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Graphical models

Efficient way to represent and reason about joint distributions

Graphs in which nodes represent random variables and edges
correspond to dependency relationships

Two major types: Directed and undirected
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« Bayesian networks « Markov random fields

 Hidden Markov models



Undirected — Markov Random
Fields

« Popular in statistical physics, computer vision, sensor networks,
social networks, protein-protein interaction networks etc.

« Example — Image Denoising x; — value at pixel i

y; — observed noisy value
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Factorization

 Joint distribution factorizes according to the graph

plz) = %Cl;lcb‘c(xc) CC r ;2"\:)

C is the set of maximal cliques in the graph

T3

. . . . . T4
Yo (xc) is a potential function on the clique z¢ /

L Arbitrary positive function Clique, x. = {x1,X,}

Maximal clique

normalization factor
Xc = {XZ,X3,X4}

Z = Z H Ve (xc)

r CeC
typically NP-hard to compute



MRF Example

Y3 Y4
4
U1 y2, P(x,y) x !II(;rljxg}@(xl,xg)llf(;rg,;}:;;)‘lf(;rg,:1?4)Hq’(ﬁijyi]‘
i=1
xs3 Mﬂﬂl

I MQ



Protein interaction datasets



Yeast two-hybrid assay

Pairs of proteins to be tested
for interaction are expressed
as fusion proteins (‘hybrids')
In yeast:

One protein is fused to a
DNA-binding domain, the
other to a transcriptional
activator domain.

Any interaction between them
Is detected by the formation
of a functional transcription
factor.

Reporter
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Mass spectrometry of purified
complexes

 Individual proteins are tagged and used as 'hooks' to
biochemically purify whole protein complexes. These
are then separated and their components identified

by mass spectrometry.
« Can also be used to identify virus-host interactions



Interaction databases

STRING: string-db.org/
BioGrid: thebiogrid.org/
HPRD: www.hprd.org/

KEGG: www.genome.jp/kegg/



Data integration

Protein interactions

Gene expression




Yeast mating pathway

Physical data:
- Yeast binding data
- DIP database (PPI)
Functional data:
- Rosetta compendium
knockout data
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A mechanistic
model of gene
regulation

A graph depicting
physical interactions and
functional annotations.
Nodes: Proteins

Edges: PPI or Protein-
DNA

Signs on the edges:
Activation or repression

protein-protein
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Inferring the mechanistic model
from observed data

Key question: How do we construct the model from known mechanisms
and constraints from observed data?

 Decompose data into pairwise items.
« Construct potential functions specifying constraints of each item.
« Combine potential functions by multiplication.



Requirements to explain knock-out data



Requirements to explain knock-out data

 There is at least one connecting

path.
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Requirements to explain knock-out data

 There is at least one connecting

path.

Edge directions along the path are
consistent with the knock-out effect. ®



Requirements to explain knock-out data

There is at least one connecting

path.

Edge directions along the path are

consistent with the knock-out effect.

The last edge on each path is a /\
protein-DNA edge. ?



Requirements to explain knock-out data

There is at least one connecting
path.

Edge directions along the path are

consistent with the knock-out effect. + \
The last edge on each path is a /
protein-DNA edge.

The aggregate sign along the path is -
consistent with the knock-out effect.

up



Requirements to explain knock-out data

There is at least one connecting
path.

Edge directions along the path are

consistent with the knock-out effect. + \
The last edge on each path is a /
protein-DNA edge. down

The aggregate sign along the path is -
consistent with the knock-out effect.

Intermediate genes along the path O
either have knock-out effects on or up
were not tested.

O



Requirements to explain knock-out data

There is at least one connecting
path.

Edge directions along the path are
consistent with the knock-out effect.

The last edge on each path is a
protein-DNA edge.

The aggregate sign along the path is
consistent with the knock-out effect.

Intermediate genes along the path
either have knock-out effects or
were not tested.

The path length is upper bounded.

down

up

links



Factor graph formalism

 Factor graph is an undirected bipartite graph where edges represent
dependency

» The joint likelihood is written using a set of potential functions, one
for each edge in the graph and others for paths in the graph

* The key challenge is to determine the set of potential functions and
how to encode them



Assoclations with binding data

Assume we have p-value Yy for the f
event x (binding of f; to g,). ®
How can we use this value in a
probabilistic setting?

Possible solution: use likelihood ratio:

pCy %)
pCy [~ x)

X — the event of f binding to g

y — observed p-value



Assoclations with binding data

« Given a possible protein-DNA fy

Interaction e;, the potential function ®
dei(XeinYei) IS related to the direct
evidence about this interaction:

_ PO [ X =1) ® o
) [p(yeilxei=0)]

« And similarly for protein interaction.

i (X Ve



Determining the confidence in the
observed data

In order to determine the probabilistic term in the potential function
we use an appropriate error model.

As a crude approximation, p(Y,; | X.;) can be obtained from the
binding p-value

First, set p( measurement | interaction does not exist) = p-value

The other side p( measurement | interaction exists)As set to a fixed
value.

The potential term for the protein interaction e is defined
analogously.

D (X5 Vi) =1 p}
P



Associations with knock-out
expression data

« Given knockout expression data, we g, g,
need to determine whether or not i T ™
the knockout of gene i influenced ;”d;,s,,Yi“--.,_u [ o,dys
gene %! a f
- The interaction effectis associated ', %‘S 4
with the observed data o by: BY
83 84
" p(ok,i,j |ki,j :1)
¢IJ( i,j’ok,i,j):[ ]
p(ok,i,j | ki,j =0)

« k can be explained by cascades of
molecular interactions, i.e., paths in
the physical model.



Knockout (cont.)

Explanation of a KO can be expressed as a logic
clause of variables along the paths connecting a
knock-out pair:

- the knock-out effect (y, ) N \
- edge presences (E,), /

- edge directions (D, ), and sign (S,),

- and path selections (%, ). -

O

The potential term can also incorporate the ®
situations of multiple paths and uncertainties of up
explanation.



Inference

Potential functions are combined by multiplication.

Goal: find the optimal configuration of the variables.

This is done using a maximum likelihood approach using a variant of
belief propagation.

Using a graph known as a factor graph, the max-product algorithm is
applied to obtain a MAP configuration.

If the network is small, we can apply the max-product recursively to
obtain all MAP configurations.



Datasets

46 genes including 2 transcription factors (STE12 and MCM1).

Binding p-value threshold 0.001 result in 34 protein-DNA edges (Lee
et al., 2003).

30 protein-protein edges (DIP).
164 knock-out pairs from 10 experiments (Hughes et al., 2000).
Maximal path length set to 5.



Results: yeast mating pathway

129 knock-out pairs are connected via valid paths.

8 MAP configurations.

129 knock-out pairs are explained by all MAP models.
106 knock-out pairs are explained by non-trivial inference.

2 knock-out pairs whose explanatory paths are not constrained by
other knock-out pairs



Robustness of the model
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Common
features for
all MAP

models
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Variant features
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Resolving ambiguities in the model

« Resolving ambiguities in the model requires new experiments
 There are many possible experiments (knockout of every gene)
 How can we chose which one to perform?



Active learning

« Assume we want to teach a computer to distinguish between cats and dogs ...

Can you give me some outdoor dog and indoor cat pictures?

Sure!



Active Learning for designing
experiments

» On the basis of current model, M, the learner
— predicts the answers O, to various possible queries g,

— computes which query’s answer will be most beneficial in improving model quality
(or minimizing the loss)

— Perform the experiment, updates model with the answer

min{Loss(q,)) = min E[Loss(M )]



Table 2

Table 2

Top-ranking knock-out experiments proposed for model discrimination

Gene Function Score Downstream genes Rank Model
HHF1 Histone 52.1429 74 1 2
SOK2* Regulator for meiosis and PKA pathway 45.0279 64 2 1
CKA1 Protein kinase of cell cycle 45.0075 64 3 5
A2 Mating response 40.9023 58 4 4
YAP6* Stress response regulator 35.1652 50 5 1, 3
NRG1 Regulator of glucose dependent genes 31.6501 45 6 3
FKH1 Regulator of cell cycle 29.1194 41 7 2
FKHZ2 Regulator of cell cycle 26:.7131 38 8 &
SLTZ2 Protein kinase of cell wall integrity pathway 23.4727 31 9 8
MSN4* Regulator of stress response 21.8224 31 10 1

HAP4* Regulator of cellular respiration 6.3310 2] 34 1




Targeting specific network
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Using the ranked list

How should we use the list in the previous table?

Performing all the experiments at once ignores the dependency
between these experiments

Its much better to carry them one at a time
However, that may cause other problems that are less desirable.



(b)

Experiments carried out
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