Basic R Programming

Silvia (Shuchang Liu)
Feb 3rd, 2014

1 Why R?
e R is high-level programming language and popular among biostatistician
e R is free open source and everyone can contribute to R (e.g. publish paper to develop new R packages)

e R can install many ready-made packages

2 Resources and installation

1. R and RStudio installation

e R can be installed on Windows, Linux and Mac (http://www.r-project.org/))
e RStudio is a nice IDE for R with GUI interface like MATLAB (http://www.rstudio.com/)

2. Package installation

e To install general R packages
To install a package in the first time

> install.packages("packageName")
Load the package before using it
> library(packageName)

e To install Bioconductor packages
Bioconductor is an open source software for bioinformatics

> source("http://bioconductor.org/biocLite.R")
> biocLite("packageName")
> library(packageName)

3 Basic R file formats

file description | R file MATLAB file
script file fileName.r fileName.m
workspace file | fileName.rdata fileName.mat

http://www.r-project.org/
http://www.rstudio.com/

4 Some examples

> # hi, I am the comment
> print ("Hello world!")

[1] "Hello world!"

*

=1 semicolon is optional here

<- 2.3 # var <- value, to assign the value to var
<- 3e2

<- a + b +c # no output

+b+c # show out the output

vV V. Vv Vv Vv
[V <O o i)

[1] 303.3

> a == # a equals to b?

[1] FALSE

>al=b # a not equals to b?

[1] TRUE

> 5/4

[1] 1.25

> 1/0

[1] Inf

> cos(pi)

(1] -1

> max(4,5)

(1] 5

> log(9, base=3) # parameter for the function
[11 2

> log(9) # o.w. by default, base=exp(1)
[1] 2.197225

> 1s() # list all the variables
[1] "a" "b" "c" "d"

> exists("b") # Does "b" exist?

[1] TRUE

> rm(list=1s()) # remove all the variables in the workspace

5 Data Structures

5.1 Vectors

Creat a vector

> vl <= -2:56
> vl

[1] -2-1 0 1 2 3 4 5

> v2 <-¢(3, 2, 7.2, 0.9, 100)
> v2

[1] 3.0 2.0 7.2 0.9 100.0

> V3 <_ c(llaal” ”BH’ ”c2ll)
> v3

[1] "aa" "B" "c2"

> seq(from=4, to=7, by=0.5)

[1] 4.0 4.5 5.0 5.5 6.0 6.5 7.0

> rep(v2, each=2)

[1] 3.0 3.0 2.0 2.0 7.2 7.2 0.9 0.9 100.0 100.0
> rep(v2, times=2)

[1] 3.0 2.0 7.2 0.9 100.0 3.0 2.0 7.2 0.9 100.0
> rep(v2, times=1:5)

[1] 3.0 2.0 2.0 7.2 7.2 7.2 0.9 0.9 0.9 0.9 100.0 100.0
[13] 100.0 100.0 100.0

> sample(1:10)
[1] 10 8 3 7 2 9 4 6 5 1

Reference elements

> v2

(1] 3.0 2.0 7.2 0.9 100.0
> v2[3]

(1] 7.2

> v2[c(2,4)]

[1] 2.0 0.9
> v2[-c(2,4)]
[1] 3.0 7.2 100.0
> v2[v2>5]
[1] 7.2 100.0
> v2[2]=88
Vector operations
> v2
[1] 3.0 88.0 7.2 0.9 100.0
> which(v2>=3)
[1] 1 2 35
> which.min(v2)
[1] 4
> length(v2)
[1] 5
> v2*10+1
[1] 31 881 73 10 1001
> (v2*10+1) [2:4] [2]

(1] 73

5.2 Matrices

> d <- sample(1:20)
> d

[1] 317 216 1412 4 8152013 7 619 110 9 11 18 5

> # creat a matrix
> ml1 <- matrix(data=d,nrow=4,ncol=5,byrow=TRUE,
+ dimnames=1ist (rows=c("cat", "dog", "rat","fish"),
+ cols=c(”a” npn men ngn neu)))
)) E E
> ml

cols

rows a b c d e
cat 317 2 16 14
dog 12 4 8 15 20
rat 13 7 6 19 1
fish 10 9 11 18 5

> # reference matrix
> mi[2,4]

[1] 15

> m1["dog","d"] # reference by name
[1] 15

> mifc(2,4),3]

dog fish
8§ 11

> mi [C(”dOg”, "fish”) S nqu

dog fish
8 11

> mi1[3,]

a b c d e
13 7 619 1

> mil["rat",]

a b c d e
13 7 6 19 1

> # matrix dimension

> dim(m1) # matrix dimension
[1] 4 5

> nrow(ml) # number of rows
[1] 4

> ncol(m1) # number of column
[1] 5

> length(m1) # element length

(1] 20

> colnames (m1) # column name

[1] |Iall |Ibll |ICII |Idll |Iell

> rownames (m1) [4] <- "elephant" # change row names
> m2 <- matrix(c(111,222,333,444),2,2)
> m2

[,1]1 [,2]

[1,] 111 333
[2,1 222 444

>m1[2:3,c(3,5)] <- m2

> ml
cols
rows a b c d e
cat 3 17 2 16 14
dog 12 4 111 15 333
rat 13 7 222 19 444

elephant 10 9 11 18 5

> # matrix operation
> m3 <- matrix(1:6,2,3)
> m3

[,11 [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

> m4 <- matrix(11:16,2,3,byrow=TRUE)

[,11 [,2] [,3]
(1,1 11 12 13
[2,] 14 15 16

> m5 <- matrix(21:26,3,2)

(.11 [,2]
[1,] 21 24
[2,] 22 25
[3,] 23 26

> m3*m4 # element-wise manipulation

(.11 [,2] [,3]
[1,] 11 36 65
[2,] 28 60 96

> m37%*/mb # matrix manipulation, if m3)*j/m4, it will throw out error message

(.11 [,2]
(1,1 202 229
[2,] 268 304

> # several useful functions

> t(m1) # transpose
rows

cols cat dog rat elephant
a 3 12 13 10
b 17 4 7 9
c 2 111 222 11
d 16 15 19 18
e 14 333 444 5

> apply(mi,1,sum) # sum of each row

cat dog rat elephant
52 475 705 53

> apply(m1,1,sqrt) # pay attention to the output dimension

rows
cat dog rat elephant
1.732051 3.464102 3.605551 3.162278
4.123106 2.000000 2.645751 3.000000
1.414214 10.535654 14.899664 3.316625
4.000000 3.872983 4.358899 4.242641
3.741657 18.248288 21.071308 2.236068

O Q& 0 o e

> apply(m1,2, function(x) return(sum(x~2+1)))

a b [d e
426 439 61734 1170 308250

> rbind (m3,m4) # row combination

[,11 [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6
3,17 11 12 13
[4,] 14 15 16

> cbind (m3,m4) # column combination

(.11 [,21 [,3] [,41 [,5] [,6]
[1,] 1 3 5 11 12 13
[2,] 2 4 6 14 15 16

> as.vector(m3)

[1]1 123456

5.3 Arrays
An array is a muti-dimensional matrix.

> # generate an array var

> a <- array(1:24,dim=c(4,3,2),

+ dimnames=list (c(”a”, ”b”, ”C”, ”d”) , C(”X", nyu’ nzu) ,C(”Old”, ”new”)))
>

, , old
10

11
12

Qa0 T e
D W N N
0 N O O

, , new

X y z
13 17 21
14 18 22
15 19 23
16 20 24

Q0 o e

> # reference elements
> al[2,1,"new"] # pay attention to the dimension change

[1] 14

> a[_2, ”X",
old new

a 1 13

e 3 15

d 4 16

> # operation
> dim(a)

[1] 4 3 2

> apply(a,3,mean)

old new
6.5 18.5
5.4 Lists

> # generate a list var

> 11 <- list(name=c("Peter","Lily","Emma"),c("yes", "no"),
+ age=c(20,40,33,rep(18,times=3)),

+ value=matrix(1:6,2,3))

> 11

$name

[1] "Peter" "Lily" "Emma"

[[21]

[1] |Iyesll llnoll

$age
[1] 20 40 33 18 18 18

$value

[,11 [,2]1 [,3]
[1,] 1 3 5
[2,] 2 4 6

> # reference elements

> 11[[2]1]

[1] "yes" "no"

> 11[["age"]]

[1] 20 40 33 18 18 18
> 11$name

[1] "Peter" "Lily" "Emma"
> 11[["value"]][2,]

[11 246

> # list operation
> names(11)

[1] llname n nn |Iage|| "Value n
> length(11)
(1] 4

> unlist(11)

Ilno n

namel name2 name3
llPeterll llLilyll llEmmall llyesll
age6 valuel value2 value3d valued
Il18ll |I1ll |I2ll |I3ll

|I4ll

#produce a vector of all the elements

agel age?2 age3 age4d

IIQOII II4OII I133" Il18!l
valueb value6
|I5ll |I6l|

> 12 <- list(matrix(2,4,5),matrix(1:10,2,5),diag(3))

> 12

ageb
n 18"

[[1]1]

[,11 [,2]1 [,3] [,4]1 [,5]
[1,] 2 2 2 2 2
[2,] 2 2 2 2 2
[3,] 2 2 2 2 2
(4,] 2 2 2 2 2
[[2]]

[,11 [,2] [,3] [,4]1 [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10

(31l

[,11 [,2] [,3]
[1,] 1 0 0
[2,] 0 1 0
(3,1 0 0 1

> lapply(12,sum) # return a list

[[111]
[1] 40

[[2]1]
[1] 55

[[3]1]
(11 3

> sapply(12,dim) # return a vector or matrix

[,11 [,2] [,3]
[1,] 4 2 3
[2,] 5 5 3

5.5 Dataframes

> # generate a dataframe

> ID <- 100:103

> name <- c("Peter","Lily","Emma","Joe")

> sex <- c("M","F","F", "M")

> age <- ¢(22,30,16,44)

> married <- c¢(F,T,F,T)

> d1 <- data.frame(ID,name,sex,age,married)
> rownames (d1) <-name

> di

ID name sex age married
Peter 100 Peter M 22 FALSE

10

Lily 101 Lily F 30 TRUE
Emma 102 Emma F 16 FALSE
Joe 103 Joe M 44 TRUE

> # reference elements, just like a matrix
> dl ["Emma", “age“]

[1] 16
> d1[d1$ID==103,]

ID name sex age married
Joe 103 Joe M 44 TRUE

> # operation
> d2 <- di[order(di[, "age"]),]
> d2

ID name sex age married
Emma 102 Emma F 16 FALSE
Peter 100 Peter M 22 FALSE
Lily 101 Lily F 30 TRUE
Joe 103 Joe M 44 TRUE

6 Control Structures

6.1 if()...else

if (condition){
expression 1, if TRUE

}else{

expression 2, if FALSE

}

> passExam <- TRUE

> if (passExam==TRUE){

+ print("Congratulations!")
+ }else{

+ print("Try it again!")

+ F

[1] "Congratulations!"
6.2 ifelse()
ifelse(condition, TRUE expression, FALSE expression)

> x <- matrix(sample(1:6),2,3)
> x

11

[,11 [,2] [,3]
[1,] 2 6 1
[2,] 5 3 4

> y <- ifelse(x>3,1,0)
>y

[,11 [,21 [,3]
[1,] 0 1 0
[2,] 1 0 1

6.3 switch()
switch (statement, list)

> grade="D"
> switch(grade, A="Great job!", B="Not bad", C="So-so", D="Donnot cry! I trust you!")

[1] "Domnot cry! I trust you!"

6.4 for loops

for (name in vector){
statement

}
> sum(1:10)
[1] 55

>a<-0

> for (i in 1:10){
+ a <- a+ti

+ }

> a

[1] 55

6.5 repeat loops

repeatq{
expression
if (condition) break

[

a<-90
i<-0
repeat{
i <- i+1
a <- a+i
if (i>=10) break
}

a

vV + + + + VvV VvV

12

[1] 55

6.6 while loops

while(condition){
expression

(-

a<-90
i<-0
while(i<10){
i <- i+l
a <- a+i
}

a

VvV + + + Vv VvV

[1] 55

7 Functions

functionName <- function(arguments){
body

“

> # example 1:

> my.func <- function(grade){

+ switch(grade, A="Great job!", B="Not bad", C="So-so", D="Fail again?... OK... Just cry!")
+}

> my.func("D")

[1] "Fail again?... OK... Just cry!"

> # example 2: a function to calculate the factorial
> my.fac <- function(x){

if (x==1){

return(x)

}elsed{

return (x*my.fac(x-1))

+

}

+
+
+
+
+
> my.fac(5)

[1] 120

> factorial(5)

[1] 120

13

example 3: a function with mutiple arguments
my.func2 <- function(x,y){
len=length(y)
return(x[1:1en])
}
my.func2(c(4,3,2,1),c(1,2))

V+ 4+ + VYV

[1] 4 3

8 Read and write files

8.1 Data output
> d1

ID name sex age married
Peter 100 Peter M 22 FALSE
Lily 101 Lily F 30 TRUE
Emma 102 Emma F 16 FALSE
Joe 103 Joe M 44 TRUE

> # output the file after converting it to a data frame

> write.table(dl,file="myFile.txt",append=FALSE, quote=FALSE, sep="\t",row.names=TRUE, col.names=TRUE)
> # save current work space

> save(dl,file="work.rdata")

8.2 Data input

> # input the data as a data frame format

> rm(list=1s())

> data=read.table(file="myFile.txt",header=TRUE, sep="\t", skip=0)
> data

ID name sex age married
Peter 100 Peter M 22 FALSE
Lily 101 Lily F 30 TRUE
Emma 102 Emma F 16 FALSE
Joe 103 Joe M 44 TRUE

> # load workspace file
> load("work.rdata")

> 1s()
[1] ngqn "data"
9 Graph

> # set the figure contain four sub graphs
> par(mfrow=c(2,2)) # 2-by-2 sub graph

14

graph 1: plot
x <- 1:10
y <- seq(0.1,1,by=0.1) # theoretical value

z <- y + rnorm(10,mean=0,sd=0.1) # actual value

plot(x, z, type="p",col="red",main="Plot", xlab="x label", ylab="value")
lines(x, y)

graph 2: histogram

age <- rnorm(1000,mean=20,sd=3)
hist(age,main="Histogram",xlab="age",ylab="counts")

graph 3: boxplot

boxplot (age,main="boxplot",ylab="age")

graph 4: qq plot

qgqnorm(age,main="qq plot")

VVVVVVVVVVYVVYV

10 At the end

1. R is similar to MATLAB, but has differences in many details

2. R programming courses
UPitt: BIOST 2094 — STATISTICAL COMPUTING AND DATA ANALYSIS USING R

3. Some useful references
http://cran.r-project.org/doc/manuals/r-release/R-lang.html
http://www.cyclismo.org/tutorial/R/
http://ww2.coastal.edu/kingw/statistics/R-tutorials/

OR, just google it!

15

http://cran.r-project.org/doc/manuals/r-release/R-lang.html
http://www.cyclismo.org/tutorial/R/
http://ww2.coastal.edu/kingw/statistics/R-tutorials/

value

age

15 20 25

10

Plot Histogram

o
%] To]
c —
>
e}
o
o
Te]
o
I T T T 1
10 15 20 25 30
x label age
boxplot qq plot
—_— [}
E 8]
' 5
5 &1
- o
[o [Te)
1 E —
- @
o @ o | ©
o = o

I I I I I I I
-3 -2 -1 0 1 2 3

Theoretical Quantiles

Figure 1: Figure examples

16

	Why R?
	Resources and installation
	Basic R file formats
	Some examples
	Data Structures
	Vectors
	Matrices
	Arrays
	Lists
	Dataframes

	Control Structures
	if()...else
	ifelse()
	switch()
	for loops
	repeat loops
	while loops

	Functions
	Read and write files
	Data output
	Data input

	Graph
	At the end

