

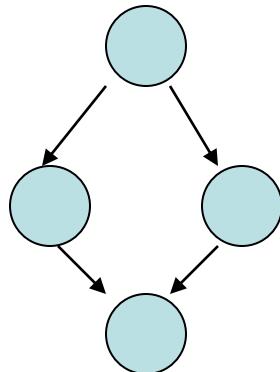
02-710

Computational Genomics

Physical networks & active
learning

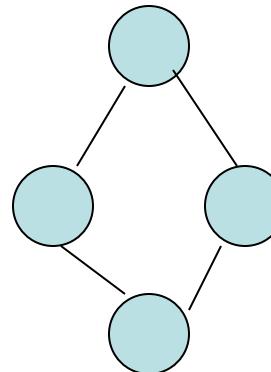
Graphical models

- Efficient way to represent and reason about *joint distributions*
- Graphs in which nodes represent random variables and edges correspond to dependency relationships
- Two major types: Directed and undirected



$$\prod_i p[x_i | Pa(x_i)]$$

- Bayesian networks
- Hidden Markov models

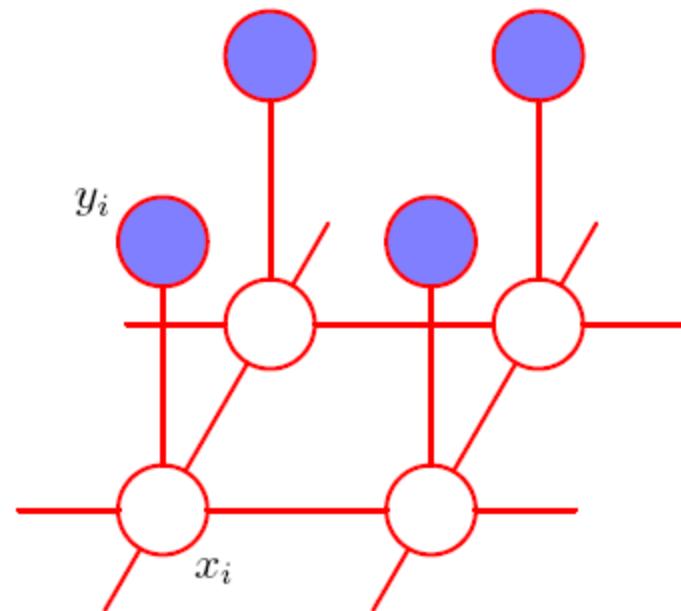


$$\prod_{i,j} \psi_{i,j}(x_i, x_j)$$

- Markov random fields

Undirected – Markov Random Fields

- Popular in statistical physics, computer vision, sensor networks, social networks, protein-protein interaction networks etc.
- Example – Image Denoising x_i – value at pixel i
 y_i – observed noisy value



Factorization

- Joint distribution factorizes according to the graph

$$p(x) = \frac{1}{Z} \prod_{C \in \mathcal{C}} \psi_C(x_C)$$

\mathcal{C} is the set of maximal cliques in the graph

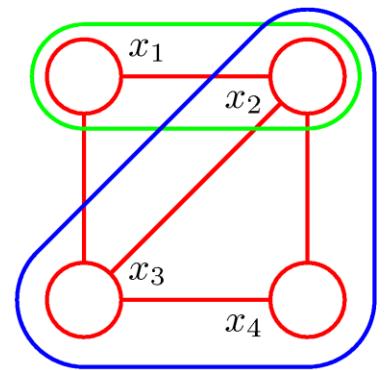
$\psi_C(x_C)$ is a potential function on the clique x_C

↳ Arbitrary positive function

normalization factor

$$Z = \sum_x \prod_{C \in \mathcal{C}} \psi_C(x_C)$$

typically NP-hard to compute



Clique, $x_C = \{x_1, x_2\}$

Maximal clique
 $x_C = \{x_2, x_3, x_4\}$

MRF Example

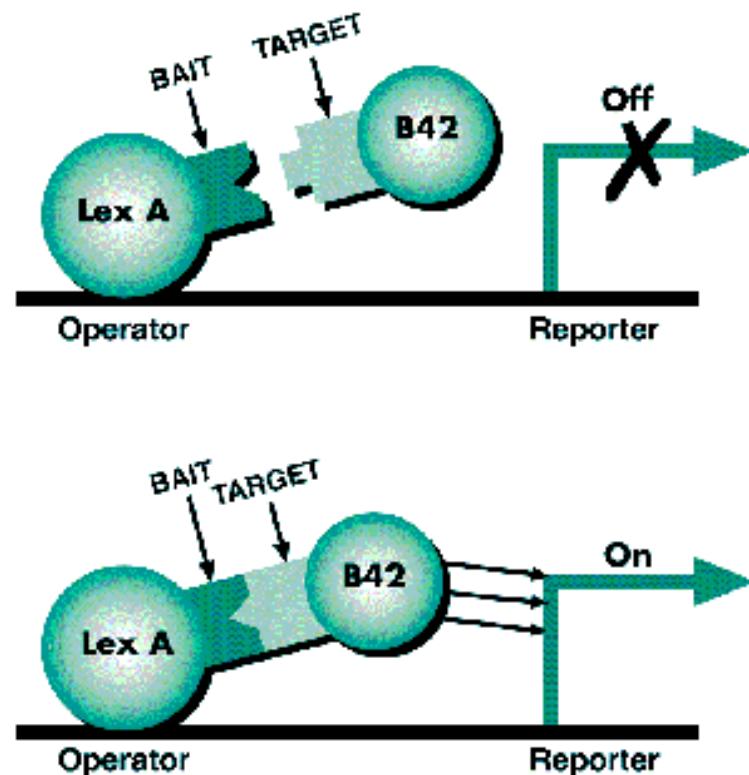


$$P(x, y) \propto \Psi(x_1, x_2)\Psi(x_1, x_3)\Psi(x_2, x_4)\Psi(x_3, x_4) \prod_{i=1}^4 \Psi(x_i, y_i)$$

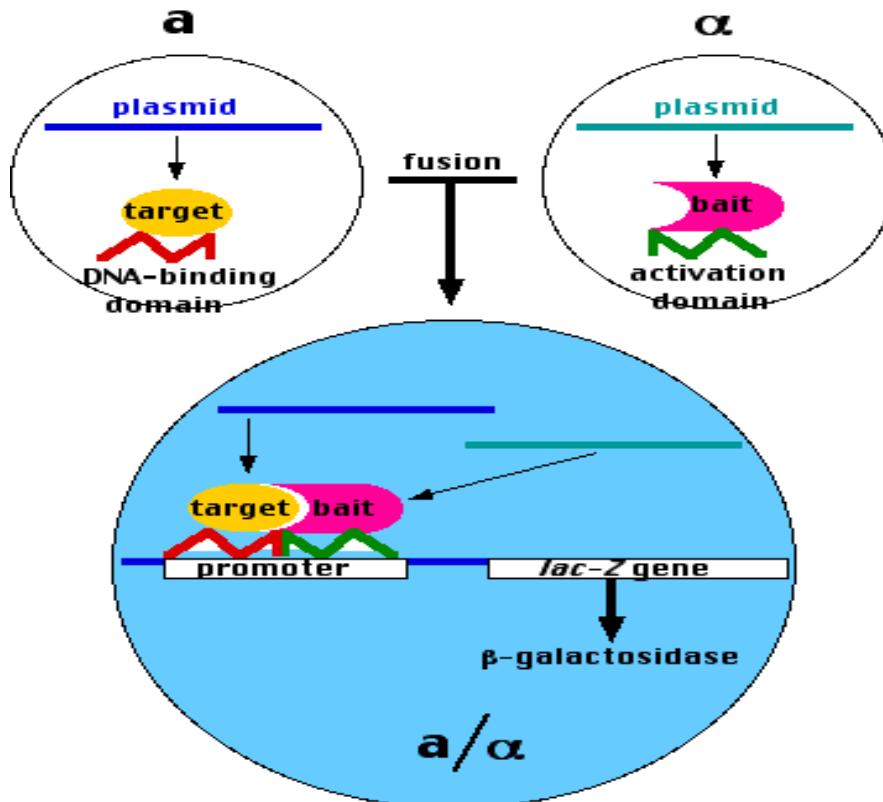
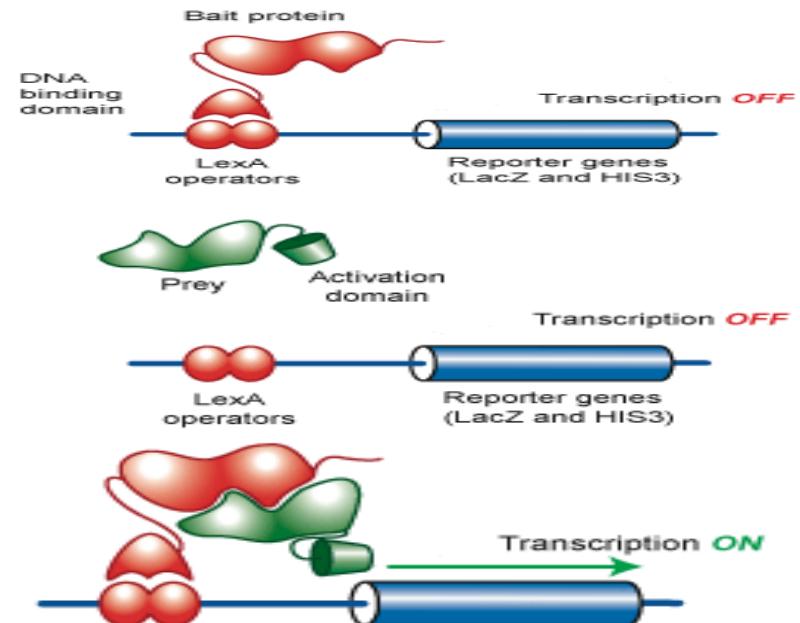
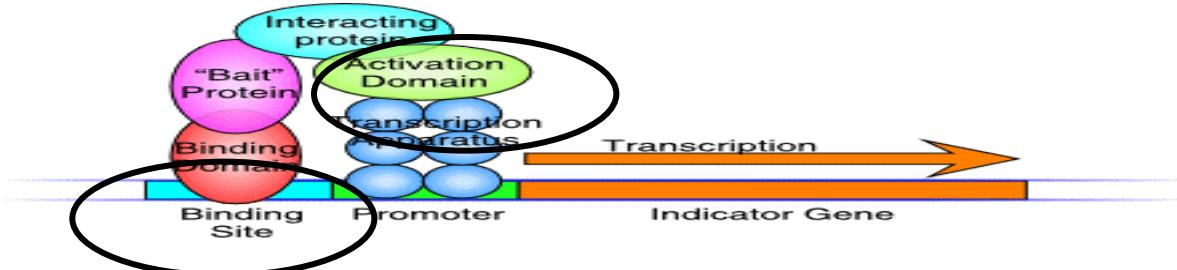
Protein interaction datasets

Yeast two-hybrid assay

- Pairs of proteins to be tested for interaction are expressed as fusion proteins ('hybrids') in yeast:
- One protein is fused to a DNA-binding domain, the other to a transcriptional activator domain.
- Any interaction between them is detected by the formation of a functional transcription factor.



Yeast 2 Hybrid Technique



Mass spectrometry of purified complexes

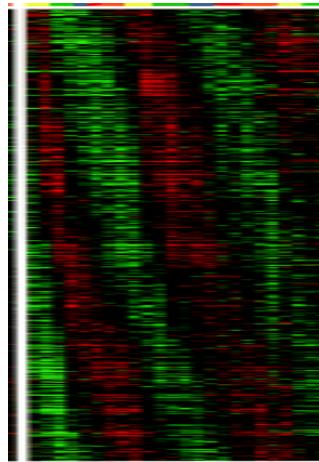
- Individual proteins are tagged and used as 'hooks' to biochemically purify whole protein complexes. These are then separated and their components identified by mass spectrometry.
- Can also be used to identify virus-host interactions

Interaction databases

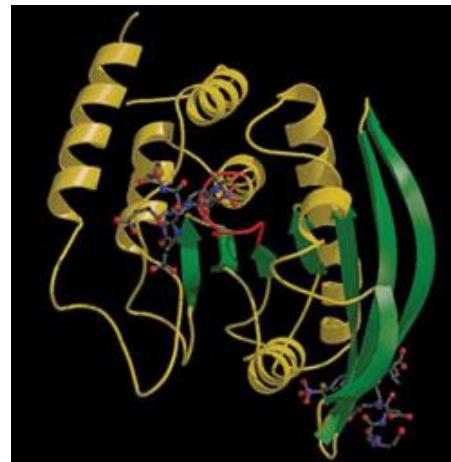
- STRING: string-db.org/
- BioGrid: thebiogrid.org/
- HPRD: www.hprd.org/
- KEGG: www.genome.jp/kegg/

Data integration

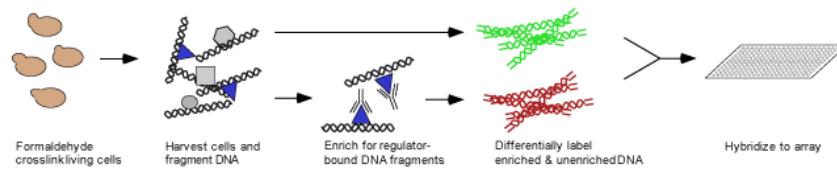
Gene expression



Protein interactions

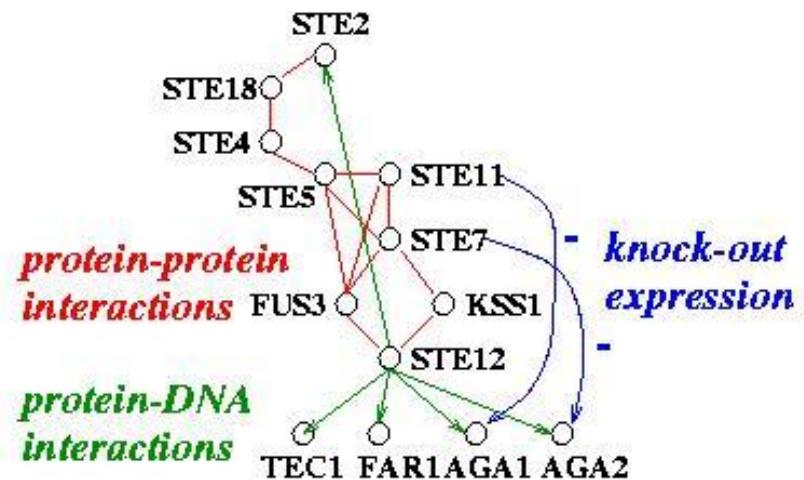


Protein-DNA binding



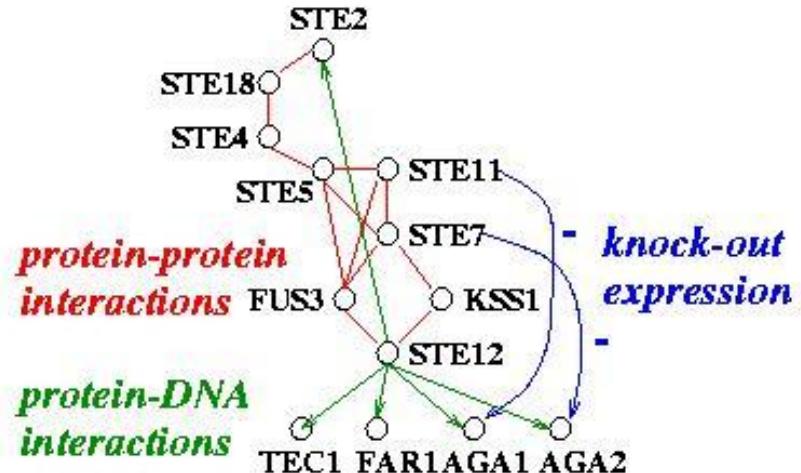
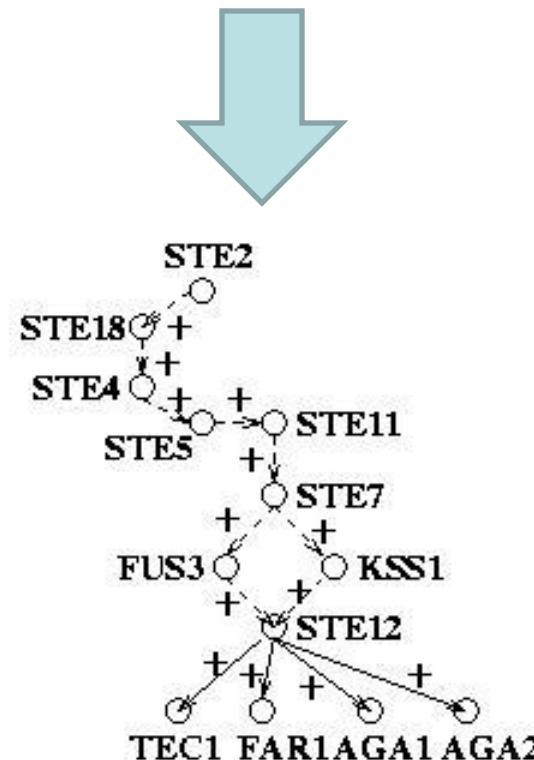
Yeast mating pathway

- Physical data:
 - Yeast binding data
 - DIP database (PPI)
- Functional data:
 - Rosetta compendium knockout data



A mechanistic model of gene regulation

- A graph depicting physical interactions and functional annotations.
- Nodes: Proteins
- Edges: PPI or Protein-DNA
- Signs on the edges: Activation or repression

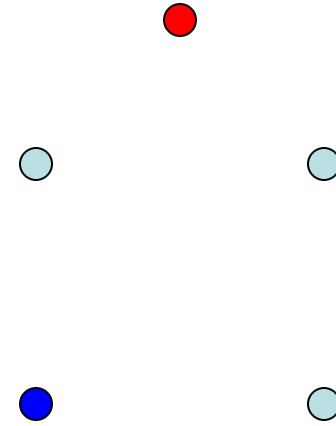


Inferring the mechanistic model from observed data

Key question: How do we construct the model from known mechanisms and constraints from observed data?

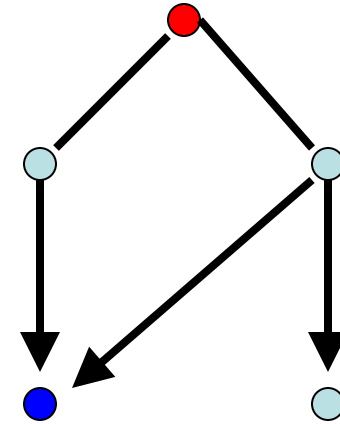
- Decompose data into pairwise items.
- Construct potential functions specifying constraints of each item.
- Combine potential functions by multiplication.

Requirements to explain knock-out data



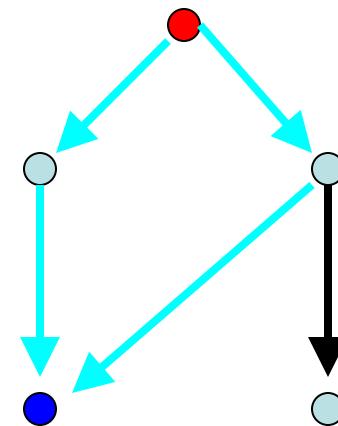
Requirements to explain knock-out data

- There is at least one connecting path.



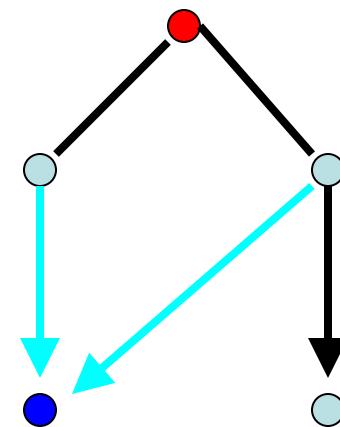
Requirements to explain knock-out data

- There is at least one connecting path.
- Edge directions along the path are consistent with the knock-out effect.



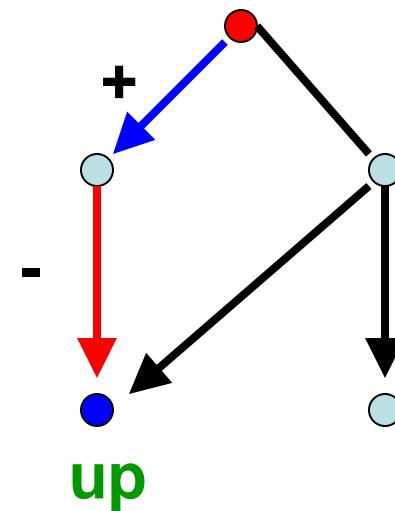
Requirements to explain knock-out data

- There is at least one connecting path.
- Edge directions along the path are consistent with the knock-out effect.
- The last edge on each path is a protein-DNA edge.



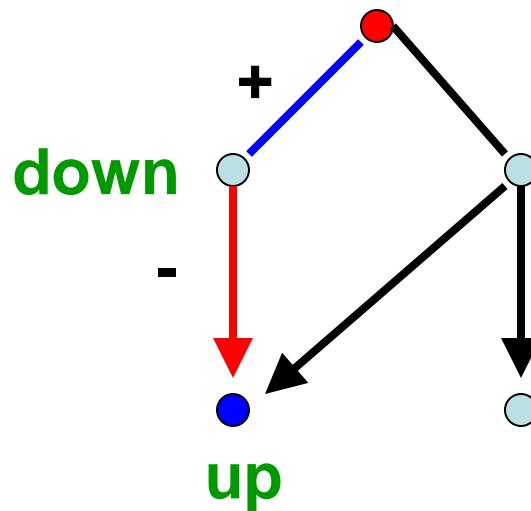
Requirements to explain knock-out data

- There is at least one connecting path.
- Edge directions along the path are consistent with the knock-out effect.
- The last edge on each path is a protein-DNA edge.
- The aggregate sign along the path is consistent with the knock-out effect.



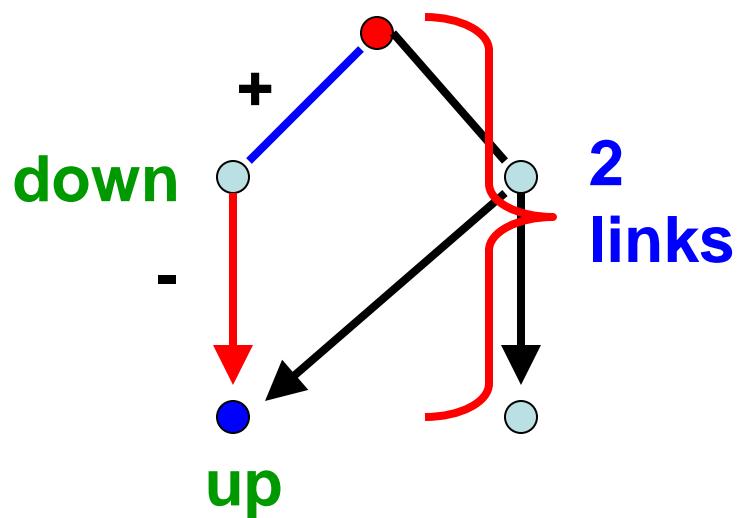
Requirements to explain knock-out data

- There is at least one connecting path.
- Edge directions along the path are consistent with the knock-out effect.
- The last edge on each path is a protein-DNA edge.
- The aggregate sign along the path is consistent with the knock-out effect.
- Intermediate genes along the path either have knock-out effects on or were not tested.



Requirements to explain knock-out data

- There is at least one connecting path.
- Edge directions along the path are consistent with the knock-out effect.
- The last edge on each path is a protein-DNA edge.
- The aggregate sign along the path is consistent with the knock-out effect.
- Intermediate genes along the path either have knock-out effects or were not tested.
- The path length is upper bounded.



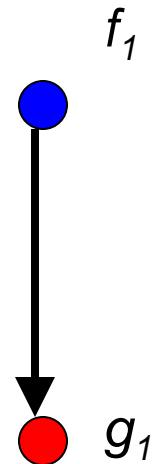
Factor graph formalism

- Factor graph is an undirected bipartite graph where edges represent dependency
- The joint likelihood is written using a set of potential functions, one for each edge in the graph and others for paths in the graph
- The key challenge is to determine the set of potential functions and how to encode them

Associations with binding data

- Assume we have p-value y for the event x (binding of f_1 to g_1).
- How can we use this value in a probabilistic setting?
- Possible solution: use likelihood ratio:

$$\frac{p(y | x)}{p(y | \sim x)}$$



x – the event of f binding to g

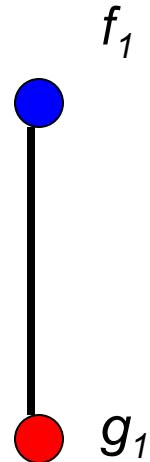
y – observed p-value

Associations with binding data

- Given a possible protein-DNA interaction e_i , the potential function $\phi_{ei}(x_{ei}; y_{ei})$ is related to the direct evidence about this interaction:

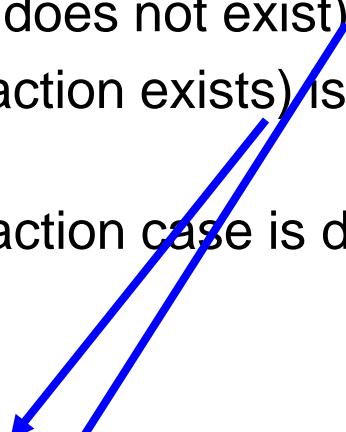
$$\phi_{ei}(x_{ei}; y_{ei}) = \left[\frac{p(y_{ei} | x_{ei} = 1)}{p(y_{ei} | x_{ei} = 0)} \right]^{x_{ei}}$$

- And similarly for protein interaction.



Determining the confidence in the observed data

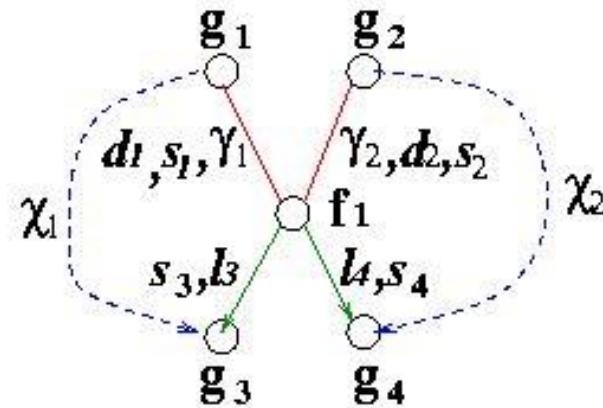
- In order to determine the probabilistic term in the potential function we use an appropriate error model.
- As a crude approximation, $p(y_{ei} | x_{ei})$ can be obtained from the binding p-value
- First, set $p(\text{ measurement} | \text{interaction does not exist}) = p\text{-value}$
- The other side $p(\text{ measurement} | \text{interaction exists})$ is set to a fixed value.
- The potential term for the protein interaction case is defined analogously.

$$\phi_{ei}(x_{ei}; y_{ei}) = \left[\frac{p(y_{ei} | x_{ei} = 1)}{p(y_{ei} | x_{ei} = 0)} \right]^{x_{ei}}$$


Associations with knock-out expression data

- Given knockout expression data, we need to determine whether or not the knockout of gene i influenced gene j
- The interaction effect is associated with the observed data o by:

$$\phi_{i,j}(k_{i,j}, o_{k,i,j}) = \left[\frac{p(o_{k,i,j} | k_{i,j} = 1)}{p(o_{k,i,j} | k_{i,j} = 0)} \right]$$



- k can be explained by cascades of molecular interactions, i.e., paths in the physical model.

Knockout (cont.)

- Explanation of a KO can be expressed as a logic clause of variables along the paths connecting a knock-out pair:
 - the knock-out effect (χ_k)
 - edge presences (E_k),
 - edge directions (D_k), and sign (S_k),
 - and path selections (Σ_k).
- The potential term can also incorporate the situations of multiple paths and uncertainties of explanation.



Inference

- Potential functions are combined by multiplication.
- Goal: find the optimal configuration of the variables.
- This is done using a maximum likelihood approach using a variant of belief propagation.
- Using a graph known as a factor graph, the max-product algorithm is applied to obtain a MAP configuration.
- If the network is small, we can apply the max-product recursively to obtain all MAP configurations.

Datasets

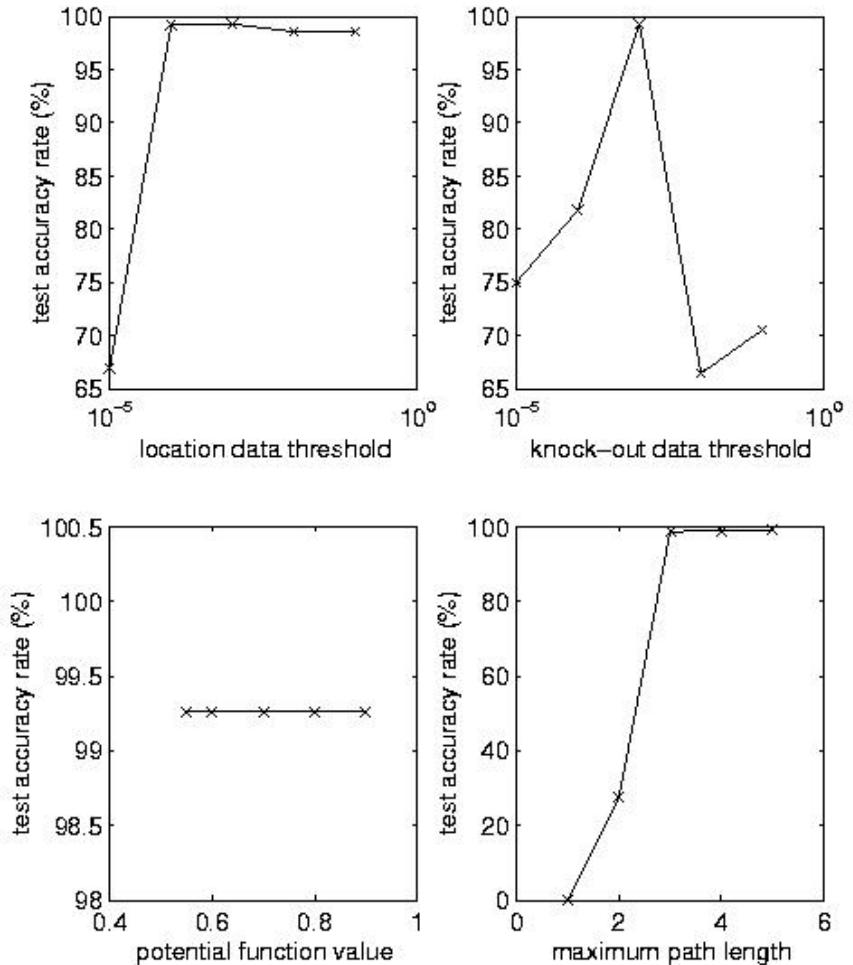
- 46 genes including 2 transcription factors (STE12 and MCM1).
- Binding p-value threshold 0.001 result in 34 protein-DNA edges (Lee et al., 2003).
- 30 protein-protein edges (DIP).
- 164 knock-out pairs from 10 experiments (Hughes et al., 2000).
- Maximal path length set to 5.

Results: yeast mating pathway

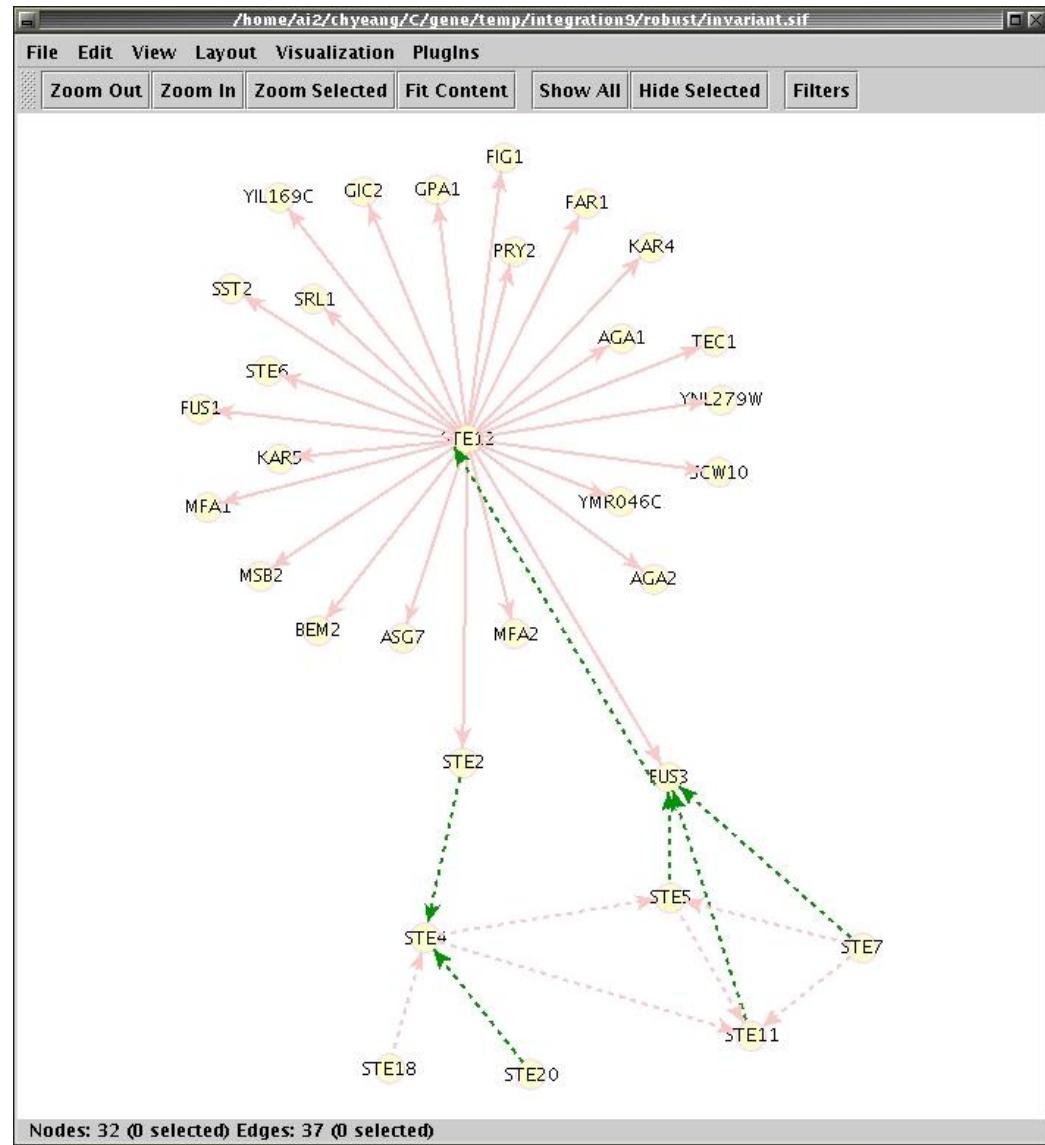
- 129 knock-out pairs are connected via valid paths.
- 8 MAP configurations.
- 129 knock-out pairs are explained by all MAP models.
- 106 knock-out pairs are explained by non-trivial inference.
- 2 knock-out pairs whose explanatory paths are not constrained by other knock-out pairs

Robustness of the model

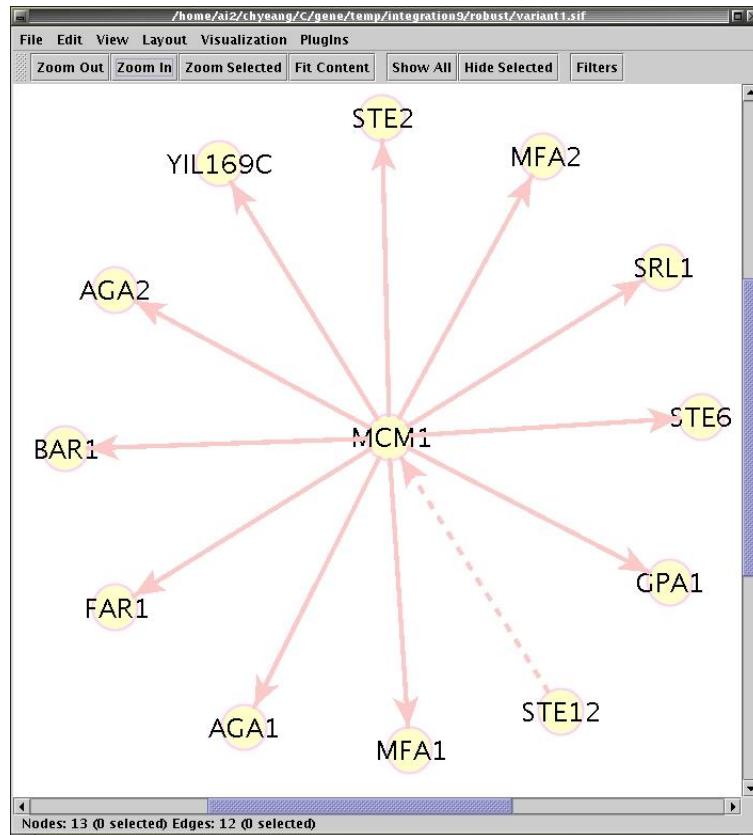
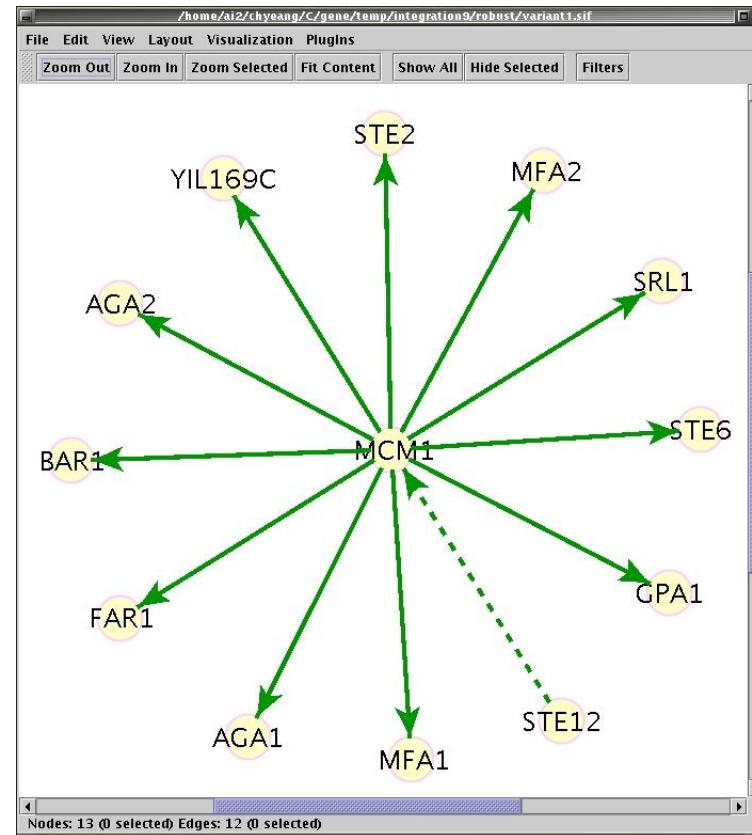
- Are prediction outcomes sensitive to parameter settings?
- Robustness tests on location and knock-out p-value cutoffs, potential values and path length



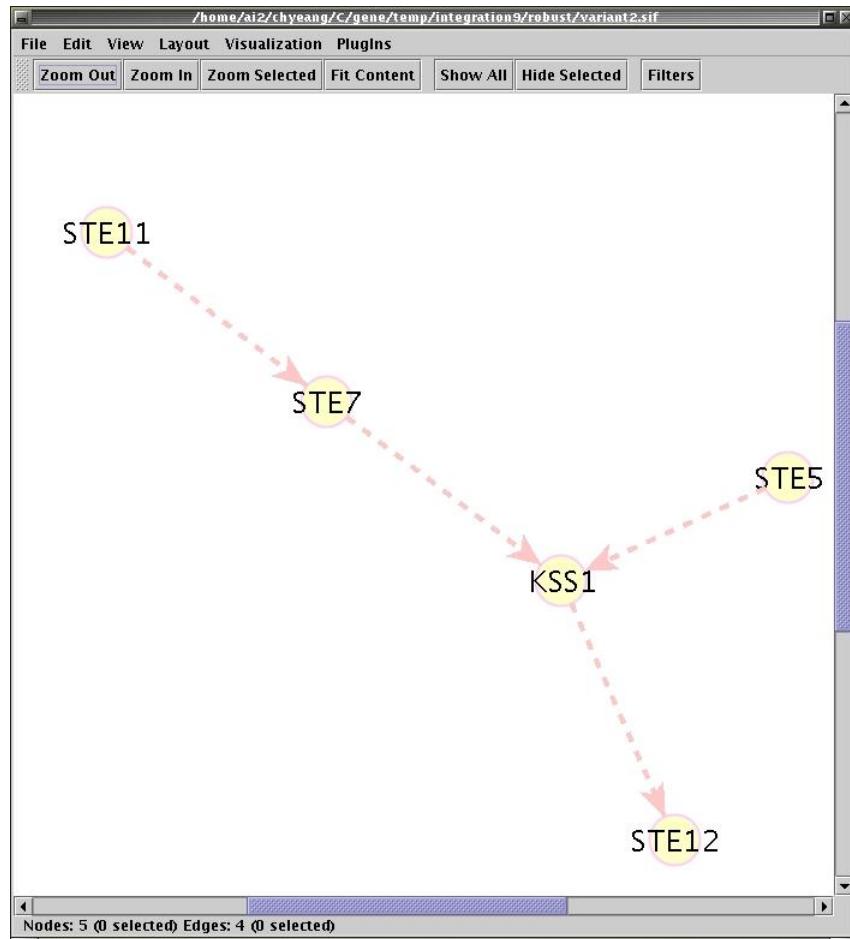
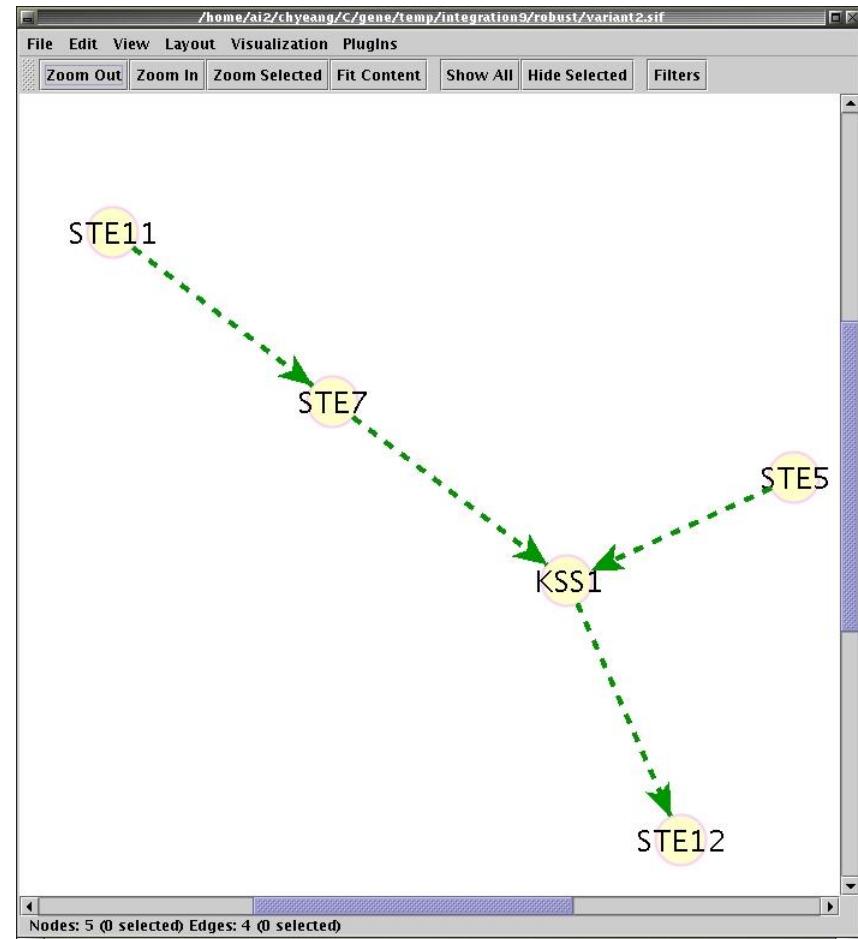
Common features for all MAP models



Variant features



Variant features



Resolving ambiguities in the model

- Resolving ambiguities in the model requires new experiments
- There are many possible experiments (knockout of every gene)
- How can we chose which one to perform?

Active learning

- Assume we want to teach a computer to distinguish between cats and dogs ...

Can you give me some outdoor dog and indoor cat pictures?

Sure!

Active Learning for designing experiments

- On the basis of current model, M , the learner
 - predicts the answers O_x to various possible queries q_x
 - computes which query's answer will be most beneficial in improving model quality (or minimizing the **loss**)
 - Perform the experiment, updates model with the answer

$$\min \langle Loss(q_x) \rangle = \min E[Loss(M^{O_x})]$$

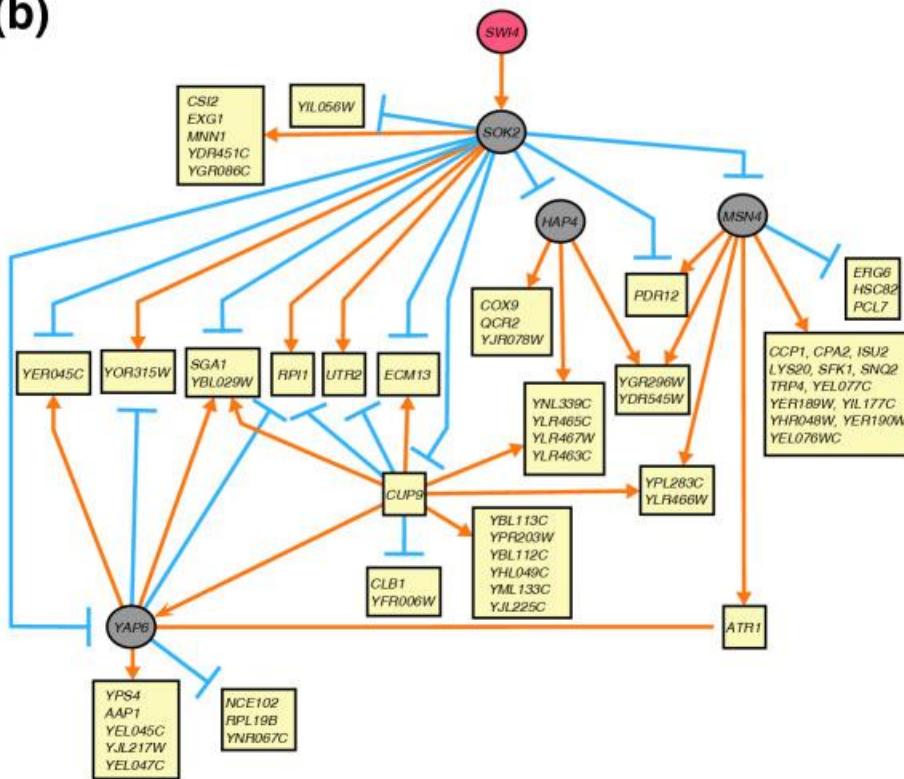
Table 2

Table 2**Top-ranking knock-out experiments proposed for model discrimination**

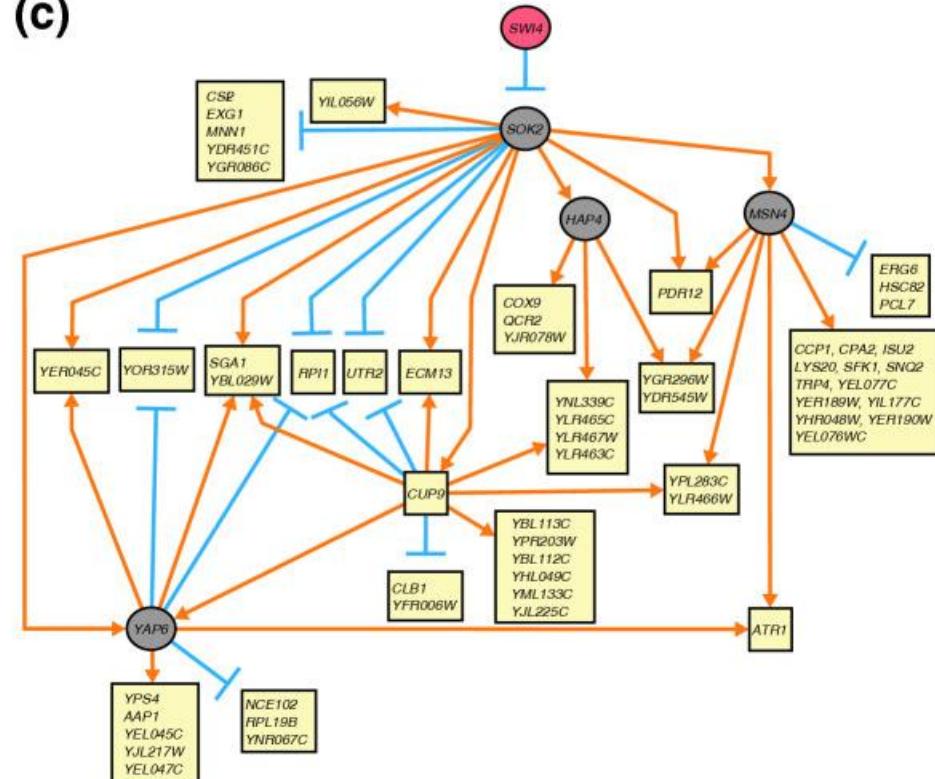
Gene	Function	Score	Downstream genes	Rank	Model
<i>HHF1</i>	Histone	52.1429	74	1	2
<i>SOK2</i> *	Regulator for meiosis and PKA pathway	45.0279	64	2	1
<i>CKA1</i>	Protein kinase of cell cycle	45.0075	64	3	5
<i>A2</i>	Mating response	40.9023	58	4	4
<i>YAP6</i> *	Stress response regulator	35.1652	50	5	1, 3
<i>NRG1</i>	Regulator of glucose dependent genes	31.6501	45	6	3
<i>FKH1</i>	Regulator of cell cycle	29.1194	41	7	2
<i>FKH2</i>	Regulator of cell cycle	26.7131	38	8	7
<i>SLT2</i>	Protein kinase of cell wall integrity pathway	23.4727	31	9	8
<i>MSN4</i> *	Regulator of stress response	21.8224	31	10	1
<i>HAP4</i> *	Regulator of cellular respiration	6.3310	9	34	1

Targeting specific network

(b)



(c)

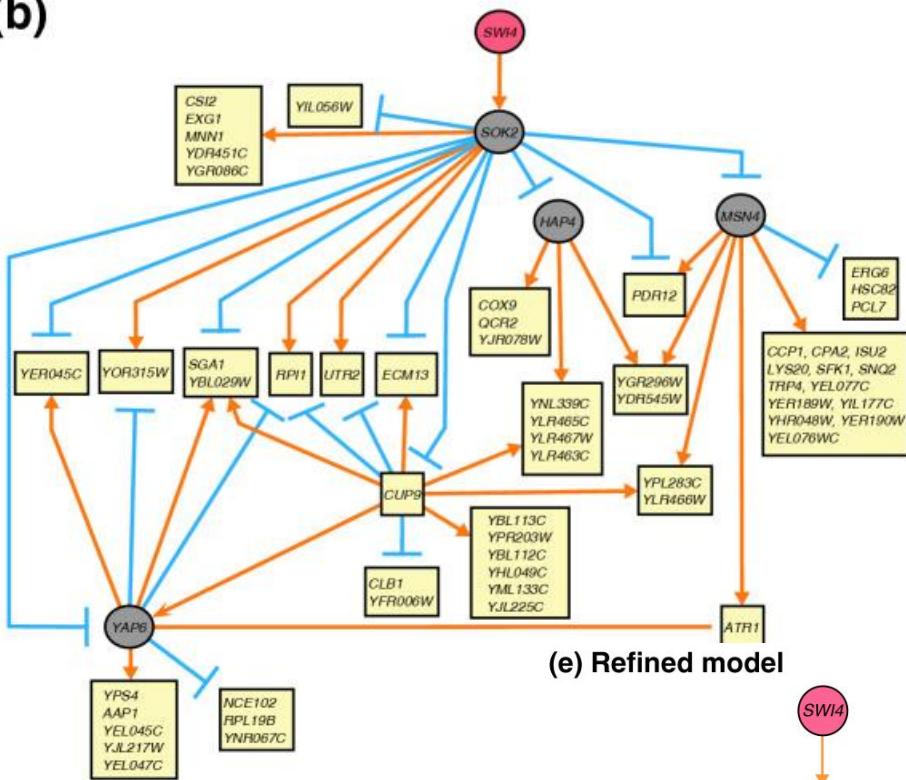


Using the ranked list

- How should we use the list in the previous table?
- Performing all the experiments at once ignores the dependency between these experiments
- Its much better to carry them one at a time
- However, that may cause other problems that are less desirable.

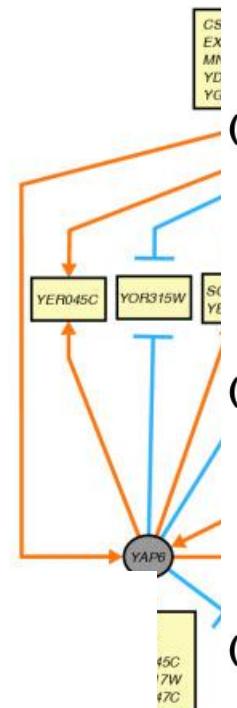
Experiments carried out

(b)

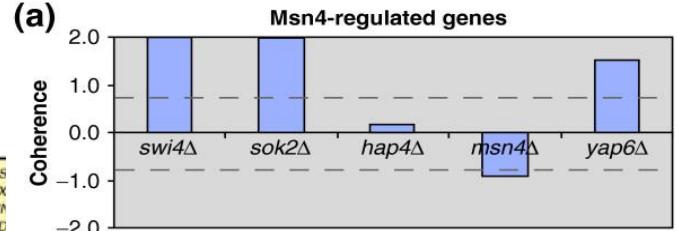


(e) Refined model

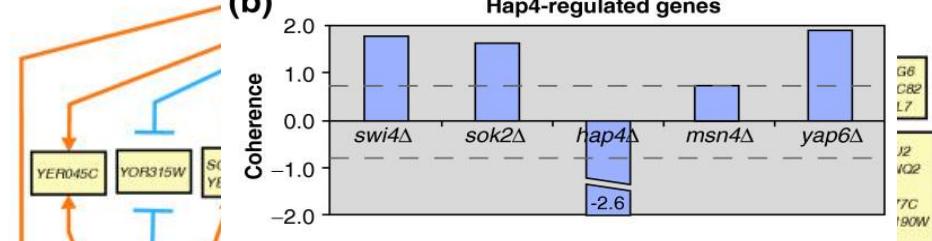
(c)



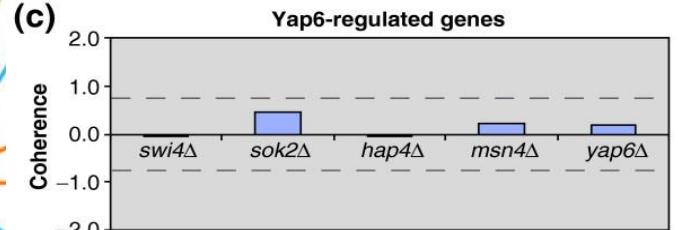
(a)



(b)



(c)



(d)

