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Graphical  models 

• Efficient way to represent and reason about joint distributions 

• Graphs in which nodes represent random variables and edges 

correspond to dependency relationships  

• Two major types: Directed and undirected 
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• Bayesian networks 

• Hidden Markov models 
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• Markov random fields 



Undirected – Markov Random 

Fields 
• Popular in statistical physics, computer vision, sensor networks, 

social networks, protein-protein interaction networks etc. 

• Example – Image Denoising xi – value at pixel i  

    yi – observed noisy value 



Factorization 

• Joint distribution factorizes according to the graph 

 

 

 

 

 

 

 

 

 

   typically NP-hard to compute 

Clique, xC = {x1,x2} 

Maximal clique 
xC = {x2,x3,x4} 

Arbitrary positive function 



MRF Example 



Protein interaction datasets 



Yeast two-hybrid assay 

• Pairs of proteins to be tested 

for interaction are expressed 

as fusion proteins ('hybrids') 

in yeast:  

• One protein is fused to a 

DNA-binding domain, the 

other to a transcriptional 

activator domain.  

• Any interaction between them 

is detected by the formation 

of a functional transcription 

factor.  



Yeast 2 Hybrid Technique 



Mass spectrometry of purified 

complexes 
• Individual proteins are tagged and used as 'hooks' to 

biochemically purify whole protein complexes. These 
are then separated and their components identified 
by mass spectrometry. 

• Can also be used to identify virus-host interactions  



Interaction databases 

• STRING: string-db.org/ 

• BioGrid: thebiogrid.org/ 

• HPRD: www.hprd.org/ 

• KEGG: www.genome.jp/kegg/ 



Data integration 

Gene expression 

Protein interactions 

Protein-DNA binding 



• Physical data: 

          - Yeast binding data  

          - DIP database  (PPI) 

• Functional data: 

          - Rosetta compendium  

            knockout data 

Yeast mating pathway 



• A graph depicting 

physical interactions and 

functional annotations. 

• Nodes: Proteins 

• Edges: PPI or Protein- 

DNA 

• Signs on the edges: 

Activation or repression 

A mechanistic 

model of gene 

regulation 



Inferring the mechanistic model 

from observed data 
Key question: How do we construct the model from known mechanisms 

and constraints from observed data? 

 

• Decompose data into pairwise items. 

• Construct potential functions specifying constraints of each item. 

• Combine potential functions by multiplication. 

 

 



Requirements to explain knock-out data 



Requirements to explain knock-out data 

• There is at least one connecting 

path. 

 



Requirements to explain knock-out data 

• There is at least one connecting 

path. 

• Edge directions along the path are 

consistent with the knock-out effect. 
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path. 

• Edge directions along the path are 
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Requirements to explain knock-out data 

• There is at least one connecting 

path. 

• Edge directions along the path are 

consistent with the knock-out effect. 
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Requirements to explain knock-out data 

• There is at least one connecting 

path. 

• Edge directions along the path are 

consistent with the knock-out effect. 

• The last edge on each path is a 

protein-DNA edge. 

• The aggregate sign along the path is 

consistent with the knock-out effect. 

• Intermediate genes along the path 

either have knock-out effects on or 

were not tested. 
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Requirements to explain knock-out data 

• There is at least one connecting 

path. 

• Edge directions along the path are 

consistent with the knock-out effect. 

• The last edge on each path is a 

protein-DNA edge. 

• The aggregate sign along the path is 

consistent with the knock-out effect. 

• Intermediate genes along the path 

either have knock-out effects or 

were not tested. 

• The path length is upper bounded. 
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Factor graph formalism 

• Factor graph is an undirected bipartite graph where edges represent 

dependency 

• The joint likelihood is written using a set of potential functions, one 

for each edge in the graph and others for paths in the graph 

• The key challenge is to determine the set of potential functions and 

how to encode them 



Associations with binding data 

• Assume we have p-value  y for the 

event x (binding of f1 to g1). 

• How can we use this value in a 

probabilistic setting?  

• Possible solution: use likelihood ratio: 

f1 

g1 
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x – the event of f binding to g 

y – observed p-value 



Associations with binding data 

• Given a possible protein-DNA  

interaction ei, the potential function 

ei(xei;yei) is related to the direct 

evidence about this interaction:  

 

 

 

 

• And similarly for protein interaction. 
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Determining the confidence in the 

observed data 
• In order to determine the probabilistic term in the potential function 

we use an appropriate error model. 

• As a crude approximation, p(yei | xei) can be obtained from the 

binding p-value      

• First, set p( measurement | interaction does not exist) = p-value                

• The other side p( measurement | interaction exists) is set to a fixed 

value.  

• The potential term for the protein interaction case is defined 

analogously. 
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Associations with knock-out 

expression data 
• Given knockout expression data, we 

need to determine whether or not 

the knockout of gene i influenced  

gene j   

• The interaction effect is associated 

with the observed data o by: 

 

 

 

• k can be explained by cascades of 

molecular interactions, i.e., paths in 

the physical model. 
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Knockout (cont.) 
• Explanation of a KO can be expressed as a logic 

clause of variables along the paths connecting a 

knock-out pair:   

            - the knock-out effect (k )  

            - edge presences (Ek), 

            - edge directions (Dk), and sign (Sk), 

            - and path selections (k). 

 

• The potential term can also incorporate the 

situations of multiple paths and uncertainties of 

explanation. 
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Inference 

• Potential functions are combined by multiplication. 

• Goal: find the optimal configuration of the variables.  

• This is done using a maximum likelihood approach using a variant of 

belief propagation.  

• Using a graph known as a factor graph, the max-product algorithm is 

applied to obtain a MAP configuration. 

• If the network is small, we can apply the max-product recursively to 

obtain all MAP configurations. 

 



Datasets 

• 46 genes including 2 transcription factors (STE12 and MCM1). 

• Binding p-value threshold 0.001 result in 34 protein-DNA edges (Lee 

et al., 2003). 

• 30 protein-protein edges (DIP). 

• 164 knock-out pairs from 10 experiments (Hughes et al., 2000). 

• Maximal path length set to 5. 

 



Results: yeast mating pathway 

• 129 knock-out pairs are connected via valid paths. 

• 8 MAP configurations. 

• 129 knock-out pairs are explained by all MAP models. 

• 106 knock-out pairs are explained by non-trivial inference. 

• 2 knock-out pairs whose explanatory paths are not constrained by 

other knock-out pairs 



Robustness of the model 

• Are prediction outcomes 

sensitive to parameter 

settings? 

 

• Robustness tests on location 

and knock-out p-value cutoffs, 

potential values and path 

length 

 



Common 

features for 

all MAP 

models 



Variant features 



Variant features 



Resolving ambiguities in the model 

• Resolving ambiguities in the model requires new experiments 

• There are many possible experiments (knockout of every gene) 

• How can we chose which one to perform? 



Active learning 

• Assume we want to teach a computer to distinguish between cats and dogs … 

Can you give me some outdoor dog and indoor cat pictures? 

Sure! 



Active Learning for designing 

experiments 
• On the basis of current model, M, the learner 

– predicts the answers Ox to various possible queries qx 

– computes which query’s answer will be most beneficial in improving model quality 

(or minimizing the loss) 

– Perform the experiment, updates model with the answer 
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Rank order experiments 



Targeting specific network 



Using the ranked list 

• How should we use the list in the previous table? 

• Performing all the experiments at once ignores the dependency 

between these experiments 

• Its much better to carry them one at a time 

• However, that may cause other problems that are less desirable. 

 



Experiments carried out  


