
intellectual property, gives you the right to any code someone
contributes to your project in any form

○ GPL: notoriously restrictive license, copyrights the code in it and
explicitly restricts how you are allowed to use the code

https://www.fastcompany.com/3014553/what-coders-should-know-about-copyright-licensing
https://choosealicense.com/

Ok what now?

● You now have a remote of your repo
● You want to have a local version of your repo
● Simply “clone the repository”

○ Click the “clone” button on your repo’s GitHub page
○ Copy link and run:

■ $ git clone <clone url here>

Wait, can u have
multiple remotes tho?

Yes!!
● Your local repo can have multiple remotes.
● To check all remotes, do: $ git remote
● When u clone, the default name of remote is

origin
● Use -v flag if u want to see the URLs linked to

the remotes
● Can also add a remote by:

 $ git remote add <shortname> <url>

Ok enough riff raff
let's Do this!!
● Two main actions to think about:

● “push” changes from your local repository
to the remote repository

● “pull” or “fetch” changes from the remote to
your local repository

Wait what???

my local
repo

main
remote

my remote
(aka fork)

● Remotes are just different
versions of the git tree

● We want to move commits
from remotes to our local
repo and visa versa

Pushing Example

● I have some commits locally that I want to make sure are
saved on GitHub. Must need write-access tho
○ run command:

■ $ git push <remote name> <remote branch>
○ Sometimes your local branch isn’t on the remote:

■ $ git push --set-upstream <remote name> <branch
name>

○ But you usually want to push your current branch to the
remote’s version of this branch
■ You can just run:

● $ git push

Pulling Example

● I have some commits in the remote that I want
locally
○ $ git pull <remote name> <local branch>

● But usually you can just run for default remote and
current branch:
○ $ git pull

Git Fetch
● Allows you to see the changes in remote repo since

your last pull.
● $ git fetch <remote>
● Useful if you’re not sure of pulling just yet from the

remote and want to review
● Unlike Git Pull, Fetch doesn’t merge the remote

repo with your local repo
● Git Pull = Git Fetch + Merge

It's time for
spaghetti

● Git forks are duplicate remotes of another remote
● Fork allows you to have your OWN copy
● Why do we want forks?

○ You don’t have write access to the og remote
○ You want one just for you to use and the main one is

for your group
■ Everyone has their remotes and no one gets in

each other's way

Lets be good
internet citizens

● You now know everything to contribute to open source
projects

● There are a ton of great projects on github
○ linux, android, the go programming language, noise

page, vscode, the GPI website, and so many more
● Simply fork the project, clone, do your thing
● Submit a pull request to the main project

https://github.com/torvalds/linux
https://github.com/aosp-mirror
https://github.com/golang/go
https://github.com/cmu-db/noisepage
https://github.com/cmu-db/noisepage
https://github.com/microsoft/vscode
https://github.com/cmugpi/cmugpi.github.io
https://github.com/EvanLi/Github-Ranking

Pull requests on
the dL

● You want to add your changes to the og remote
● How?
● Submit a pull request (PR)
● Push your changes, go to og remote’s page, click “submit a

pull request”
● The person who runs the repository can give you

feedback and hopefully get your code merged into a really
cool project

Announcements

● Please give feedback :)
http://tinyurl.com/f21-gpi-feedback

● Instructions for the GitHub part of lab:
○ https://www.cs.cmu.edu/~07131/f21/topics/readings/week-8/

● Extratation : Crash Course w/ ScottyLabs
Registration:
https://docs.google.com/forms/d/e/1FAIpQLScTH_5m0qdmBU
KNfF97Cgleu_KGS87CUlWErQQe2zYtub_Pwg/viewform

http://tinyurl.com/f21-gpi-feedback
https://www.cs.cmu.edu/~07131/f21/topics/readings/week-8/
https://docs.google.com/forms/d/e/1FAIpQLScTH_5m0qdmBUKNfF97Cgleu_KGS87CUlWErQQe2zYtub_Pwg/viewform
https://docs.google.com/forms/d/e/1FAIpQLScTH_5m0qdmBUKNfF97Cgleu_KGS87CUlWErQQe2zYtub_Pwg/viewform

