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The three uses of bash

● Basic file browser and program runner
● Data processing language
● General full-fledged scripting language
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How Programs Communicate



Unix is a 2-layered API

● Unix C API
○ Used for “real” 

programming
● Unix Shell API

○ Subset of C API 
functionality

○ Used for scripting 
and interactive use
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How Unix processes interact with the outside world
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Only some of these interactions are scriptable in shell
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Command line arguments (args)

● We’ve seen these before
○ echo hello world

● Evaluated for globs and then sent to the 
program as argc / argv
○ argc = 3, argv = [“echo”, 

“hello”, “world”]



Streams (stdin, stdout, stderr)

● stdin: standard input (0)
○ raw_input(), scanf()

● stdout: standard output (1)
○ print(), printf()

● stderr: standard error (2)
○ print(file=sys.stderr), 

fprintf(stderr)



The Environment

A list of key-value pairs 
that changes how 
programs operate, 
behind-the-scenes.

Basically the Illuminati 
of Unix shell-scripting.

$ printenv
LANG=en_US.UTF-8
DISPLAY=:0.0
SHLVL=1
LOGNAME=dhashe
LANGUAGE=en_US
ZSH=/home/dhashe/.oh-my-zsh
PAGER=less
LESS=-R
LC_CTYPE=en_US.UTF-8
LSCOLORS=Gxfxcxdxbxegedabagacad
EDITOR=vim
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Error Codes

These are used to 
programmatically 
indicate success (=0) 
or some kind of 
failure (>0).

#include <stdio.h>
int main(int argc char** argv)
{

 printf(“Hello world!”);
    return 0;
}

$ ./hello
$ echo $?
0
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Scripting Communication



Input Output Error

Append * [cmd]>>[file] [cmd]2>>[file]

Read/
Overwrite [cmd]<[file] [cmd]>[file] [cmd]2>[file]

*The implied syntax creates a heredoc, or “inline file”

Scripting Streams: Redirection



Scripting Streams: Tricks and Tips

● Redirect one stream into another
○ [cmd] 2>&1

● Ignore a stream
○ [cmd] > /dev/null



Scripting Streams: Unix Pipes

● Pipes connect two processes
● The stdout of the first process is linked to 

the stdin of the second process
● Allows for unidirectional communication and 

function composition



Pipe Syntax
<cmd> [ARGS] [REDIRECTS] | <cmd> [ARGS] [REDIRECTS]

cat doggos.txt |
sed ‘s/dogs/cats/g’ 2> /dev/null

The pipe character is shift-\ (above the enter key)



Execution Model for Pipes
● All programs in a pipe are run in parallel
● At the pipe boundaries, results are buffered
● Implication: Pipes are fast
● Implication: This doesn’t work:

○ echo “some text” > tmp.txt | cat tmp.txt
○ Cat may see an empty or non-existent tmp.txt



Pipe Example 

find . -name "*pdf" | grep -v "written.pdf" | xargs open

Open all PDF files in the subtree rooted at the current 
working directory that are not named written.pdf.



Scripting Args: Globs

● We’ve seen this before!
○ Syntax for pattern-matching on filenames



Scripting Args: Xargs

● Xargs turns the stdout of one process into the 
args for another

program1 | xargs program2

find . | xargs cat



Streams vs Args

echo :  args → streams

xargs :  streams → args



Scripting the Environment
● Only useful in specific situations

○ Not required for the lab / exam, just for completeness

VAR1=value VAR2=value <cmd> [args]

EDITOR=emacs git commit



Scripting the Exit Code
● Only useful in specific situations

○ Not required for the lab / exam, just for completeness

$ false # Unix program that always fails

$ echo $?

1



Bash as a General-Purpose 
Scripting Language



Bash has all the standard features of a scripting language
● Functions with arguments / return codes
● If-then-else / conditionals
● Looping constructions
● String and array processing

So we shouldn’t we use bash for everything?



Bash has some fundamental issues with correctness
● It can be surprisingly challenging to write shell scripts 

that are formally correct in all situations
○ https://mywiki.wooledge.org/BashPitfalls 
○ https://dwheeler.com/essays/fixing-unix-linux-filena

mes.html 
● Shell is best used interactively or for simple automation 

scripts, not for building robust software
○ Cautionary tale: GNU Autotools

https://mywiki.wooledge.org/BashPitfalls
https://dwheeler.com/essays/fixing-unix-linux-filenames.html
https://dwheeler.com/essays/fixing-unix-linux-filenames.html


The Unofficial Bash Strict Mode
● exit script if any command fails
● error if you reference a variable 

that has not been defined
● cause a pipe to fail if any of its 

components also fail
● makes looping behavior more 

intuitive on lists of items

#!/usr/bin/env bash
set -euo pipefail
IFS=$'\n\t'

source: http://redsymbol.net/articles/unofficial-bash-strict-mode/ 

http://redsymbol.net/articles/unofficial-bash-strict-mode/


The New Shells



fish, the friendly interactive shell

https://fishshell.com/


xonsh, the python shell

https://xon.sh/


oil, your upgrade path from bash

http://www.oilshell.org/


PowerShell, the object-oriented shell

https://en.wikipedia.org/wiki/PowerShell


Good enough for me
● Honestly, I just use Python + the subprocess module

○ More verbose, but easier to be confident about 
correctness

● These new shells all have interesting ideas, but you  
just can’t rely on them being installed everywhere

● You should still check them out if curious!
● And Bash is still a good choice for basic interactive 

use, oneliners, and simple scripting



The Parable of Knuth and 
McIlory 

In which one CS legend asks two others to solve a problem



John “made quicksort faster” Bentley
Read a file of text, determine 
the n most frequently used 
words, and print out a sorted 
list of those words along with 
their frequencies.

story: http://www.leancrew.com/all-this/2011/12/more-shell-less-egg/ 
photo: https://www.cse.uconn.edu/uncategorized/cse-colloquium-jon-bentley/ 

http://www.leancrew.com/all-this/2011/12/more-shell-less-egg/
https://www.cse.uconn.edu/uncategorized/cse-colloquium-jon-bentley/


Donald “proves code correct then doesn’t run it” Knuth
Knuth wrote his program in WEB, a 
literate programming system of his own 
devising that used Pascal as its 
programming language. His program used 
a clever, purpose-built data structure for 
keeping track of the words and frequency 
counts; and the article interleaved with it 
presented the program lucidly.

story: http://www.leancrew.com/all-this/2011/12/more-shell-less-egg/ 
photo: https://commons.wikimedia.org/wiki/File:KnuthAtOpenContentAlliance.jpg 

http://www.leancrew.com/all-this/2011/12/more-shell-less-egg/
https://commons.wikimedia.org/wiki/File:KnuthAtOpenContentAlliance.jpg


Douglas “literally invented unix pipes” McIlroy

tr -cs A-Za-z '\n' |
tr A-Z a-z |
sort |
uniq -c |
sort -rn |
sed ${1}q

story: http://www.leancrew.com/all-this/2011/12/more-shell-less-egg/ 
photo: https://mg.wikipedia.org/wiki/Sary:Douglas_McIlroy.jpeg 

http://www.leancrew.com/all-this/2011/12/more-shell-less-egg/
https://mg.wikipedia.org/wiki/Sary:Douglas_McIlroy.jpeg


Pipes are really 
powerful!



Useful programs for the lab



find
find <directory> -regex ‘<regex>’

find <directory> -name ‘<glob>’

Find is to file names as grep is to file contents. We need find 
for deep recursive searches (the * glob is shallow).

Usually globs are interpreted by the shell, and regexes are 
interpreted by the program, but find can do both.



xargs
echo arg arg arg | xargs program

xargs program < args.txt

Xargs reads in stdin, then executes its argument with 
arguments constructed from stdin.



curl
curl <URL>

Curl is a highly versatile tool for making network requests. If 
you call it with a URL, it will return the file or webpage at 
that URL.



sed
sed ‘<sed_script>’ <files>

sed ‘s/<original>/<replacement>/g’ <files>

echo <text> | sed ‘<sed_script>’

Sed is the “streaming editor”. It’s a relative of Vim used for 
scripting purposes, so it supports some of the same 
commands. We use sed for the substitute command.



Tips for Writing Oneliners 
● Construct oneliners iteratively!

○ Try the first command, see what it outputs 

○ Try the first two commands, see what they output

○ and so on … 

● Multiple ways/tools do the same thing

○ Choose what you’re familiar with 

● “Google is your friend! Your friends are your friends!”



Lab Pro Tips 
Helpful commands for pipelab:

● Curl - pulls content from an url
● Sed - Edits text (stream editing) (input can be supplied through stdin)
● Xargs <command> - Transformed newline separated text in stdin to 

arguments for the given command
● Test locally first! Construct iteratively! 
● Small secret:

○ ./driver/driver is a bash script
○ Wow! (you can hack it if you want
○ But its probably easier to do the lab…)


