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(brief) intro to probability  



Basic notations 

• Random variable 

    - referring to an element / event whose status is unknown: 

      A = “gene g is increased 2 folds” 

• Domain (usually denoted by ) 

    - The set of values a random variable can take: 

      - “A = Cancer?”: Binary 

      - “A = Protein family”: Discrete 

      - “A = Log ratio change in expression”: Continuous 



Priors 

P(cancer) = 0.2 

P(no cancer) = 0.8 

Healthy 

Cancer 
Degree of belief 

in an event in the 

absence of any 

other information 



Conditional probability 

• P(A = 1 | B = 1): The fraction of cases where A is true if B is true 

P(A = 0.2) P(A|B = 0.5) 



Conditional probability 

• In some cases, given knowledge of one or 

more random variables we can improve upon 

our prior belief of another random variable 

• For example: 

   p(cancer) = 0.5 

    p(cancer | non smoker) = 1/4 

    p(cancer | smoker) = 3/4 

Cancer Smoker 

1 1 

0 0 

1 0 

1 1 

0 1 

1 1 

0 0 

0 0 



Joint distributions 

• The probability that a set of random variables will take a 

specific value is their joint distribution. 

• Notation: P(A  B) or P(A,B) 

• Example:  P(cancer, smoking)   

If we assume independence then 

 

 P(A,B)=P(A)P(B) 

 

However, in many cases such an 

assumption maybe too strong (more 

later in the class) 



Chain rule 
• The joint distribution can be specified in terms of conditional probability: 

                P(A,B) = P(A|B)*P(B) 

• Together with Bayes rule (which is actually derived from it) this is one of the most 

powerful rules in probabilistic reasoning  

 



Bayes rule 

• One of the most important rules for this class. 

• Derived from the chain rule: 

     P(A,B) = P(A | B)P(B) = P(B | A)P(A) 

• Thus, 

Thomas Bayes was 

an English 

clergyman who set 

out his theory of 

probability in 1764.  
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Bayes rule (cont) 

Often it would be useful to derive the rule a bit further: 
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This results from: 

P(B) = ∑AP(B,A) 
A 

B 
A 

B 

P(B,A=1) P(B,A=0) 



Probability Density Function 

• Discrete distributions 

 

 

 

 

 

• Continuous: Cumulative Density Function (CDF): F(a) 

1 2 3 4 5 6 

f(x) 

x 
a 



Cumulative Density Functions 

• Total probability 

 

• Probability Density Function (PDF) 

 

• Properties: 

F(x) 



Expectations 

• Mean/Expected Value: 

 

• Variance: 

 

• In general: 



Multivariate 

• Joint for (x,y) 

 

 

• Marginal: 

 

 

• Conditionals: 

 

 

• Chain rule:  



Bayes Rule 

• Standard form: 

 

 

 

• Replacing the bottom: 

 

 



Binomial 

• Distribution: 

 

 

 

 

 

• Mean/Var: 



Uniform 

• Anything is equally likely in the region [a,b] 

 

• Distribution: 

 

 

• Mean/Var 

a b 



Poisson Distribution 
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• Discrete distribution 

• Widely used in sequence analysis (read counts are discrete). 

•  is the expected value of x (the number of observations) and is also the 

variance: 

  )()( xVarxE



Gaussian (Normal) 

• If I look at the height of women in country xx, it will look approximately Gaussian 

• Small random noise errors, look Gaussian/Normal 

 

• Distribution: 

 

 

• Mean/var 



Why Do People Use Gaussians 

• Central Limit Theorem: (loosely) 

- Sum of a large number of IID random variables is approximately Gaussian 



Multivariate Gaussians 

• Distribution for vector x 

 

 

• PDF: 



Multivariate Gaussians 
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Covariance examples 

Anti-correlated 

Covariance: -9.2 

Correlated 

Covariance: 18.33 

Independent (almost) 

Covariance: 0.6 



(A few) key computational methods 



Regression 

• Given an input x we would like to 
compute an output y 

• In linear regression we assume 
that y and x are related with the 
following equation:  

 

                 

                       y = wx+ 

     

    where w is a parameter and  
represents measurement or 
other noise   

X 

Y 

What we are 

trying to 

predict 

Observed values 



Supervised learning 

• Classification is one of the key components of „supervised learning‟ 

• In supervised learning the teacher (us) provides the algorithm with 

the solutions to some of the instances and the goal is to generalize 

so that a model / method can be used to determine the labels of 

the unobserved samples 

X 
Classifier 

w1, w2 … 
Y 

teacher 

X,Y 



Types of classifiers 
• We can divide the large variety of classification approaches into roughly two main 

types  

      

      1. Instance based classifiers 

          - Use observation directly (no models) 

          - e.g. K nearest neighbors 

       

      2. Generative: 

              - build a generative statistical model 

              - e.g., Naïve Bayes 

       

      3. Discriminative 

              - directly estimate a decision rule/boundary 

              - e.g., decision tree, SVM 

 

            



Unsupervised learning 

We do not have a teacher that provides examples with their 

labels 

 

• Goal: Organize data into 

clusters such that there is 

• high intra-cluster similarity 

• low inter-cluster similarity  

•Informally, finding natural 

groupings among objects 



Graphical models: Sparse methods for 

representing joint distributions 

• Nodes represent random variables 

• Edges represent conditional dependence 

• Can be either directed (Bayesian networks, HMMs) or undirected (Markov 

Random Fields, Gaussian Random Fields) 



Bayesian networks 

Le 

Li S 

P(Lo) = 0.5 

P(Li | Lo) = 0.4 

P(Li | Lo) = 0.7 

P(S | Lo) = 0.6 

P(S | Lo) = 0.2 

Conditional 

probability tables 

(CPTs) 

Conditional 

dependency 

Random variables 

Bayesian networks are directed acyclic graphs.  


