
SHELL SCRIPTING
AND
CUSTOMIZATION
GPI F20 · Emmanuel & Sayan

PET TAX
Carole Bashkin!

Ran her program, bashed it

Can’t convince her that bash isn’t
awesome

Pipin’, globbin’, multitaskin’

What’s happen?

Carole Bashkin!

http://www.youtube.com/watch?v=4jl5-iu2Fik

WHAT IS A SHELL?
● A shell is the outermost layer that allows a user to

interact with the operating system.

● For a programmer, it is the program that powers your
terminal.

● We will focus on Unix shells, command-line interpreters
for Unix-like operating systems.

● They come in many flavors.
○ zsh, bash, fish, etc.

COMMAND CENTER
● Show contents of a file

● Show contents of a directory

● Change directories

● Remove a file

● Move/rename a file

● Copy a file

● Execute a binary

● Print something

cat path

ls

cd path

rm src

mv src dst

cp src new_name

./name

echo “Hello, world!”

OVER, OVER, AND OVER AGAIN
● Sometimes, you want to run the same set of commands

multiple times.
○ Compiling and testing your code

○ Renaming a bunch of files

○ Initializing your git repos with a .gitignore

○ Archiving your new favorite xkcd comics

○ Setting up your dev environment on a new machine

● Shell scripts allow you to run a sequence of shell
commands from a file.

WRITE YOUR OWN SHELL SCRIPT
● Each script begins with a shebang followed by the

commands you want to execute.
○ #!/bin/zsh

○ #!/bin/bash

○ #!/usr/bin/env python3

● Add executable permissions to your file.
○ chmod +x script.sh

○ This changes the mode of the file to an executable.

● Run the script!
○ ./script.sh

FUNCTIONS ARE SHELL SCRIPTS
● Apart from interfacing with the operating system, they

support other programming constructs as well.

○ Variables

○ Conditionals

○ Loops

○ String Manipulation

● The syntax, unfortunately, does not spark joy.
○ Variable Assignment: VAR=value

○ Variable Access: echo $VAR

○ Command Line Arguments: $1, $2, $3, and so on

🐍🐍🐍
● Python syntax, however, does spark joy.

● You can convert any of your Python scripts into
executable scripts by adding a shebang.
○ #!/usr/bin/env python3

Globs and Ranges

Imagine that this is you….
● Carol Bashkin has successfully sued you and is trying to take all your stuff
● Option 1:

Imagine that this is you….
● Carol Bashkin has successfully sued you and is trying to take all your stuff
● Option 2: make fake financial statements to hide your assets
● Problem: it’s hard to make a ton of fake financial statements quickly

○ Financial statement is an empty file that is named [year].financial_statment

● Can Joe make financial statements from 1988 to 2019 in one command line?
● Solution: ranges.

Ranges
● Patterns that the shell is able to expand
● First form:

○ abc{def,DEF,dEf}ghi → abcdefghi abcDEFghi abcdEfghi

● Second from:
○ abc{a..d}efg → abcaefg abcbefg abccefg abcdefg

● NOTE NO SPACES in the ranges
● Shell does the expansion before running a command
● Ex:

○ $ echo abc{def,DEF,dEf}ghi
○ abcdefghi abcDEFghi abcdEfghi

So how do we commit fraud?
● Can Joe make financial statements from 1988 to 2019 in one command line?
● Solution:

○ $ touch {1988..2019}.financial_statement

● Sweet we did it!!!

Darn Howard Bashkin...
● Unfortunately, Howard Bashkin (Carol’s (for the moment still living) husband)

is a lawyer and notices that real financial statements have 3 parts.
● The statute of limitations is 10 years for this type of fraud.
● Howard needs to collect all records from 2010 onwards and zip them into one

zip file. Can he do this in 1 line?
● Solution: globs

Globs
● Patterns that expand to all files in the local directory that match the pattern
● ? glob

○ Matches any single character
○ Ex:

■ abc?efg matches abcdefg, abccefg, abc0efg, and more!!

● * glob
○ Matches any character 0 or more times
○ Ex:

■ abc*efg matches abccccccccefg, abcefg, abc_literally_anything_efg

● Again matching is done by the shell before it is passed into any command

Catching Financial Fraud
● Howard needs to collect all records from 2010 onwards and zip them into one

zip file. Can he do this in 1 line?
○ Hint: the zip command zips files by:

■ $ zip <output file> <input files ...?>

● We can use glob: ?
● Solution:

○ $ zip joe_exotic_financial_statements.zip 201?.financial_statement

Why was this better than using a range?
● Wait doesn’t this work as well?

○ $ zip joe_exotic_financial_statements.zip {2010..2019}.financial_statement

● Yes…but what if Joe didn't have one of his financial statement
○ Say he was missing 2018 since he made a lot of money from his Oklahoma governor's

campaign

● What if the statute of limitations was 20 years instead?
○ $ zip joe_exotic_financial_statements.zip 20??.financial_statement

● What if we want all the financial statements regardless of year?
● We want any file ending in .financial_statement

Rick Kirkham sees this and is like….
● Rick needs to develop 10 seasons each of 10 episodes of both Joe Exotic TV

and his new reality show, big cat country
● Is there a way where rick can generate all these different mp4 files in 1

command line? (they can just be empty files)
● Solution: nested ranges:

○ $ touch {joe_exotic_tv,big_cat_country}_s{1..10}e{1..10}.mp4
○ This expands to:

■ $ touch joe_exotic_tv_s{1..10}e{1..10}.mp4 big_cat_country_s{1..10}e{1..10}.mp4
■ So on...

○ This will generate every combination of tv show, season, and episode and create 200 files!!

Oh no!!! The alligator enclosure!!

Oh no!!! The alligator enclosure!!
● An unknown person set the alligator enclosure on fire!!!
● It destroyed all of Rick’s tv show’s footage!!!
● Is there a 1 line command to delete all of rick’s footage, but none of

JoeExoticTV?
○ $ rm big_cat_country*.mp4

Summary (of Charges filed by US Attorney in Tulsa)
● Ranges:

○ {start..end} or {thing1,thing2,thing3} ← note no spaces in range

● Globs expand to match all files in given folder that match the form:
○ ? ← wild card matches any single character
○ * ← expands to match zero or more characters

● Lol im trying to somehow make this slide Tiger King themed

Shell Configuration

.rc files
● Depending on your OS/shell you might have:

○ .bashrc, .zshrc, .bash_profile, etc. in your home folder

● These are shell scripts that are run when a new terminal window is created
● You can initialize a bunch of different things in your .rc file
● Unlike bash scripts they’re run in the same shell as your default shell

○ Could be run in ZSH, not bash, if you use ZSH

Environment Variables
● Create variables that you can use in your terminal

○ API Keys
○ Paths to things
○ What Joe Exotic’s real name is

● Setting environment variables:
○ $ export joe_exotic=”Joseph Allen Maldonado-Passage”

● Aliases
○ Let you make your own terminal commands

● Setting Aliases:
○ Maybe you want gs to alias to git status
○ $ alias gs=”git status”

Resourcing your .rc file
● Your .rc file is ran when the shell starts
● If you modify it, those changes aren’t reflected in your current shell windows
● So you need to re-source the .rc file:

○ $ source .zshrc ← or whatever your .rc file is

You need to hide the body that's under the septic tank

● Carol is hiding the body of her husband under the septic_tank folder
● She wants to make sure that every time she opens her terminal it deletes the

file body_of_husband in of the septic tank folders
● How can she do this?

Solution: the ** glob
● Recursive glob
● Matches any file at any depth in folders in current directory
● Ex:

○ **/abc.xyz matches abc.xyz, folder/abc.xyz, folder2/abc.xyz, folder/subfolder/abc.xyz

How can we use ** to get rid of the body?
1. Open our .rc file
2. Add rm **/septic_tank/**/body_of_husband
3. Re-source our .rc file
4. Start your media empire

Hints for the lab
● “When it all goes down you want to be on the side of the feds”

