
Package
Managers

Antioch & David

https://tinyurl.com/2019
gpipackages

Types of Package
Managers

System Specific

● Ensure that applications play nice with each other
● Apt (advanced package tool)

○ sudo apt install
○ apt show
○ apt list
○ sudo apt update
○ apt-cache search
○ sudo apt upgrade

More System Specific

● dnf (Red Hat)
○ Improved version of Yum
○ 15 years younger than apt
○ Simpler and more fully featured than apt

● Guix/nix
○ Similar release time as dnf
○ More feature we’ll talk about later

● Flatpak and Snap
○ Red Hat and Canonical, respectively
○ Aim to fix fragmentation

App Stores

● Apps are standalone
○ Think snap/flatpak

● Duplicate dependencies D:
○ Lots of library code
○ Dynamic delivery

Language Specific

● RubyGems
○ Cryptographic signing

● Pip, pip3
○ Easy virtual environments

● Npm
○ Automated security audits

● Perl Package Manager

Demo: Pip on Andrew

Dependency
Management

Motivation

● Antioch writes an awesome sorting function,
AntiochSort().

Motivation

● Antioch writes an awesome sorting function,
AntiochSort().

● I want to use his sorting function in my own
project, HasheTree(), so I download his code
and copy it into my project repository.

Some problems with this approach

● What if Antioch publishes a better version of
AntiochSort? How do I know to update?

Some problems with this approach

● What if Antioch publishes a better version of
AntiochSort? How do I know to update?

● What if Kimberly creates her own project,
KimberTree, that also depends on AntiochSort?
Now anyone who installs both HasheTree and
KimberTree has duplicate copies of AntiochSort!

Better Approach

● Both HasheTree and KimberTree somehow
declare a dependency on AntiochSort

● Some external system manages dependencies,
and knows to install exactly one copy of
AntiochSort that is available to both.

● This external system periodically checks for
and installs updates to AntiochSort.

Historical Context

● The first approach was taken by early Linux
systems, but it quickly got out of hand.

● Debian Linux developed apt, the advanced
package tool, to try to solve the dependency
management problem.

Problems with apt-like package managers

● Often not easy to install both AntiochSort 1.1
and AntiochSort 1.2 at the same time
○ Maybe KimberTree needs a new feature

from 1.2, but HasheTree relies on
undocumented behavior from 1.1

Problems with apt-like package managers

● What if the power goes out during an update?
○ System can be left in a partially-updated

state that may not be recoverable

Solution: Purely Functional Package
Managers with Atomic Updates

Purely Functional Package Management

● All packages declare their exact set of
dependencies.

● If anything changes, then the package must be
rebuilt.

● A package is just a function of its source code
and dependencies*.

*and package definition, which defines how to build the package and which options to enable

Implementation Strategy

● /gnu/store holds all packages, current and old
● /run/<timestamp> holds the set of packages

that were installed at <timestamp>
○ these are symlinks -> /gnu/store

● /run/current holds the set of packages currently
installed
○ this is a symlink to /run/<timestamp>

Package managers vs containers

A container is a single binary blob containing all of the dependencies of a certain program.

Containers also ignore most of the theoretical issues with package managers. As a result,
they are unbelievably ugly in theory.

However, they are very common because writing container definitions is significantly easier
than writing package definitions, and because using containers is really nice in practice.

I recommend using containers at internships and jobs, but do be aware that they have
significant problems.

https://guix.gnu.org/blog/2018/a-packaging-tutorial-for-guix/

Security

Reflections on Trusting Trust

Theoretical attack discovered by
Ken Thompson: backdoor a
compiler so that it discovers
when it is compiling itself and
reinserts the backdoor.

Implications: Bootstrapping & Auditing

● Carefully minimize the amount of binary code
necessary to rebuild your package distribution
from source.

● Manually audit any remaining binary code to
check for backdoors.

https://bootstrappable.org/

Binary Package Distributions

● It is more efficient to compile code once on a
central server and then distribute the resulting
binary packages, then it is to distribute source
packages that must be compiled on every
machine.

● But what if someone tampers with your server
or network connection?

Implications: Reproducible Builds

● If a package is bit-for-bit identical every time
we compile it, then we can audit our servers
for tampering by building locally and
comparing.

● This is trickier than it sounds! Compilation is
not always deterministic (especially if parallel)
and many tools insert build timestamps.

https://reproducible-builds.org/

Security Vulnerabilities in Purely
Functional Package Managers

● Almost all packages depend on a C standard
library (usually glibc).

● Whenever the inputs of a package change, we
must rebuild the package.

● So if a vulnerability is discovered in glibc, we
have to rebuild everything!
○ This could takes days

Implications: Grafting

● Poke a hole in the purely functional abstraction
● We know that a security patch won’t change

the interface of glibc, so we tell the package
manager that the old and new versions of glibc
should be considered equivalent.

● We only have to rebuild glibc and then we
substitute it into all other packages.

https://guix.gnu.org/manual/en/html_n
ode/Security-Updates.html

left-pad

● A 17-line npm (javascript) package to pad
strings to the left with whitespace

● A significant fraction of the entire npm
repository depended on left-pad

● It was removed by its author, breaking many
packages

Implications: Maintainer-controlled vs
Author-controlled packages

Some package managers give software program authors control
over packaging their own programs. This is most common with
language-specific package managers, like pip for Python and npm
for Node.js.

● When authors control their own packages, they are typically
more up-to-date

● When maintainers control the packages, they are typically
more stable

