\N
\.

Ay 1o ?
Time Travel —

/ ’,:
Laura, Yosef, and Keiffer 2

l e

Git: Part |

Laura, Yosef, and Keiffer

Exam 1 Logistics

Next week during lecture time (Oct 7th)
Material up until this lecture (Git Pt. 1)
Will be multiple choice and short answer
Paper + pen/pencil
Materials allowed:

o Man pages will be provided

o 1pg(8.5x11) handwritten cheat sheet (front and back)

m Youcanwrite it out digitally but you must have it printed

m Name at the top of the sheet
o We will collect your cheat sheets at the end!

It will be heavily curved so don’t worry!

Midsem Grade Logistics

e Hard deadline for trainerlab to romancelab is October 14th (Thursday)

e Double check autolab!!
o (if youdidn't submit your .tex files for smashlab, you may have a negative score)

e Your midsem grade will include your midterm score

= hwl 1s

hwl-backup.py
hwl-backupl.py
hwl-backup?2.py

hwl-backup3.py
hwl-backup4.py
- hwl |}

hwl-copy.py

hwl-part-one.py
hwl-partZ2-without-part-1.py
hwl-with-style.py

hwl.py

—
_

v

What's wre
o Clunky!!
e Needtol N asting to
restore w
e Whatif you all of that for

you with afe

Developing software is complicated

e Software developers everywhere use version control manage large projects!

PERFORCE
@\’ Version everything.
o

ercurial

What is git?

“the stupid
content tracker”

- Linus Torvalds

(type “man git” in your terminal - it actually says this!)

What is git?

e Distributed version control
(work easily with other
people)

e Storesthe entire project
locally

e Quite literally atime
machine for your code!

Local

Computer

Checkout

Version Database

Version 3

Version 2

Version 1

What ISN'T git?

e GitHubis awebsite to
share and collaborate on git
repositories

e We'll be learning more
about Github next week!

Central VCS Server

Haven't we've been using git on all the HWs?

Yes

All of you have seen git before

But...

There is actually a lot more to it than you probably know
Now you will understand why we ask you to add and
commit your files

git happens....

THISIS GIT: IT TRACKS COLLABORATIVE. LORK
ON PROJECTS THROUGH A BEAUTIFUL
DISTRIBUTED GRAPH THEORY TREE. MODEL.

COOL. HOU DO WE-VSE. IT?

NO IDEA. JUST MEMORIZE. THESE. SHELL
COMMANDS AND TYPE. THEM TO SYNC UP
IF YOU GET ERRORS, SAVE. YOUR WJORK
ELSELHERE, DELETE THE. PROJECT,
AND DOUNLOAD A FRESH COPY.

\

il

Time to git gud

Check if its installed with
o $whichgit
If it gives you a path you've already got it!!

o
ac:

°
<

o Already installed!
inux:
o Ubuntu: sudo apt install git
o Otherdistros: package manager
e Windows:
o Youcandownload it here:
o https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
e Andrew:
o Nothing!! It’s already installed so you don’t need to install anything for the HW

[]
—

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Loca IOpe

Getting started using git

e You started a new project with some files and want to save your
progress
e Rungitinitinthe project folder
e What just happened?
o Creates a.git folder that stores the entire project history
e Thisstarts the first node on our graph

1jyao@linux-15:~/private/gpigit$ git init

Initialized empty Git repository in /afs/andrew.cmu.edu/usrl@/ljyao/private/gpig
it/.git/

1jyao@linux-15:~/private/gpigit$ 1ls -a |
« we wgit

Checking what git is doing?

e We cancheck what git is doing with our files by using:
o $gitstatus
e Twothingstosee here
o Nocommits yet
m What are commits?
o Untracked files
m What are those?
m Do we want to track them and why?

Tracking files

Some files we want git to keep track of (e.g. our code)

Some files we want git to ignore (log files, compiled files, etc.)

git will NOT track anything unless you tell it to!

To tell git to track a file:
o $gitadd [path to file or folder]

If you want to add all changes/files in the current folder, we often use:
o $gitadd.

What if you want to add all changes/files except one or two?
o Add these files you want to ignore to the .gitignore file

[1jyao®linux-15:~/private/gpigit$ git status
On branch master

No commits yet
nothing to commit (create/copy files and use "git add" to track)
[1jyao@linux-15:~/private/gpigit$ touch welovegpi.txt
1jyao@linux-15:~/private/gpigit$ git status
On branch master
No commits yet
Untracked files:
(use "git add <file>..." to include in what will be committed)

welovegpi.txt

nothing added to commit but untracked files present (use "git add" to track)

Commits: what are those?

Commits are a collection of changes that get added to the graph
These are the snapshots that you are able to jump between
You also get to write a message describing what the changes you made were
You can commit by running:
o $gitcommit
m Will openin some text editor (vim by default) to write message

o $git commit -m “your message here”
m Doesn’'t open up anything

You can keep doing this as you make changes

e Makeanewfile
o $touch we-love-gpi
o $gitstatus
e Whatdoyousee?
e What happens when we run this command:
o $gitdiff
o What about if we write some stuff into we-love-gpi

e We need to add we-love-gpi
We need to commit these changes again

O D e

[1jyao®linux-15:~/private/gpigit$ git add .
[1jyao®linux-15:~/private/gpigit$ git status
On branch master

No commits yet

Changes to be committed:
(use "git rm —-cached <file>..." to unstage)
new file: welovegpi.txt

[1jyao@linux-15:~/private/gpigit$ git commit -m "yaygpi"
[master (root-commit) 423347a] yaygpi

1 file changed, @ insertions(+), @ deletions(-)

create mode 100644 welovegpi.txt
[1jyao@linux-15:~/private/gpigit$ git status
On branch master

nothina to commit. workina tree clean

[1jyao@linux-15:~/private/gpigit$ touch secrets.txt
[1jyao@linux-15:~/private/gpigit$ touch .gitignore
[1jyao@linux-15:~/private/gpigit$ vim .gitignore
[1jyao@linux-15:~/private/gpigit$ touch public.txt
[1jyao@linux-15:~/private/gpigit$ git add .
[1jyao@linux-15:~/private/gpigit$ git status
On branch master
Changes to be committed:
(use "git restore —-staged <file>..." to unstage)
new file: .gitignore
new file: public.txt

[1jyao@linux-15:~/private/gpigit$ git commit -m "no secrets"
[master 287bafd] no secrets

2 files changed, 1 insertion(+)

create mode 100644 .gitignore

create mode 100644 public.txt

What's the process we just did?

Local Operations

1. Make some changes e g -
2 directory area

Stage those changes with git add

a. This moves your changes into what is
called the staging area
3. Commit those changes with git commit
a. Commits your changes onto the tree -

4. Repeat and have great snapshots of
your work!! ~

Reverting

o $gitlog
o Checks your previous commits and lists them

e $gitrevert <commit-hash> reverts a commit
o by making a new commit with opposite changes
o Doesn’t actually go backwards

e We will talk about git reset next week!

1jyaoRlinux-15:~/private/gpigit$ vim public.txt]
1jyao@linux-15:~/private/gpigit$ git diff
diff --git a/public.txt b/public.txt
index e69de29..d158h%e 100644
——— a/public.txt
+++ b/public.txt
0@ -0,0 +1 @@
+mistake 1
‘1jyao@linux-15:~/private/gpigit$ git add .]
1jyao@linux-15:~/private/gpigit$ git commit -m "mistakel"]
[master edbceall mistakel
1 file changed, 1 insertion(+)
1jyaoRlinux-15:~/private/gpigit$ git log
commit edbcealb2826d3031b5089f4f9041dd56cce515e (HEAD —> master)
Author: laura <ljyaoRandrew.cmu.edu>
Date: Wed Sep 29 11:46:18 2021 -0400

mistakel

commit 287bafd253a462548a262d7fa72ea087c17c4250
Author: laura <ljyao@andrew.cmu.edu>
Date: Wed Sep 29 11:45:17 2021 -0400

no secrets

commit 423347a236f6e89e5880d3e7ed4b9fbabla73e0d
Author: laura <ljyaoRandrew.cmu.edu>
Date: Wed Sep 29 11:41:23 2021 -0400

yaygpi
1iyao@linux-15:~/private/gpigit$ git revert edbcealb2826d3031b5089f4f9041dd56cce
515e
[master ©b37a3b] Revert "mistakel"
1 file changed, 1 deletion(-)

There is this tree thingy, how do i see it?

e $gitlog--graph --decorate
o Youcan get out of git log by pressing “q”
e You cansee you're entire commit history all the way back to the git initin a
pretty format
e Do you notice the git hashes?

o Theylook like this: 06a12a2465b78ca92f08aacf774chb98fda3c3519
o They will be useful later

() mes Dt >

Aren't all these trees straight lines?

o Yes
e Butyou can change that by giving your trees branches
e Sobydefault thereis one branch called master
o When you commit you extend the branch you're currently on
e You keep track of where you currently are on the tree with the HEAD

o When you commit you move what your current branch points to and therefore move the HEAD
o HEAD always points to a branch

master <~ master .——HEAD

Making branches

e You can make a branch from a commit with
o $gitbranch [branch name]
o $git checkout [branch name]

e branch makes a new branch

e checkout switches the head to point to that branch branch \
HEAD
we-love-gpi /

master

Making branches

e When you commit now you extend the branch HEAD

points to .
e Allother branches don't change commit on
branch

branch

HEAD
we-love-gpi

master

Combining branches

e Branches let multiple people work on different parts of the project without

breaking each other!
e When you want to combine two branches:
o $git merge [branch you want to merge]
e This makes a commit that both branches and HEAD point to

master

How to actually merge branches?

e Merge the branches
o $git merge [branch name]

e Checktoseeif there were any issues merging
o $gitstatus

e Fixall the conflicts

o Ifthereisaconflictina file, git will surround the section that needs to be fixed with >>>>>>> or
<<

o Youthen need to combine those sections to finish the merge
e Stage and commit your changes

o $gitaddfilelfile2file3...

o $gitcommit
e Yayyou merged two branches together

When do we get to time travel?

branch

v

34ac2

£30ab

e Right Now!!
e Tojump between commits you can use:
o $git checkout [branch name]
e Use thisto jump around between ?
branches!! .
e What do you think this is doing with
HEAD?

e You can also checkout a commit with
o $git checkout [commit hash]
o What branch are you on now?
o You're not, you have a detached head

How to deal with a detached head?

e Gotothehospital
e You can make a new branch when you checkout the commit
o % git checkout -b [branch name]
e |f you are confused by branching, there are interactive visualizations of
branching and merging at:
o learngitbranching.js.org

https://learngitbranching.js.org/

Reminders

e WizardLabdue 11:59 pm ET tonight
e Extratation this Saturday 1-2 pm at GHC 4211: Exam Review
e Course Feedback on tinyurl.com/f21-gpi-feedback

http://tinyurl.com/f21-gpi-feedback

Helpful hints for romancelab

Before you start run ./setup.sh

This week’s lab directory is a git repo by itself, despite being inside the gpi-labs repo
When you are doing the labs, run the commands inside this week’s lab directory

When you are done with the lab, commit your changes under gpi-labs directory

Don't forget to commit and run driver between stages!

Remember that git branch will show you what branch you're on and which branches exist
Switch between branches using git checkout

You can list your branches using
o $gitbranchl
To revert to a commit:
o $gitrevert [commit hash]
Always run the driver to make sure you’re on the right track!!!

