
How Git Works

• Contains all of git's "state"
• File contents

• Staged files

• Commit structure

• Configuration options

• Current branch

• Branches/tags

• etc.

The .git folder

• Contains all of git's "state"

The .git folder

Actual repository contents

Staged Files

Current branch

Branches

• Repository contents are
stored as objects

• Object types:
• blob

• tree

• commit

• tag

objects directory

• Objects are referred to by
hash

• Print objects with:
git cat-file -p [hash]

• Print tree objects with:
git ls-tree [hash]

• Git commit hash with:
git rev-parse [branch name]

objects directory

• A hash function maps data of
arbitrary size to a "hash" of
fixed size

• Ideally, similar inputs are
mapped to very different
outputs

• Git uses SHA-1
• 160 bits (40 characters in hex)

• Objects folder maps hashes to
data

Hash functions

• What if two files hash to the
same value?
• There are more than 10^48

unique hashes
• But there are an infinite

number of files…

• SHA-1 is a cryptographic
hash meaning no one knows
how to reverse it
• But Google did generate a

collision

Hash collisions

• Each commit points to a
tree object and a list of
parent commits

• If two subtrees or blobs are
shared by a commit, they
only need to be defined
once

• When diffing two commits,
git can skip a subtree if the
hashes match

Using hashes to save space

• Large files create a new blob each time they are
modified

• This uses a lot of space

• Git can compress "loose" objects into a packfile that
removes the redundancy

• Run git gc to create a packfile

Packfiles

• Git compares files line by
line

• Attempts to find the
minimum edit distance
between the files

• Uses the Myers diff
algorithm

• Provides a context for
changed lines

git diff

• How does git merge two commits?

git merge

commit1

src

index.html

about.html
commit2

src

index.html

resources.html

merged

src

?????

• How does git merge two commits?

• We need the least common ancestor

git merge

commit1

src

index.html

about.html

commit2

src

index.html

resources.html

merged

src

?????

ancestor

src

index.html

commit

src

index.html

resources.html

Fast-forward merge

3-way merge

• Git diffs both files against the
least common ancestor

• Regions that are the same
across all three are kept

• If regions are the same in 2 of
the three, the version not in
the ancestor is used

• If all three differ, there is a
conflict

Merging files

ancestor

A

C

D

B

c1

A

C

D

B

c2

A

C

D

B

merged

A

C

D

B

• Sometimes there are multiple
least common ancestors!

• In this case, git creates a
"virtual ancestor" by merging
the ancestors first

• But they might also have
multiple ancestors…

Recursive Merge

More Git Tricks

• Lets you move one timeline onto another

• Useful for reordering commits

Rebasing

• Lets you move one timeline onto another

• Useful for reordering commits

Rebasing

git checkout experiment
git rebase master

• Triggered with git rebase –i

• Lets you choose which commits to include

Interactive Rebase

#

Commands:

p, pick = use commit

r, reword = use commit, but edit the commit message

e, edit = use commit, but stop for amending

s, squash = use commit, but meld into previous commit

f, fixup = like "squash", but discard this commit's log message

x, exec = run command (the rest of the line) using shell

#

These lines can be re-ordered; they are executed from top to bottom.

#

If you remove a line here THAT COMMIT WILL BE LOST.

#

However, if you remove everything, the rebase will be aborted.

#

Note that empty commits are commented out

• Combine multiple commits into one

• Accessed from interactive rebase

Squashing Commits

pick f7f3f6d changed my name a bit

squash 310154e updated README formatting and added blame

squash a5f4a0d added cat-file

• Tells git to ignore certain files

• Can be placed in any subdirectory
• Matching is relative to the directory

• Uses glob patterns to exclude files

• .git/info/exclude can be used for exclusions that
are stored locally

.gitignore

• Lets you apply an operation to all commits

• This changes the commit hash of every commit!

• Useful for removing an accidently committed file

filter-branch

git filter-branch --tree-filter 'rm -f passwords.txt' HEAD

</presentation>

