
Bash Oneliners
David Hashe

IM IN YR GPI, BEING YR PET TAX

The three uses of bash

● Basic file browser and program runner
● Data processing language
● General full-fledged scripting language

Earlier focus

● Basic file browser and program runner
● Data processing language
● General full-fledged scripting language

This week’s focus

● Basic file browser and program runner
● Data processing language
● General full-fledged scripting language

???

● Basic file browser and program runner
● Data processing language
● General full-fledged scripting language

How Programs Communicate

Unix is a 2-layered API

● Unix C API
○ Used for “real”

programming
● Unix Shell API

○ Subset of C API
functionality

○ Used for scripting
and interactive use

Unix is a 2-layered API

● Unix C API (15-213)
○ Used for “real”

programming
● Unix Shell API (GPI)

○ Subset of C API
functionality

○ Used for scripting and
interactive use

How Unix processes interact with the outside world

Process

stdin

args

env

ipc

filesystem

network

stdout

stderr

errorcode

ipc

filesystem

network

Only some of these interactions are scriptable in shell

Process

stdin

args

env

ipc

filesystem

network

stdout

stderr

errorcode

ipc

filesystem

network

Command line arguments (args)

● We’ve seen these before
○ echo hello world

● Evaluated for globs and then sent to the
program as argc / argv
○ argc = 3, argv = [“echo”,

“hello”, “world”]

Streams (stdin, stdout, stderr)

● stdin: standard input (0)
○ raw_input(), scanf()

● stdout: standard output (1)
○ print(), printf()

● stderr: standard error (2)
○ print(file=sys.stderr),

fprintf(stderr)

The Environment

A list of key-value pairs
that changes how
programs operate,
behind-the-scenes.

Basically the Illuminati
of Unix shell-scripting.

$ printenv
LANG=en_US.UTF-8
DISPLAY=:0.0
SHLVL=1
LOGNAME=dhashe
LANGUAGE=en_US
ZSH=/home/dhashe/.oh-my-zsh
PAGER=less
LESS=-R
LC_CTYPE=en_US.UTF-8
LSCOLORS=Gxfxcxdxbxegedabagacad
EDITOR=vim

The Environment

A list of key-value pairs
that changes how
programs operate,
behind-the-scenes.

Basically the Illuminati
of Unix shell-scripting.

$ printenv
LANG=en_US.UTF-8
DISPLAY=:0.0
SHLVL=1
LOGNAME=dhashe
LANGUAGE=en_US
ZSH=/home/dhashe/.oh-my-zsh
PAGER=less
LESS=-R
LC_CTYPE=en_US.UTF-8
LSCOLORS=Gxfxcxdxbxegedabagacad
EDITOR=vim

Error Codes

These are used to
programmatically
indicate success (=0)
or some kind of
failure (>0).

#include <stdio.h>
int main(int argc char** argv)
{

 printf(“Hello world!”);
 return 0;
}

$./hello
$ echo $?
0

Error Codes

These are used to
programmatically
indicate success (=0)
or some kind of
failure (>0).

#include <stdio.h>
int main(int argc char** argv)
{

 printf(“Hello world!”);
 return 0;
}

$./hello
$ echo $?
0

Scripting Communication

Input Output Error

Append * [cmd]>>[file] [cmd]2>>[file]

Read/
Overwrite [cmd]<[file] [cmd]>[file] [cmd]2>[file]

*The implied syntax creates a heredoc, or “inline file”

Scripting Streams: Redirection

Scripting Streams: Tricks and Tips

● Redirect one stream into another
○ [cmd] 2>&1

● Ignore a stream
○ [cmd] > /dev/null

Scripting Streams: Unix Pipes

● Pipes connect two processes
● The stdout of the first process is linked to

the stdin of the second process
● Allows for unidirectional communication and

function composition

Pipe Syntax
<cmd> [ARGS] [REDIRECTS] | <cmd> [ARGS] [REDIRECTS]

cat doggos.txt |
sed ‘s/dogs/cats/g’ 2> /dev/null

The pipe character is shift-\ (above the enter key)

Execution Model for Pipes
● All programs in a pipe are run in parallel
● At the pipe boundaries, results are buffered
● Implication: Pipes are fast
● Implication: This doesn’t work:

○ echo “some text” > tmp.txt | cat tmp.txt
○ Cat may see an empty or non-existent tmp.txt

Pipe Example

find . -name "*pdf" | grep -v "written.pdf" | xargs open

Open all PDF files in the subtree rooted at the current
working directory that are not named written.pdf.

Scripting Args: Globs

● We’ve seen this before!
○ Syntax for pattern-matching on filenames

Scripting Args: Xargs

● Xargs turns the stdout of one process into the
args for another

program1 | xargs program2

find . | xargs cat

Streams vs Args

echo : args → streams

xargs : streams → args

Scripting the Environment
● Only useful in specific situations

○ Not required for the lab / exam, just for completeness

VAR1=value VAR2=value <cmd> [args]

EDITOR=emacs git commit

Scripting the Exit Code
● Only useful in specific situations

○ Not required for the lab / exam, just for completeness

$ false # Unix program that always fails

$ echo $?

1

Bash as a General-Purpose
Scripting Language

Bash has all the standard features of a scripting language
● Functions with arguments / return codes
● If-then-else / conditionals
● Looping constructions
● String and array processing

So we shouldn’t we use bash for everything?

Bash has some fundamental issues with correctness
● It can be surprisingly challenging to write shell scripts

that are formally correct in all situations
○ https://mywiki.wooledge.org/BashPitfalls
○ https://dwheeler.com/essays/fixing-unix-linux-filena

mes.html
● Shell is best used interactively or for simple automation

scripts, not for building robust software
○ Cautionary tale: GNU Autotools

https://mywiki.wooledge.org/BashPitfalls
https://dwheeler.com/essays/fixing-unix-linux-filenames.html
https://dwheeler.com/essays/fixing-unix-linux-filenames.html

The Unofficial Bash Strict Mode
● exit script if any command fails
● error if you reference a variable

that has not been defined
● cause a pipe to fail if any of its

components also fail
● makes looping behavior more

intuitive on lists of items

#!/usr/bin/env bash
set -euo pipefail
IFS=$'\n\t'

source: http://redsymbol.net/articles/unofficial-bash-strict-mode/

http://redsymbol.net/articles/unofficial-bash-strict-mode/

The New Shells

fish, the friendly interactive shell

https://fishshell.com/

xonsh, the python shell

https://xon.sh/

oil, your upgrade path from bash

http://www.oilshell.org/

PowerShell, the object-oriented shell

https://en.wikipedia.org/wiki/PowerShell

Good enough for me
● Honestly, I just use Python + the subprocess module

○ More verbose, but easier to be confident about
correctness

● These new shells all have interesting ideas, but you
just can’t rely on them being installed everywhere

● You should still check them out if curious!
● And Bash is still a good choice for basic interactive

use, oneliners, and simple scripting

The Parable of Knuth and
McIlory

In which one CS legend asks two others to solve a problem

John “made quicksort faster” Bentley
Read a file of text, determine
the n most frequently used
words, and print out a sorted
list of those words along with
their frequencies.

story: http://www.leancrew.com/all-this/2011/12/more-shell-less-egg/
photo: https://www.cse.uconn.edu/uncategorized/cse-colloquium-jon-bentley/

http://www.leancrew.com/all-this/2011/12/more-shell-less-egg/
https://www.cse.uconn.edu/uncategorized/cse-colloquium-jon-bentley/

Donald “proves code correct then doesn’t run it” Knuth
Knuth wrote his program in WEB, a
literate programming system of his own
devising that used Pascal as its
programming language. His program used
a clever, purpose-built data structure for
keeping track of the words and frequency
counts; and the article interleaved with it
presented the program lucidly.

story: http://www.leancrew.com/all-this/2011/12/more-shell-less-egg/
photo: https://commons.wikimedia.org/wiki/File:KnuthAtOpenContentAlliance.jpg

http://www.leancrew.com/all-this/2011/12/more-shell-less-egg/
https://commons.wikimedia.org/wiki/File:KnuthAtOpenContentAlliance.jpg

Douglas “literally invented unix pipes” McIlroy

tr -cs A-Za-z '\n' |
tr A-Z a-z |
sort |
uniq -c |
sort -rn |
sed ${1}q

story: http://www.leancrew.com/all-this/2011/12/more-shell-less-egg/
photo: https://mg.wikipedia.org/wiki/Sary:Douglas_McIlroy.jpeg

http://www.leancrew.com/all-this/2011/12/more-shell-less-egg/
https://mg.wikipedia.org/wiki/Sary:Douglas_McIlroy.jpeg

Pipes are really
powerful!

Useful programs for the lab

find
find <directory> -regex ‘<regex>’

find <directory> -name ‘<glob>’

Find is to file names as grep is to file contents. We need find
for deep recursive searches (the * glob is shallow).

Usually globs are interpreted by the shell, and regexes are
interpreted by the program, but find can do both.

xargs
echo arg arg arg | xargs program

xargs program < args.txt

Xargs reads in stdin, then executes its argument with
arguments constructed from stdin.

curl
curl <URL>

Curl is a highly versatile tool for making network requests. If
you call it with a URL, it will return the file or webpage at
that URL.

sed
sed ‘<sed_script>’ <files>

sed ‘s/<original>/<replacement>/g’ <files>

echo <text> | sed ‘<sed_script>’

Sed is the “streaming editor”. It’s a relative of Vim used for
scripting purposes, so it supports some of the same
commands. We use sed for the substitute command.

Tips for Writing Oneliners
● Construct oneliners iteratively!

○ Try the first command, see what it outputs

○ Try the first two commands, see what they output

○ and so on …

● Multiple ways/tools do the same thing

○ Choose what you’re familiar with

● “Google is your friend! Your friends are your friends!”

Lab Pro Tips
Helpful commands for pipelab:

● Curl - pulls content from an url
● Sed - Edits text (stream editing) (input can be supplied through stdin)
● Xargs <command> - Transformed newline separated text in stdin to

arguments for the given command
● Test locally first! Construct iteratively!
● Small secret:

○ ./driver/driver is a bash script
○ Wow! (you can hack it if you want
○ But its probably easier to do the lab…)

