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(brief) Intro to probability



Basic notations

® Random variable
- referring to an element / event whose status Is unknown:
A = “gene g is increased 2 folds”
® Domain (usually denoted by Q)
- The set of values a random variable can take:
- “A = Cancer?”: Binary
- “A = Protein family”: Discrete

- “A = Log ratio change in expression”: Continuous



Priors

Degree of belief
INn an event in the
absence of any
other information

Cancer

P(cancer) = 0.2

P(no cancer) = 0.8



Conditional probability

® P(A=1|B =1): The fraction of cases where A is true if B is true

P(A = 0.2)

P(A|B = 0.5)




Conditional probability

® In some cases, given knowledge of one or
more random variables we can improve upon
our prior belief of another random variable

® For example:

Cancer Smoker

p(cancer) = 0.5

p(cancer | non smoker) = 1/4

p(cancer | smoker) = 3/4
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Joint distributions

The probability that a set of random variables will take a
specific value is their joint distribution.

Notation: P(A A B) or P(A,B)

Example: P(cancer, smoking)




Chalin rule

® The joint distribution can be specified in terms of conditional probability:
P(A,B) = P(A|B)*P(B)

® Together with BQygs rule (whish is actually derived from it) this is one of the most
powerful rules in grsabilistic reaspning




Bayes rule

® One of the most important rules for this class.
® Derived from the chain rule:

P(A,B) = P(A | B)P(B) = P(B | A)P(A)
® Thus,

Thomas Bayes was
an English
clergyman who set
out his theory of
probability in 1764.



Bayes rule (cont)

Often 1t would be useful to derive the rule a bit further:

P(BIA)P(A) _ P(BIA)P(A)
P(B) ) P(BIAP(A

/:(B,Azl) P(B.A=0)

This results from:
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Probability Density Function

® Discrete distributions
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® Continuous: Cumulative Density Function (CDF): F(a)

o) Plx <a) = /_; f(r)dr




Cumulative Density Functions

® Total probability / f gg)dﬂ: — 1

® Probability Density Function (PDF)

® Properties:

Pla<z<b)= /ﬁ f(z)dz = F(b) — F(a)

lim F(x)=
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F(a) > F(b) Va > b



® Mean/Expected Value:

Expectations

Flz| =z = /:Ef(:t:)dﬂ:

® Variance:

Var(z) = E|(z — 7)%] = E[z?] — (z)?

® In general:

E[z?] = /sz(m)dﬂ:

Blg(a)) = [ 9(@)f()d



Multivariate

® Joint for (x,y)
P(@yea=| /A F(z, y)dzdy

® Marginal:

f(z) = / #(z, y)dy

® Conditionals:

f(z,y)
f(y)

flzly) =

® Chain rule:

flz,y) = fzly) f(y) = f(y|z) f(z)



Bayes Rule

f(ylz) f(z)
f(y)

® Standard form:

flzly) =

® Replacing the bottom:

_ | ) f(z)
fzly) = [ (o) f(z)dz




Binomial

® Distribution:

x ~ Binomial(p,n)
Pz =k) = (:) "1 —p)n*

® Mean/Var:



Uniform

® Anything is equally likely in the region [a,b]

® Distribution:

x ~ U(a,b)
® Mean/Var
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Elz] = a-+b
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Poisson Distribution

® Discrete distribution
® Widely used in sequence analysis (read counts are discrete).

® )\ is the expected value of x (the number of observations) and is also the

variance. E(X) :Var (X) _ ﬁd
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Distributions:

POISSON; lambda: 10.08
— GAMMA; shape: 6.55, scale: 1.53

0.05

0.00

binned base coverage



Gaussian (Normal)

® If I look at the height of women in country xx, it will look approximately Gaussian

® Small random noise errors, look Gaussian/Normal

® Distribution:

f 1 —(z—p)*
o~ N, 0?) I@ = Jomg®
ma
® Mean/var
Elz| = p -

10



Why Do People Use Gaussians

® Central Limit Theorem: (loosely)

= Sum of a large number of IID random variables is approximately Gaussian



Multivariate Gaussians

® Distribution for vector x

ET:(I:_[, :-:E"HT)T:- ETNN(JM,E)
® PDF: \

f(z) = = ie—%(m—n] 7 (z—p)

PO
Efa] = p = (Elz], .., Elaw])"
Var(z:) Cov(z1,z2) ... Cov(zi,zN) \
Cov(xs,x) Var(xzs) ... Cov(xy,zN)

Var(z) — X =

Cov(zn,z1) Cov(zn,z2) ... Var(zwy) }



Var(z) — X =

Multivariate Gaussians

Var(z;) Cov(z1,z2) ... Cov(zi,zN) \
Cov(xs,x) Var(xzs) ... Cov(zy,zN)
Cov(zn,x1) Cov(zn,z2) ... Var(zn) }

COV(X11 Xz) — %Zn:(xl,i _:ul)(xz,i _luz)
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Covariance examples
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(A few) key computational methods



Regression

® Given an input x we would like to
compute an output y

® In linear regression we assume
that y and x are related withthe v
following equation:

Observed values
What we are
trying to \ /
predict
Y = WX+g
where w Is a parameter and ¢

represents measurement or
other noise




Supervised learning

]

® Classification is one of the key components of ‘supervised learning

® In supervised learning the teacher (us) provides the algorithm with
the solutions to some of the instances and the goal is to generalize
so that a model / method can be used to determine the labels of

the unobserved samples

Classifier

Wy, W, ...

XY

teacher




Types of classifiers

® We can divide the large variety of classification approaches into roughly two main
types

1. Instance based classifiers
- Use observation directly (no models)

- e.g. K nearest neighbors

2. Generative:
- build a generative statistical model

- e.g., Naive Bayes

3. Discriminative
- directly estimate a decision rule/boundary

- e.g., decision tree, SVM



Unsupervised learning

We do not have a teacher that provides examples with their
labels

« Goal: Organize data into
clusters such that there is o o0

* high intra-cluster similarity

* low inter-cluster similarity R .
L 4
Informally, finding natural ¢ * N
: : ®
groupings among objects ¢ . *




Graphical models: Sparse methods for
representing joint distributions

* Nodes represent random variables
» Edges represent conditional dependence

« Can be either directed (Bayesian networks, HMMs) or undirected (Markov
Random Fields, Gaussian Random Fields)



Bayesian networks

Bayesian networks are directed acyclic graphs.

Conditional -~ P(Lo)=0.5

probability tables Conditional
(CPTs) ‘< dependency
P(Li| Lo) = 0.4 @ P(S|Lo)=0.6
P(Li | —Lo) = 0.7 \ / P(S|—-Lo)=0.2

Random variables



