® How Git Works

The .git folder

« Contains all of git's "state”
 File contents
« Staged files
e Commit structure
« Configuration options
« Current branch
* Branches/tags
 etc.

« Contains all of git's "state”

L]

(]

(¥

L]

[F]

hooks

info Actual repository contents
legs

ohjects

refe Branches

o | COMMIT_EDITMSG
a4 | config

o | description

L] HEAD

& | index Staged Files

Current branch

objects directory

» Repository contents are
stored as objects

[] ObJ t typ ® include "parse-gptiocns_h”
eC eS. - - Scott
deFine SEEM (lu<<@)
e blob
e tree
e commit
bleb |5bld3 | README
* tag Cparent | aisse -
blob

ry cormit messog
and it is re 1].1. n--ﬂ.L-- 1.

objects directory

* Objects are referred to by
hash

Print objects with:
git cat-file -p [hash]

Print tree objects with:
git ls-tree [hash]

fndef REVI
efine FE?'S:GR_"

include "parse-opticns.h”

efine UNINTERESTING
define TREESAME (lu<<Z)

#Hi
#d
#
#Fdefine E[
3#d
£

m

e Git commit hash with: blob_| 5b1d3 | README
e lib
git rev-parse [branch name] parent | atgge m—-

bob
ot o .

and Lt is re lL" rv-lL L

A hash function maps data of
arbitrary size to a "hash” of
fixed size

|deally, similar inputs are
mapped to very different
outputs

Git uses SHA-1
« 160 bits (40 characters in hex)

Objects folder maps hashes to
data

Message or data block M
{variable length)

. What if two files hash to the w4 6

same value?

* There are more than 10"48
unique hashes

 But there are an infinite

number of files... SHAttered SHAttered

The first concrete collision attack against SHA-1 The first concrete collision attack against SHA-1
https:/shattered.io https://shattered.io

* SHA-1 is a cryptographic
hash meaning no one knows
how to reverse it

- But Google did generate a 38762ct71f55934b34d179ae6ad4c80cadccbb7f0a 1.pdf

O o 38762ct71f55934b34d179ae6a4c80cadccbb7t0a 2.pdf
collision C

2bb787a73e37352192383abe7e2902936d1059ad9f1babdaaa9c1e58ee6970d0 1.pdf
d4488775d29bdef7993367d541064dbdda50d383f89f0aal3a6ff2e0894basff 2.pdf

« Each commit points to a
tree object and a list of
parent commits

* |f two subtrees or blobs are
shared by a commit, they
only need to be defined
once

* When diffing two commits,
git can skip a subtree if the
hashes match

Large files create a new blob each time they are
modified

This uses a lot of space

Git can compress “loose” objects into a packfile that
removes the redundancy

Run git gc to create a packfile

git diff

ELEPHANT

» Git compares files line by
line
« Attempts to find the

minimum edit distance
between the files

* Uses the Myers diff s |\

A Tasult = ch: char oparator[J(4int k) const;
algorithm oy s
& 48
g return result; 7 =

243 apstring operator + (const apstring & stx, cha EONSE, RDS LELUE e b cans L RE T

* Provides a context for S N e—

apstring result(str);
result 4= ch; 55 private:

changed lines s

char * myCstring;
59);

RELEVANT

E
3
3
2
2
1
2
3
4
5

- Z2 » < mr m =X
0~ U R W N =S O
< Y I S S B N R el L
o R W N =S NN N
o W N N W W R BT
(0, T S UL I UV VU S S IV R
[T S Y I N T T < (I = R,
AW AR LU OO NN 2

Min Edit Distance: 3

252 apstring apstring::substr(int pos, int len) cor

253 //descxdption: extract and return the substxd

254 /7 at indax pos

255 //precondition: this string represents c0, cl,
i7 0 o 0o < 0o gn - <1

61 // The following free (mon-menter) functions d
u I

63 // 1/0 functions

&

git merge

* How does git merge two commits?

commitl nerged
src <rc
—— index.html I_ 23327
about.html commit2
src
—— index.html

—— presources.html

git merge

* How does git merge two commits?
* We need the least common ancestor

ancestor commitl merged
src src src
I— index.html — index.html I— ????
= about.html
commit commit2
src src
I index.html = index.html

= presources.html - pesources.html

Before Merging After a Fast-Forward Merge

\

Before Merging After a 3-way Merge

Git diffs both files against the
least common ancestor

Regions that are the same
across all three are kept

If regions are the same in 2 of
the three, the version not in
the ancestor is used

If all three differ, there is a
conflict

cl

ancestor

c2

* Sometimes there are multiple
least common ancestors!

* |In this case, git creates a
“virtual ancestor” by merging
the ancestors first

« But they might also have
multiple ancestors...

® More Git Tricks

Rebasing

» Lets you move one timeline onto another
» Useful for reordering commits

experiment

master

Rebasing

» Lets you move one timeline onto another
» Useful for reordering commits

git experiment

git master

master

Interactive Rebase

» Triggered with
» Lets you choose which commits to include

Commands :
pick = use commit
reword = use commit, but edit the commit message
edit = use commit, but stop for amending
squash = use commit, but meld into previous commit
fixup = like "squash", but discard this commit's log message
exec = run command (the rest of the line) using shell

These lines can be re-ordered; they are executed from top to bottom.
If you remove a line here THAT COMMIT WILL BE LOST.

However, if you remove everything, the rebase will be aborted.

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

Note that empty commits are commented out

Squashing Commits

 Combine multiple commits into one
» Accessed from interactive rebase

pick f7f£3f6d changed my name a bit

squash 310154e updated README formatting and added blame
squash ab5f4al0d added cat-file

Tells git to ignore certain files

Can be placed in any subdirectory
* Matching is relative to the directory

Uses glob patterns to exclude files

.git/info/exclude can be used for exclusions that
are stored locally

filter-branch

* Lets you apply an operation to all commits
* This changes the commit hash of every commit!
» Useful for removing an accidently committed file

git filter-branch --tree-filter 'rm -f passwords.txt' HEAD

® </presentation>

