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Spring 2014

March 26, 2014

This exam has 9 questions, for a total of 100 points.

Name:

Instructions:

• Write clearly. Unless stated otherwise, make sure to write down your steps for the
calculations/derivations, do NOT just write a number.

• If you need more room to work out your answer to a question, use the back of the
page. Make sure to indicate that we should check the back of the page for the rest
of your answer.

• This exam is open book. Calculators are allowed, but no computers, PDAs, or other
communication devices.

• You have 1 hour and 30 minutes. Good luck!

No. Topic Max. Score Your Score
1 HMM 15
2 Phylogenetics 10
3 Evolutionary Trees 10
4 Motif Discovery 12
5 Normalization 12
6 Hypothesis Testing 12
7 Multiple Hypothesis Testing 10
8 Clustering 9
9 Feature Selection in Classification 10
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Name:

1. (15 points) HMM

Assume we have a DNA sequence that begins in an exon, contains one 5′ splice site
and ends in an intron. In a given sequence, the problem is to identify where the switch
from exon to intron occurred, that is identify where the 5′ splice site is.

Say that the

• exons have a uniform base composition on average,

• introns are A/T rich but have non-zero probability for C/G bases

• 5′ splice site consensus nucleotide is almost always a G, but sometimes an A.

Note, the information provided here is not complete, so you have a choice
in selecting these numbers, as long as they satisfy the specified constraints.

(a) Model set up: Draw a hidden Markov model diagram for this problem.

1. Specify the complete set of states.
2. Specify the emission probabilities. State all the assumptions you made in

arriving at these numbers.
3. Specify the transition probabilities between all states. Assume the Markov

chain when it enters an exon or intron state remains there with a probability
of 0.9

Answer:
1. besides E, 5, and I, dont forget start and end nodes. So from start
node go to E, then go to 5′ and then to I and finally to end node.
2. at E, emission probabilities are all 0.25 because of the uniform base
composition. at I, we will set emission probabilities to be say 0.4 each
for A and T and 0.1 for C and G because introns are A/T rich. At 5′

splice site, set it to be 0.99 for G and 0.01 for A.
3. from start to E, it will be 1. At E, the self-loop is 0.9 and transition
to 5 is 0.1. at 5′ the transition to I will be 1. No self-loop at 5′. At I
the self-loop is 0.9 and the transition to end node is 0.1
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(b) Finding the best path: Consider the DNA sequence below and an example path
through the state space:

where E stands for exon, I for intron and 5 for the 5′ splice site. There are poten-
tially many state paths that could generate the same sequence.

For the HMM you have set up and the 22 nucleotide sequence given above, how
many paths in the state space have non-zero probability? Explain why.

Answer: There are 14 possible paths. Because 5′ cannot be at the
start or end, it has to be somewhere in between. There are 14 places
where you will find either a G or A in the 26 nucleotide sequence, so
those are the only places you can place the 5′ state. So the total number
of paths is NOT infinity.

(c) Posterior decoding: In the example path shown above, the 5′ splice site was shown
to be located on the fourth G (counting from the left). Knowing the total number
of paths and each of their probabilities, how will you determine if the fourth G is
the right choice?

Answer: Divide the probability of any given path by the sum of proba-
bilities over all 14 paths. That will give the relative importance of each
path and hence their significance.
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2. (10 points) Phylogenetics

Construct a phylogenetic tree using UPGMA for the following distance matrix. Show
your steps and specify the resulting branch lengths.

Cat Ferret Dog
Ferret 15
Dog 10 17

Gerbil 16 4 18

Answer:

Cat Ferret Dog
Ferret 15
Dog 10 17

Gerbil 16 4 18

Cat GF
GF 15.5
Dog 10 17.5

CD
GF 16.5
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3. (10 points) Evolutionary Trees

The probability of the occurrence of a particular evolutionary history as represented
by a particular tree can be calculated given a model of evolution. We will assume that
the model is time-reversible, which means the likelihood of the model does not change
regardless of which time direction is assumed for a branch, and hence the location of
the root is unimportant in the calculation.

You will use the tree shown below to calculate the model likelihood using Jukes-Cantor
(JC) model of evolution.

This is a tree with four leaves at nodes labeled 1 to 4, with observed sequences at
these leaves, but unknown ancestral sequences at the internal nodes Y and Z. The
probabilities you calculate depend on the tree topology T . You will consider each
branch separately, and the probability of base i at any position mutating to
base j in a time t will be written as P (j|i, t). You will use Jukes-Cantor (JC)
model to evaluate these probabilities.

i. In the JC model with mutation rate parameter α, write down the analytical ex-
pressions for the following probabilities:

P (j|i, t) when i is the same as j,
and
P (j|i, t) when i is not the same as j.

Your expressions will use both the rate parameter α and time t.

Answer: We derived these expressions in the class.
1
4 [1 + 3 exp(−4αt)] and 1

4 [1 exp(−4αt)]
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ii. You can compute the likelihood of specific bases xY and xZ occurring at a
particular sequence position at internal nodes Y and Z of the tree with topology T
and branch lengths ti . Assume each branch has evolved independently, so you can
multiply the probabilities together. Pick xZ as your root node and expand/simplify
the following probability expression:

P (x1, x2, x3, x4, xY , xZ |T, t1, t2, t3, t4, t5)

Answer:

P (x1, x2, x3, x4, xY , xZ |T, t1, t2, t3, t4, t5)
= qxZP (X1|XZ , t1)P (X2|XZ , t2)P (XY |XZ , t5)P (X4|XY , t4)P (X3|XY , t3)
where qxZ is the probability of the base at internal node Z being xZ
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iii. As an example of this method, you will compute the likelihood of four sequences of
one base each, two being A and the other two being C and G, under the simplifying
constraint of all five branches having the same length t and using the Jukes-Cantor
evolutionary model. Assume the base composition to be equal for all four bases.

Write down the analytical expression for the likelihood of the tree given below:

Note, because the internal nodes Y and Z can have any possible base
values for ith position, this must be taken into account.

Use the following notation for the expressions derived from the first problem:
S = P (j|i; t) when i is the same as j
and
D = P (j|i; t) when i is not the same as j
for branch lengths between nodes with identical and different bases respectively.

Answer:
Y and Z can take 16 possible combinations.
(A,A)(A,C)(A,G)(A, T )(G,A)(G,C), (G,G), (G,T ), . . .
Every one of these combinations contributes to the likelihood expres-
sion. For example plugging in (A,A), we find that there are 3 branches
that have same bases on both ends, while two other branches do not.
So the contribution to likelihood is: 1

4S
3D2, where 1

4 is because all bases
are assumed to be equally present at qxZ . We have to repeat this for all
16 combinations and collect the common terms.
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4. (12 points) Motif Discovery
In class we discussed two types of matrices for motif discovery. The first, PWM, rep-
resents fractions of nucleotides at? each position based on counts of known aligned
motifs. The second, PSSM, uses the PWM to compute a score by also taking into
account the background distribution of the species being studied.

Assume you are given the following PWM:

P1 P2 P3 P4 P5
A 0.05 0.3 0.1 0.6 0.8
C 0.8 0.2 0.1 0.2 0.05
G 0.1 0.3 0.7 0.2 0.05
T 0.05 0.2 0.1 0 0.1

As mentioned above, PSSM matrix does not take the genomic background distribution
into account. For motifs M1 and M2 we write P (M1) > P (M2) if the probability
that M1 is a real motif based on our scoring function is higher than the probability
that M2 is a real motif. For example, using only the PWM above to score motifs, we
have P (CCCGG) > P (GTAGC).

For each of the following motif pairs, state what the background distri-
bution should be so that if we use the PSSM derived from the PWM above
(by incorporating the background distribution), P (M1) > P (M2). If no back-
ground distribution would lead to such relationship briefly explain why.

Note that changing the background distribution can change the scores since if a nu-
cleotide is very rare in a species then even if it appears in only 30% of the motifs (0.3),
if we see it in that position it could still lead to a high score. Also note that there may
be several different background distributions that will satisfy the questions below, in
such cases just state one example of such distribution.

(a) M1 = CCTCC,M2 = GTCGG
Answer: A uniform background (25% each nucleotide) would work
since even by just using the PWM we have P (M1) > P (M2) and a
uniform background would leave the relationship the same.
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(b) M1 = CGATG,M2 = GATCC

Answer: No background would help here. Since the probability for
observing a T in the fourth location is 0, no matter what background
we use P (M1) would be 0 and would always be lower than P (M2).

(c) M1 = CCTCC,M2 = GTAGC

Answer: We can see that M1 has lots of Cs while M2 has only 1.
On the other hand, M1 does not contain any Gs while M2 has 2. Even
though the first C is much more likely than the first G, if we assume a
very skewed GC distribution it would lead to each G being much more
surprising than C. So for example A = 0.1, T = 0.1, C = 0.79 and G = 0.01
would work here. Several other solutions in which G >> C would also
work.
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5. (12 points) Normalization

Assume we have performed a RNA-Seq for two samples from the same species, A
and B. We aligned the reads in Seq dataset to the genome and obtained counts for
every gene (number of reads mapped to each gene). Let gA

1 and gA
2 be the read counts

for genes g1 and g2 in experiment A. Denote by T (gA
1 ) and T (gA

2 ) the normalized
values for genes g1 and g2 in experiment A.

Assume gA
1 > gA

2 . For the following questions choose ALL answers that could be
correct. No need to explain your answers.

(a) If we used quantile normalization where for the common values (which we assign
to all experiments) we have used the median of each rank then:

i T (gA
1 ) > T (gA

2 )
ii T (gA

1 ) = T (gA
2 )

iii T (gA
1 ) < T (gA

2 )

Answer: (i) and (ii). Since the values are assigned based on rank T (gA
1 )

can either be higher than T (gA
2 ) (since its ranked higher) or equal if

there are ties in the other experiments.

(b) If we used scale factor normalization then:

i T (gA
1 ) > T (gA

2 )
ii T (gA

1 ) = T (gA
2 )

iii T (gA
1 ) < T (gA

2 )

Answer: (i). In this case, because gA
1 > gA

2 any linear transformation
(which is what we apply in scale factor normalization) will maintain
the same relationship between the two values.

(c) If we used RPKM normalization then:

i T (gA
1 ) > T (gA

2 )
ii T (gA

1 ) = T (gA
2 )

iii T (gA
1 ) < T (gA

2 )

Answer: (i) (i) (iii). In this case it is impossible to tell. For example, if
gene 2 is shorter than gene 1 than even though more reads are assigned
to gene 1, after RPKM normalization the relationship can be reversed.
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For questions d, e, and f, assume that the total number of reads in experiment A is the
same as the number of reads in experiment B. Let gB

1 and gB
2 be the read counts for

genes g1 and g2 in experiment B. Similarly, denote by T (gB
1 ) and T (gB

2 ) the normalized
values for genes g1 and g2 in experiment B.

Assume gA
1 > gB

1 . Again, for the following normalization methods choose ALL an-
swers that could be correct.

(d) If we used invariant set normalization then:

i T (gA
1 ) > T (gB

1 )
ii T (gA

1 ) = T (gB
1 )

iii T (gA
1 ) < T (gB

1 )

Answer: (i) (ii) (iii). It’s impossible to tell, it depends on the overall
set of values in the two experiments.

(e) If we used RPKM normalization then:

i T (gA
1 ) > T (gB

1 )
ii T (gA

1 ) = T (gB
1 )

iii T (gA
1 ) < T (gB

1 )

Answer: (i). Here, since we know that that total number of reads
is the same and that the gene length is the same (its the same gene)
RPKM is just a multiplication by a constant which is the same for both
experiments and so the relationship is maintained.

Assume we have used scale factor normalization. We know that the variance of exper-
iment A (V A) is 4 times higher than the overall variance (V ). If gA

1 = 50, T (gA
1 ) = 75,

and gA
2 = 100.

(f) What is the value of T (gA
2 )?

i 100
ii 125
iii 150
iv Impossible to tell

Answer: (ii). We know that V
V A = 4 ⇒

√
V

V A = 2. In addition, because
its the same species in both experiments and the number of reads is
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the same, both have the same mean so MA = M . We thus can compute
M and we find that M = 100 (since (50−100)/2+100 = 75). Inserting 100
into the same equation for an original read value of 150 leads to 125.
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6. (12 points) Hypothesis Testing

In class we discussed using a log likelihood ratio test for hypothesis testing. Such
a test is appropriate for nested hypothesis, where H1 is a more detailed version of H0
(in the example we discussed in class, H1 has one extra parameter but both H0 and
H1 used the same model). Based on this, for each of the following hypotheses write
if they could be tested using a log likelihood ratio test. If the answer is yes, say how
many degrees of freedom we have. If the answer is no, briefly explain why.

(a) H0: Gene g1 in two sets of mircroarray expression experiments (cancer and
healthy) is generated from the same Gaussian distribution (same mean and vari-
ance in both sets of patients).
H1: Gene g1 in two sets of mircroarray expression experiments (cancer and
healthy) is generated from two different Gaussians with different means and a
shared variance V = 1.

Answer: No. These are not nested hypotheses. Specifically, the likeli-
hood of H1 can be lower than the likelihood of H0 for example if the
real variance is much higher or much lower than 1.

(b) H0: Using a Poisson probabilistic model for read counts in RNA-Seq
H1: Using a Negative Binomial probabilistic model for read counts in RNA-Seq

Answer: Yes. The D.O.F. is 1. We mentioned in class that when the
mean equals the variance negative binomial becomes Poisson, so these
are nested.
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For questions c and d, assume we are clustering expression data from n arrays.

(c) H0: Using k-means with k = 5 for clustering gene expression data
H1: Using k-means with k = 7 for clustering gene expression data

Answer: No. K-means is not a probabilistic model and so we cannot
compute a likelihood for either hypothesis.

(d) H0: Using Gaussian mixtures (diagonal covariance matrix) with k = 5 for clus-
tering gene expression data
H1: Using Gaussian mixtures (diagonal covariance matrix) with k = 7 for clus-
tering gene expression data

Answer: Yes. The D.O.F. is 4n (n additional mean values and n addi-
tional variance values for each additional cluster).
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7. (10 points) Multiple Hypothesis Testing

(a) Assume we are testing 100 genes. We found 5 significant genes with a Bonferroni
corrected p-value less than 0.05. What is the FDR (in %) for this set?

Answer: If the corrected p-value is 0.05 then the actual p-value we used
is 0.05/100 = 0.0005. At that p-value we expect to find 0.005 ∗ 100 = 0.05
genes by chance. Since we found 5, the FDR is 0.05 ∗ 100/5 = 1%.

(b) Assume we are testing 100 genes. We found 10 significant genes with a FDR of
1%. What is the Bonferroni corrected p-value that applies to genes in this set?

Answer: If we found 10 genes with a FDR of 1% then for the p-value
we used we expected to find by chance 0.1 genes. This corresponds
to an (uncorrected) p-value of 0.1/100 = 0.001. When correcting using
Bonferroni we get 0.001 ∗ 100 = 0.1.
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8. (9 points) Clustering

Select the suitable clustering method(s) that can give the following result.

Fill in the following table. Mark T if you think the clustering method is suitable for
the figure and mark F if not suitable. No need to explain your answers.

Figure (a) Figure (b) Figure (c)
Gaussian mixtures with full covariance matrix F T T
Gaussian mixtures with diagonal covariance matrix F F T
Hierarchical clustering with single linkage T F F
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9. (10 points) Feature Selection in Classification

Given a gene expression data set, instead of using all the genes, we want to classify
samples (columns) only with a few differentially expressed genes. Here are two strate-
gies:

Strategy (A): First, use all the samples to select top 50 DE genes (similar to what you
did in the homework). Then split the samples into training data and test data. Train
the classifier with the training data and use the same parameters to compute the test
error.

Strategy (B): First, split the samples into training data and test data. Then only use
training data to select top 50 DE genes and train the model. Again use test data to
compute the test error rate.

Both strategies will use the same classifier. Which strategy is more likely to result in
a smaller training error rate? Which one is likely to lead a smaller test error rate?
Which method would you prefer to use to classify future (unseen) data? Explain.

Answer: The second strategy will lead to better (smaller) training error
rate since the DE genes are only from the training set, while the first will
lead to better test error rate since it is ’cheating’ by overfitting. We would
prefer to use the second strategy because true labels for future data are
unknown.
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