
Announcements

● Deadline to submit all labs by Thursday November 29 by 3:00pm
○ Will not be granting extensions past then...hard deadline!

● Final is Thursday December 06 3:00-4:00pm.
● Programming Languages Extratation! 

○ Same deal, Gates 5222 1pm-2pm





Makefiles



Problem: automating builds

Most software you write at CMU is only a few files and only needs to work 
on the Andrew machines. But what about when:

● The software is dozens or hundreds or thousands of files
● The software depends on third-party libraries or frameworks
● The software needs to run on multiple operating systems or servers



SubProblem: The software is very big

It’s not feasible to type all of the commands by hand. You could write a bash 
script to compile it, but… 

● … you don’t want to recompile every file every time
● … Bash is hard
● … do we really need arbitrary loops and conditionals to compile code?



SubProblem: Third-party dependencies

● Where are they installed?
● Can you assume that they’re installed?



SubProblem: The software needs to be portable

Rather than just the Andrew machines (Ubuntu Linux), you’d like to be able 
to compile your code on your laptop (???), or AWS (Amazon Linux), or Solaris 
for some reason, but … 

● … all of the paths are different! Is it /usr or /usr/bin or /opt or what?
● … Bash isn’t even installed??? 
● … writing portable code for all Unixes is hard!!!



Demo



Makefile syntax

SHELL = /usr/bin/env bash

target: prerequisite1 rerequisite2
<tab> recipe
<tab> recipe continued

The tab character is important!



Makefile Semantics

SHELL = /usr/bin/env bash

target: prerequisites
<tab> recipe

Interpreter for recipes

file created by recipe

files required by recipe

(bash) script



Makefile Semantics

Makefiles essentially describe a Directed Acyclic Graph (DAG) of 
dependencies between how to create targets from prerequisites using 
recipes.

Make inspects the modification time of each file and rebuilds a target if its 
modification time is earlier than that of one of its prerequisites.



The .PHONY Tag

Make is fundamentally concerned with creating files. If you just want to run 
a recipe always regardless of whether the target file exists, you need to 
create a .PHONY rule.

The “make clean” rule should always be .PHONY



Automatic Variables

$@ Target file name

$< First prerequisite name

$^ All prerequisite names



Implicit Rules

For convenience, Make includes a lot of pre-defined rules based on file 
extension. Example:

%.o: %.c
gcc $< -o $@

Compiles all C files



Demo



The make command

“make <target>” will run the recipes for <target> and all its dependencies in 
an efficient way. “make” will default to the first <target> listed in Makefile.

-f <file>: use the following file instead of Makefile
-j <job_num>: run Make in parallel using this many cores



Different Interpreters

Make is almost always used with either bash or sh. It’s technically possible 
to write recipes using any interpreter using the SHELL variable (we set it to 
bash for consistency).



Alternative Build Systems

● Scons
○ Written in Python. Fairly slow. Uses cached file hashes instead of 

modification time.
● Ninja

○ Very fast. Basically just the DAG part of Make without any bells 
and whistles.



Build Configuration Systems

These solve the problem of compatibility across Unixes and machines.

● GNU Autotools
● CMake



Package Managers

These solve the problem of third-party dependencies. They also typically 
make use of the build system and build configuration systems to simplify 
package creation.


