
Week 8 : Boba Regex

07131 GPI Lecture
All boba related artwork done by Amy Liu for GPI. Do not reuse without crediting.

Announcements
● Dotfiles Extratation this weekend
● Also daylight saving ends this Sunday for

those in US!

Pet tax!
Brought to you
by Kish-Log

What we want to achieve Glob/Range

Create financial statements from 1988 to 2019 $ touch {1988..2019}.financial_statement?

What we want to achieve Glob/Range

Create financial statements from 1988 to 2019 $ touch {1988..2019}.financial_statement

What we want to achieve Glob/Range

Create financial statements from 1988 to 2019 $ touch {1988..2019}.financial_statement

Remove all big_cat_country episodes $ rm big_cat_country*.mp4?

What we want to achieve Glob/Range

Create financial statements from 1988 to 2019 $ touch {1988..2019}.financial_statement

Remove all big_cat_country episodes $ rm big_cat_country*.mp4

What we want to achieve Glob/Range

Create financial statements from 1988 to 2019 $ touch {1988..2019}.financial_statement

Remove all big_cat_country episodes $ rm big_cat_country*.mp4

Zip up financial statements between 2010 and
2019, if any

$ zip fin_statements.zip 201?.financial_statement?

What we want to achieve Glob/Range

Create financial statements from 1988 to 2019 $ touch {1988..2019}.financial_statement

Remove all big_cat_country episodes $ rm big_cat_country*.mp4

Zip up financial statements between 2010 and
2019, if any

$ zip fin_statements.zip 201?.financial_statement

What we want to achieve Glob/Range

Create financial statements from 1988 to 2019 $ touch {1988..2019}.financial_statement

Remove all big_cat_country episodes $ rm big_cat_country*.mp4

Zip up financial statements between 2010 and
2019, if any

$ zip fin_statements.zip 201?.financial_statement

Send every person in scs 1x free boba voucher $./sendFreeBobaVoucher *.scsPerson?

What we want to achieve Glob/Range

Create financial statements from 1988 to 2019 $ touch {1988..2019}.financial_statement

Remove all big_cat_country episodes $ rm big_cat_country*.mp4

Zip up financial statements between 2010 and
2019, if any

$ zip fin_statements.zip 201?.financial_statement

Send every person in scs 1x free boba voucher $./sendFreeBobaVoucher *.scsPerson

What we want to achieve Glob/Range

Create financial statements from 1988 to 2019 $ touch {1988..2019}.financial_statement

Remove all big_cat_country episodes $ rm big_cat_country*.mp4

Zip up financial statements between 2010 and
2019, if any

$ zip fin_statements.zip 201?.financial_statement

Send every person in scs 1x free boba voucher $./sendFreeBobaVoucher *.scsPerson

… except Tom and Veronica

What we want to achieve Glob/Range

Create financial statements from 1988 to 2019 $ touch {1988..2019}.financial_statement

Remove all big_cat_country episodes $ rm big_cat_country*.mp4

Zip up financial statements between 2010 and
2019, if any

$ zip fin_statements.zip 201?.financial_statement

Send every person in scs 1x free boba voucher $./sendFreeBobaVoucher *.scsPerson

… except Tom and Veronica ???? (impossible to do efficiently)

What we want to achieve Glob/Range

Create financial statements from 1988 to 2019 $ touch {1988..2019}.financial_statement

Remove all big_cat_country episodes $ rm big_cat_country*.mp4

Zip up financial statements between 2010 and
2019, if any

$ zip fin_statements.zip 201?.financial_statement

Send every person in scs 1x free boba voucher $./sendFreeBobaVoucher *.scsPerson

… except Tom and Veronica ???? (impossible to do efficiently)

Vouchers for Tom and Veronica should allow for
unlimited boba! We want something that will
accept/match “”, “boba”, “bobaboba”,
“bobabobaboba”... etc (boba only for now… not enough budget)

What we want to achieve Glob/Range

Create financial statements from 1988 to 2019 $ touch {1988..2019}.financial_statement

Remove all big_cat_country episodes $ rm big_cat_country*.mp4

Zip up financial statements between 2010 and
2019, if any

$ zip fin_statements.zip 201?.financial_statement

Send every person in scs 1x free boba voucher $./sendFreeBobaVoucher *.scsPerson

… except Tom and Veronica ???? (impossible to do efficiently)

Vouchers for Tom and Veronica should allow for
unlimited boba! We want something that will
accept/match “”, “boba”, “bobaboba”,
“bobabobaboba”... etc (boba only for now… not enough budget)

???? (impossible)

Glob’s kinda useless … Do we have something better?

Introducing …
REGEX!

● “Regular Expression”
○ Patterns that match against certain strings
○ Different from globs!
○ Compatible with many applications

● But why are they called regular expressions?
○ For interesting theoretical reasons (that you will

learn later)
● Example (that we’ll dissect later)

○ (\d{3}-?){2}\d{4}

Introducing …
REGEX!

● Normal characters
● Quantifiers
● Character classes
● Groups
● Other special expressions

Parts of a regular expression
● Normal characters

○ boba – matches "boba"

● Character classes
○ [sml] – matches "s", "m", or "l" (no, not standard meta language, it’s small, medium, or large)

○ \d – matches a digit

○ . – matches any character

Character
Classes
“Boba is my personality”

Class

a or b or c

a lowercase letter

whitespace

digit

alphanumeric char

any single character
(ie, wildcard)

Matches

[abc]

[a-z]

\s

\d

\w

.

Class

a or b or c

a lowercase letter

whitespace

digit

alphanumeric char

any single character
(ie, wildcard)

Matches

[abc]

[a-z]

\s

\d

\w

.

Class

Not any of a, b or c

Not a character

Not a whitespace

Any non-digit

Any non-alphanumeric char

Just a period

Matches

[^abc]

[^A-Za-z]

\S

\D

\W

\.

More Character Classes

Parts of a regular expression
● Up until now, we’ve seen character classes that only match to 1

single character. How do we specify ~quantity~?

● Quantifiers
○ boba? - matches “bob” or “boba”

○ boba* – matches "bob", "boba", " bobaaaaa", etc.

or

More
Quantifiers

Quantifier

Zero or one (ie. optional)

Zero or more

One or more

Exactly 3

3 or more

Between 3 and 6 (inclusive)

Matches

a?

a*

a+

a{3}

a{3,}

a{3,6}

“How many cups of boba
do you want?”
“yes”

Parts of a regular expression
● So far, the quantifiers only acts on the “character” immediately

before it.

● Use parentheses for grouping
○ boba* - matches “bob”, “boba”, “bobaaa”...

○ (boba)* - matches “”, “boba”, “bobaboba”, “bobabobaboba” …

○ boba? - matches “bob” or “boba”

○ (boba)? - matches exactly “” or “boba”

Parts of a regular expression
● So far, the quantifiers only acts on the “character immediately

before it.

● Use parentheses for grouping
○ boba* - matches “bob”, “boba”, “bobaaa”...

○ (boba)* - matches “”, “boba”, “bobaboba”, “bobabobaboba” …

○ boba? - matches “bob” or “boba”

○ (boba)? - matches exactly “” or “boba”

boba?

(boba)?

Note that pattern matching does NOT
have to start from the beginning!
● Pattern: “\d” (will match any digit)

● Matches: (almost like a search-and-find)

○ abc1xyz

○ 1abcxyz

○ abcxyz1

… but you might get false positives

● Pattern: “free boba”

● Matches:

○ “free boba with the purchase of 10 bobas”

○ “free boba when you spend $1000 or more”

○ “Breaking news: carefree boba-lover spends $1000”

Other special expressions
● ^ - Start of string/line (not to be confused with ^ in [^abc])

○ ^(free) matches only “free” at beginning of the string/line

● $ - End of string/line

○ (boba)$ matches only “boba” at the end of the string/line

Other special expressions
● ^ - Start of string/line (not to be confused with ^ in [^abc])

○ ^(free) matches only “free” at beginning of the string/line

● $ - End of string/line

○ (boba)$ matches only “boba” at the end of the string/line

^ - jump to the first non-blank character of the line
$ - jump to the end of the line

Other special expressions
● (this|that)

○ Don’t put spaces unless you want to match a space

○ Put as many as you want: (this|that|here|there)

○ Can nest or use other character classes! Ex. you can express
the above as (th(is|at)|t?here)

Hm… what
to get…

$5
$5.5

$4.5

$6

Class

a or b or c

a lowercase letter

whitespace

digit

alphanumeric char

any single character

Not any of a, b or c

Not a character

Not a whitespace

Any non-digit

Any non-alphanumeric char

Just a period

Matches

[abc]

[a-z]

\s

\d

\w

.

[^abc]

[^A-Za-z]

\S

\D

\W

\.

Quantifier

Zero or one (ie. optional)

Zero or more

One or more

Exactly 3

3 or more

Between 3 and 6 (inclusive)

Matches

a?

a*

a+

a{3}

a{3,}

a{3,6}

Other expressions

“start” at the beginning of line/string

“end” at the end of the line/string

“this” or “that”

Matches

^(start)

(end)$

(this|that)

Example - boba shop phone numbers
● Multiple possible strings

○ 123-456-7890
○ 1234567890
○ 456-789-1234

● But the formats follow a few patterns
○ ###-###-####
○ ##########

Example - boba shop phone numbers

(\d{3}-?){2}\d{4}

Example - boba shop phone numbers

(\d{3}-?){2}\d{4}
Matches any digit

(\d{3}-?){2}\d{4}
Matches any 3 digits

Example - boba shop phone numbers

(\d{3}-?){2}\d{4}
Matches an optional hyphen

Example - boba shop phone numbers

(\d{3}-?){2}\d{4}
Matches 2 groups of 3 digits

Ex:
123-456-
123456-
123456

Example - boba shop phone numbers

(\d{3}-?){2}\d{4}
Matches 2 groups of 3 digits, then

4 more digits

Example - boba shop phone numbers

Example

(small|medium|large) milk(green)? tea(
with (((no|less|half|extra)
(sugar|ice))|(milk foam)))*

Match your own favorite drink order!

https://regex101.com/

https://regex101.com/

Quiz!
Matches Regex

bobabobaboba or bobaboba

Quiz!
Matches Regex

bobaboba(boba)? or (boba){2,3}bobabobaboba or bobaboba

boba any number of times

Quiz!
Matches Regex

bobaboba(boba)? or (boba){2,3}

(boba)*

bobabobaboba or bobaboba

boba any number of times

[any letter][any number] ex: A4

Quiz!
Matches Regex

bobaboba(boba)? or (boba){2,3}

(boba)*

[A-Za-z]\d

bobabobaboba or bobaboba

boba any number of times

[any letter][any number] ex: A4

example.com website.com etc.

Quiz!
Matches Regex

bobaboba(boba)? or (boba){2,3}

(boba)*

[A-Za-z]\d

[a-z]+\.com

bobabobaboba or bobaboba

boba any number of times

[any letter][any number] ex: A4

example.com website.com etc.

It’s ~~confusion~~ time

Alright let’s put glob back into
our brain...

Regex vs Globs and ranges
Regex Glob/Range equivalent

?

IWant{1..7}CupsOfBoba.please

{s,m,l}

{this,that}

*

Not possible

.

IWant[1-7]CupsOfBoba\.please

[sml]

(this|that)

.*

(ab)*

When to use what?
Regex

● Grep, sed, vim
● Useful for parsing or

validating data like an
email, phone number,
password, credit card num
etc.

● Searching with regex is also
supported in VSCode,
Google Sheets, etc

Glob

● In terminal command line,
used by shells for matching
file and directory names
using wildcards. The
capabilities of globbing
depend on the shell.

GREP
● Bash terminal command!

● Usage: $ grep [flags] pattern [file...]

● Globally search for a regular expression and print matching lines

● $ grep 'needle' haystack.txt
○ Searches haystack.txt for "needle"s.

● $ grep -r 'boba' path/to/directory
○ Searches recursively for "boba"s.

● grep is fast for theoretical reasons you will learn in the future

GREP - note!
● If you have quotes in your pattern, make sure to either escape OR put

the whole pattern in another quotation

○ $ grep '”' file or $ grep \” file

○ $ grep “'” file or $ grep \' file

● If you have spaces in your pattern, put the whole pattern in quotes!

○ $ grep 'free boba voucher' file
Remember that in general, put quotes around your shell command arguments if it has quotes!

GREP
● Useful flags (usage: $ grep [flags] pattern [file...])

○ -i (ignores case when searching)

○ -c (counts up the number lines that contains a match)

○ -v (inverse; print out lines that do NOT match)

○ -n (also print out the line numbers)

○ -F (interpret the pattern verbatim/literally, no regex involved)

○ Read the man page for more! https://linux.die.net/man/1/grep

https://linux.die.net/man/1/grep

GREP
● There are a lot of flags and edge cases and when-to-use-what (basic

vs extended vs perl), so when stuff don’t work, try googling it first!

● Example:

○ $ grep (this|that) file doesn’t work …

○ Need to use egrep (or -E flag) $ grep -E (this|that) file

○ Same issue when using braced quantifiers like {3}

● Example:

○ $ grep \d file to look for a digit doesn’t work… What should I do?

○ Use $grep [[:digit:]] file or $grep -P ‘\d’ file

SED - stream editor
● Can perform find and replace on a file

● $ sed 's/find/replace/g' path/to/file

○ Prints result of replacement to the command line, leaving input
untouched

● $ sed -i 's/find/replace/g' path/to/file

○ -i for "In place"

○ Edits the file

ZombieLab Tips
● Be careful with escaping correctly
● Don't forget to do $ chmod +x script.sh and

add #!/bin/bash

