
Basic R Programming

Silvia (Shuchang Liu)

Feb 3rd, 2014

1 Why R?

• R is high-level programming language and popular among biostatistician

• R is free open source and everyone can contribute to R (e.g. publish paper to develop new R packages)

• R can install many ready-made packages

2 Resources and installation

1. R and RStudio installation

• R can be installed on Windows, Linux and Mac (http://www.r-project.org/)

• RStudio is a nice IDE for R with GUI interface like MATLAB (http://www.rstudio.com/)

2. Package installation

• To install general R packages
To install a package in the first time

> install.packages("packageName")

Load the package before using it

> library(packageName)

• To install Bioconductor packages
Bioconductor is an open source software for bioinformatics

> source("http://bioconductor.org/biocLite.R")

> biocLite("packageName")

> library(packageName)

3 Basic R file formats

file description R file MATLAB file
script file fileName.r fileName.m
workspace file fileName.rdata fileName.mat

1

http://www.r-project.org/
http://www.rstudio.com/

4 Some examples

> # hi, I am the comment

> print("Hello world!")

[1] "Hello world!"

> a = 1 # semicolon is optional here

> b <- 2.3 # var <- value, to assign the value to var

> c <- 3e2

> d <- a + b +c # no output

> a + b + c # show out the output

[1] 303.3

> a == b # a equals to b?

[1] FALSE

> a != b # a not equals to b?

[1] TRUE

> 5/4

[1] 1.25

> 1/0

[1] Inf

> cos(pi)

[1] -1

> max(4,5)

[1] 5

> log(9, base=3) # parameter for the function

[1] 2

> log(9) # o.w. by default, base=exp(1)

[1] 2.197225

> ls() # list all the variables

[1] "a" "b" "c" "d"

> exists("b") # Does "b" exist?

[1] TRUE

> rm(list=ls()) # remove all the variables in the workspace

2

5 Data Structures

5.1 Vectors

Creat a vector

> v1 <- -2:5

> v1

[1] -2 -1 0 1 2 3 4 5

> v2 <- c(3, 2, 7.2, 0.9, 100)

> v2

[1] 3.0 2.0 7.2 0.9 100.0

> v3 <- c("aa","B","c2")

> v3

[1] "aa" "B" "c2"

> seq(from=4, to=7, by=0.5)

[1] 4.0 4.5 5.0 5.5 6.0 6.5 7.0

> rep(v2, each=2)

[1] 3.0 3.0 2.0 2.0 7.2 7.2 0.9 0.9 100.0 100.0

> rep(v2, times=2)

[1] 3.0 2.0 7.2 0.9 100.0 3.0 2.0 7.2 0.9 100.0

> rep(v2, times=1:5)

[1] 3.0 2.0 2.0 7.2 7.2 7.2 0.9 0.9 0.9 0.9 100.0 100.0

[13] 100.0 100.0 100.0

> sample(1:10)

[1] 10 8 3 7 2 9 4 6 5 1

Reference elements

> v2

[1] 3.0 2.0 7.2 0.9 100.0

> v2[3]

[1] 7.2

> v2[c(2,4)]

3

[1] 2.0 0.9

> v2[-c(2,4)]

[1] 3.0 7.2 100.0

> v2[v2>5]

[1] 7.2 100.0

> v2[2]=88

Vector operations

> v2

[1] 3.0 88.0 7.2 0.9 100.0

> which(v2>=3)

[1] 1 2 3 5

> which.min(v2)

[1] 4

> length(v2)

[1] 5

> v2*10+1

[1] 31 881 73 10 1001

> (v2*10+1)[2:4][2]

[1] 73

5.2 Matrices

> d <- sample(1:20)

> d

[1] 3 17 2 16 14 12 4 8 15 20 13 7 6 19 1 10 9 11 18 5

> # creat a matrix

> m1 <- matrix(data=d,nrow=4,ncol=5,byrow=TRUE,

+ dimnames=list(rows=c("cat","dog","rat","fish"),

+ cols=c("a","b","c","d","e")))

> m1

4

cols

rows a b c d e

cat 3 17 2 16 14

dog 12 4 8 15 20

rat 13 7 6 19 1

fish 10 9 11 18 5

> # reference matrix

> m1[2,4]

[1] 15

> m1["dog","d"] # reference by name

[1] 15

> m1[c(2,4),3]

dog fish

8 11

> m1[c("dog","fish"),"c"]

dog fish

8 11

> m1[3,]

a b c d e

13 7 6 19 1

> m1["rat",]

a b c d e

13 7 6 19 1

> # matrix dimension

> dim(m1) # matrix dimension

[1] 4 5

> nrow(m1) # number of rows

[1] 4

> ncol(m1) # number of column

[1] 5

> length(m1) # element length

[1] 20

5

> colnames(m1) # column name

[1] "a" "b" "c" "d" "e"

> rownames(m1)[4] <- "elephant" # change row names

> m2 <- matrix(c(111,222,333,444),2,2)

> m2

[,1] [,2]

[1,] 111 333

[2,] 222 444

> m1[2:3,c(3,5)] <- m2

> m1

cols

rows a b c d e

cat 3 17 2 16 14

dog 12 4 111 15 333

rat 13 7 222 19 444

elephant 10 9 11 18 5

> # matrix operation

> m3 <- matrix(1:6,2,3)

> m3

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

> m4 <- matrix(11:16,2,3,byrow=TRUE)

> m4

[,1] [,2] [,3]

[1,] 11 12 13

[2,] 14 15 16

> m5 <- matrix(21:26,3,2)

> m5

[,1] [,2]

[1,] 21 24

[2,] 22 25

[3,] 23 26

> m3*m4 # element-wise manipulation

[,1] [,2] [,3]

[1,] 11 36 65

[2,] 28 60 96

6

> m3%*%m5 # matrix manipulation, if m3%*%m4, it will throw out error message

[,1] [,2]

[1,] 202 229

[2,] 268 304

> # several useful functions

> t(m1) # transpose

rows

cols cat dog rat elephant

a 3 12 13 10

b 17 4 7 9

c 2 111 222 11

d 16 15 19 18

e 14 333 444 5

> apply(m1,1,sum) # sum of each row

cat dog rat elephant

52 475 705 53

> apply(m1,1,sqrt) # pay attention to the output dimension

rows

cat dog rat elephant

a 1.732051 3.464102 3.605551 3.162278

b 4.123106 2.000000 2.645751 3.000000

c 1.414214 10.535654 14.899664 3.316625

d 4.000000 3.872983 4.358899 4.242641

e 3.741657 18.248288 21.071308 2.236068

> apply(m1,2, function(x) return(sum(x^2+1)))

a b c d e

426 439 61734 1170 308250

> rbind(m3,m4) # row combination

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

[3,] 11 12 13

[4,] 14 15 16

> cbind(m3,m4) # column combination

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1 3 5 11 12 13

[2,] 2 4 6 14 15 16

> as.vector(m3)

[1] 1 2 3 4 5 6

7

5.3 Arrays

An array is a muti-dimensional matrix.

> # generate an array var

> a <- array(1:24,dim=c(4,3,2),

+ dimnames=list(c("a","b","c","d"),c("x","y","z"),c("old","new")))

> a

, , old

x y z

a 1 5 9

b 2 6 10

c 3 7 11

d 4 8 12

, , new

x y z

a 13 17 21

b 14 18 22

c 15 19 23

d 16 20 24

> # reference elements

> a[2,1,"new"] # pay attention to the dimension change

[1] 14

> a[-2,"x",]

old new

a 1 13

c 3 15

d 4 16

> # operation

> dim(a)

[1] 4 3 2

> apply(a,3,mean)

old new

6.5 18.5

5.4 Lists

> # generate a list var

> l1 <- list(name=c("Peter","Lily","Emma"),c("yes","no"),

+ age=c(20,40,33,rep(18,times=3)),

+ value=matrix(1:6,2,3))

> l1

8

$name

[1] "Peter" "Lily" "Emma"

[[2]]

[1] "yes" "no"

$age

[1] 20 40 33 18 18 18

$value

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

> # reference elements

> l1[[2]]

[1] "yes" "no"

> l1[["age"]]

[1] 20 40 33 18 18 18

> l1$name

[1] "Peter" "Lily" "Emma"

> l1[["value"]][2,]

[1] 2 4 6

> # list operation

> names(l1)

[1] "name" "" "age" "value"

> length(l1)

[1] 4

> unlist(l1) #produce a vector of all the elements

name1 name2 name3 age1 age2 age3 age4 age5

"Peter" "Lily" "Emma" "yes" "no" "20" "40" "33" "18" "18"

age6 value1 value2 value3 value4 value5 value6

"18" "1" "2" "3" "4" "5" "6"

> l2 <- list(matrix(2,4,5),matrix(1:10,2,5),diag(3))

> l2

9

[[1]]

[,1] [,2] [,3] [,4] [,5]

[1,] 2 2 2 2 2

[2,] 2 2 2 2 2

[3,] 2 2 2 2 2

[4,] 2 2 2 2 2

[[2]]

[,1] [,2] [,3] [,4] [,5]

[1,] 1 3 5 7 9

[2,] 2 4 6 8 10

[[3]]

[,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 1 0

[3,] 0 0 1

> lapply(l2,sum) # return a list

[[1]]

[1] 40

[[2]]

[1] 55

[[3]]

[1] 3

> sapply(l2,dim) # return a vector or matrix

[,1] [,2] [,3]

[1,] 4 2 3

[2,] 5 5 3

5.5 Dataframes

> # generate a dataframe

> ID <- 100:103

> name <- c("Peter","Lily","Emma","Joe")

> sex <- c("M","F","F","M")

> age <- c(22,30,16,44)

> married <- c(F,T,F,T)

> d1 <- data.frame(ID,name,sex,age,married)

> rownames(d1) <-name

> d1

ID name sex age married

Peter 100 Peter M 22 FALSE

10

Lily 101 Lily F 30 TRUE

Emma 102 Emma F 16 FALSE

Joe 103 Joe M 44 TRUE

> # reference elements, just like a matrix

> d1["Emma","age"]

[1] 16

> d1[d1$ID==103,]

ID name sex age married

Joe 103 Joe M 44 TRUE

> # operation

> d2 <- d1[order(d1[,"age"]),]

> d2

ID name sex age married

Emma 102 Emma F 16 FALSE

Peter 100 Peter M 22 FALSE

Lily 101 Lily F 30 TRUE

Joe 103 Joe M 44 TRUE

6 Control Structures

6.1 if()...else

if(condition){

expression 1, if TRUE

}else{

expression 2, if FALSE

}

> passExam <- TRUE

> if(passExam==TRUE){

+ print("Congratulations!")

+ }else{

+ print("Try it again!")

+ }

[1] "Congratulations!"

6.2 ifelse()

ifelse(condition, TRUE expression, FALSE expression)

> x <- matrix(sample(1:6),2,3)

> x

11

[,1] [,2] [,3]

[1,] 2 6 1

[2,] 5 3 4

> y <- ifelse(x>3,1,0)

> y

[,1] [,2] [,3]

[1,] 0 1 0

[2,] 1 0 1

6.3 switch()

switch (statement, list)

> grade="D"

> switch(grade, A="Great job!", B="Not bad", C="So-so", D="Donnot cry! I trust you!")

[1] "Donnot cry! I trust you!"

6.4 for loops

for (name in vector){

statement

}

> sum(1:10)

[1] 55

> a <- 0

> for (i in 1:10){

+ a <- a+i

+ }

> a

[1] 55

6.5 repeat loops

repeat{

expression

if(condition) break

}

> a <- 0

> i <- 0

> repeat{

+ i <- i+1

+ a <- a+i

+ if (i>=10) break

+ }

> a

12

[1] 55

6.6 while loops

while(condition){

expression

}

> a <- 0

> i <- 0

> while(i<10){

+ i <- i+1

+ a <- a+i

+ }

> a

[1] 55

7 Functions

functionName <- function(arguments){

body

}

> # example 1:

> my.func <- function(grade){

+ switch(grade, A="Great job!", B="Not bad", C="So-so", D="Fail again?... OK... Just cry!")

+ }

> my.func("D")

[1] "Fail again?... OK... Just cry!"

> # example 2: a function to calculate the factorial

> my.fac <- function(x){

+ if(x==1){

+ return(x)

+ }else{

+ return(x*my.fac(x-1))

+ }

+ }

> my.fac(5)

[1] 120

> factorial(5)

[1] 120

13

> # example 3: a function with mutiple arguments

> my.func2 <- function(x,y){

+ len=length(y)

+ return(x[1:len])

+ }

> my.func2(c(4,3,2,1),c(1,2))

[1] 4 3

8 Read and write files

8.1 Data output

> d1

ID name sex age married

Peter 100 Peter M 22 FALSE

Lily 101 Lily F 30 TRUE

Emma 102 Emma F 16 FALSE

Joe 103 Joe M 44 TRUE

> # output the file after converting it to a data frame

> write.table(d1,file="myFile.txt",append=FALSE,quote=FALSE,sep="\t",row.names=TRUE,col.names=TRUE)

> # save current work space

> save(d1,file="work.rdata")

8.2 Data input

> # input the data as a data frame format

> rm(list=ls())

> data=read.table(file="myFile.txt",header=TRUE,sep="\t",skip=0)

> data

ID name sex age married

Peter 100 Peter M 22 FALSE

Lily 101 Lily F 30 TRUE

Emma 102 Emma F 16 FALSE

Joe 103 Joe M 44 TRUE

> # load workspace file

> load("work.rdata")

> ls()

[1] "d1" "data"

9 Graph

> # set the figure contain four sub graphs

> par(mfrow=c(2,2)) # 2-by-2 sub graph

14

> # graph 1: plot

> x <- 1:10

> y <- seq(0.1,1,by=0.1) # theoretical value

> z <- y + rnorm(10,mean=0,sd=0.1) # actual value

> plot(x, z, type="p",col="red",main="Plot", xlab="x label", ylab="value")

> lines(x, y)

> # graph 2: histogram

> age <- rnorm(1000,mean=20,sd=3)

> hist(age,main="Histogram",xlab="age",ylab="counts")

> # graph 3: boxplot

> boxplot(age,main="boxplot",ylab="age")

> # graph 4: qq plot

> qqnorm(age,main="qq plot")

10 At the end

1. R is similar to MATLAB, but has differences in many details

2. R programming courses
UPitt: BIOST 2094 – STATISTICAL COMPUTING AND DATA ANALYSIS USING R

3. Some useful references
http://cran.r-project.org/doc/manuals/r-release/R-lang.html

http://www.cyclismo.org/tutorial/R/

http://ww2.coastal.edu/kingw/statistics/R-tutorials/

OR, just google it!

15

http://cran.r-project.org/doc/manuals/r-release/R-lang.html
http://www.cyclismo.org/tutorial/R/
http://ww2.coastal.edu/kingw/statistics/R-tutorials/

2 4 6 8 10

0.
0

0.
4

0.
8

Plot

x label

va
lu

e

Histogram

age

co
un

ts

10 15 20 25 30
0

50
15

0

10
15

20
25

boxplot

ag
e

−3 −2 −1 0 1 2 3

10
15

20
25

qq plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 1: Figure examples

16

	Why R?
	Resources and installation
	Basic R file formats
	Some examples
	Data Structures
	Vectors
	Matrices
	Arrays
	Lists
	Dataframes

	Control Structures
	if()...else
	ifelse()
	switch()
	for loops
	repeat loops
	while loops

	Functions
	Read and write files
	Data output
	Data input

	Graph
	At the end

