Finding DNA seguence motifs
and decoding cis-regulatory logic
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DNA sequence motifs

e Short recurring patterns in DNA that are presumed to have biological
significance

e Often indicate sequence-specific binding sites for proteins such as
nucleases and transcription factors (TFs)

* Others are involved in processes such as: ribosome binding, mRNA
processing (splicing etc), transcription termination



How to find binding sites?

* Experimental: construct artificial sequences and explore binding affinities
(using SELEX), Dnase footprinting

* Computational: search for overrepresented (and/or conserved) DNA
patterns upstream of functionally related genes (e.g. genes with similar
expression patterns or similar annotation)

* Huge gap between computational and experimental efforts

e Large-scale efforts to analyze genome-wide binding of TFs using ChIP-chip
are rapidly addressing the gap

* Motif knowledge very useful in defining genetic regulatory networks and
regulatory program of individual genes, so an important tool for
computational biology



Regulation perspective: restriction enzymes

* Type Il restriction enzymes that bind to DNA targets in highly specific
sequence manner

e Part of a primitive bacterial immune system design to chop up viral
DNA from infecting phages

e Cannot stray from consensus binding site => autoimmune reaction
that could lead to irreversible damage to the bacterial genome

* Examples:
* EcoRl binds to 6-mer GAATTC and only to that sequence

e Hindll binds to consensus sequence GTYRAC where Y stands for Cor T
(pYrimidine) and R stands for A or G (puRine)



Consensus statistics

* Probability that a random 6-mer matches EcoRl binding site is (1/4)"6
so the site occurs about once every 426 = 4096 bp in a random DNA
sequence

* For Hindll however, there are two positions where two out of four
bases can match, it would occur once per 4724 x 222 = 1024 bp



TATAAT box

* Well-conserved sequence centered around 10bp upstream of the
transcription initiation site of E coli promoters

* Together with a motif TTGACA centered around -35, forms the
binding for S70 subunit of the core RNA polymerase
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TATAAT box

* Despite the high degree of conservation at each position (ranging
from 54% to 82% for each base), it is rare to find a promoter that
matches this consensus sequence exactly

* Most promoters match only 7-9 out of 12 bases
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Position Weight Matrix (PWM)

* For TATAAT motif, activity of each promoter is related to how well it
matches the consensus sequence, so the activity level of each gene
can be fine-tuned by how much its -10 and -35 regions deviate from

the consensus

* Use: Position Weight Matrix (PWM) to denote the fraction of
nucleotide occurrences at each location of the motif and Position

Specific Scoring Matrix (PSSM) to correct the occurrences for
background distribution

* e.g. ROX1 transcription factor is known to bind at least 8 sites in three
genes in the yeast (Saccharomyces cerevisiae) genome



Panel a: multiple alignment of 8 binding
sites of ROX1

Consensus sequence in panel b. show a
single base if it occurs more than half the
sites and at least twice as often as the
second most frequent base. Otherwise, use
a double-degenerate symbol if two bases
occur in more than 75% of the sties...
Normalize columns in panel c to get PWM
Core motif: ATTGTT

D’haeseleer, Nature Biotech 24, 4

d HEM13 CCCATT

d

HEM1
HEM1
ANB1
ANB1
ANB1
ANB1
ROX1

3 TTTCT

3 TCAATT
CTCATT
TCCATT
CCTATT
TCCATT
CCAATT

YCHATT

A 0027000

TTCTC
TTCTC
TTTA

TTGTC
TTCTC
TTCTC
TTCCT
TTTT

TTCTC

00010

C 464100000505

0000018
T 4220870

Counts

00112
88261

2.0
210
0o j;c_c?éTl

TRSATICTIES

clc

2.0
8role AT exe
5.

Bob Crimi



Information content of a PWM :
[ =2+ ;fh log, f, .

fpi - frequency f of base b at position /

Perfectly conserved: 2 bits

Small sample corrections needed (panel e)

Information content of partially degenerate

6-mer Hindll: 10 bits
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Position Specific Scoring Matrices (PSSM)
Correcting for background frequencies
* All four bases occur equally is a reasonable
approximation for E. coli (51% GC) or human

(41% GC)

* Butis biased in S. cerevisiae (38%) C. elegans
(36%), Plasmodium falciparum (19%),

Streptomyces coelicolor (72%)

Motif is interesting if it is different from the

background distribution

Use relative entropy (or information content) with
base background frequency (panel f)
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Position Weight Matrices define an additive scheme for scoring sequence. Often,
the weights are simply log likelihood ratios of observing a nucleotide in a binding site
relative to genomic background. Sequences are scanned by scoring every site, on
both the forward and reverse complement strands, and identifying matches as
shown in the schematic below:

C——— > Scan direction
tgcggaatgfg_:_g_g;_t_@tttttatcaaaaaaaacacccgcacatgcatcagtgtcatat
[1]2]3]4]5]s MATCH
A -5 -8 1 -1-40 Yes

CE-28 0 -3 2 2 threshold
",:i. -2 5 0 1 NO
i NO MATCH

A particular site is evaluated by adding up the entries from the scoring matrix at
each position, and comparing the sum to a match threshold. For log ratio PWMs, an
empirically chosen threshold of 60% of the maximum positive score has been used
by Harbison et al. and is approximately equal to cutoffs determined by the principled
cross-validated method presented in Maclsaac et al. More sophisticated algorithms
developed specifically for motif scanning are described briefly in Figure 3.




TF information

* TRANFAC

* JASPAR for multicellular eukaryotes
 YEASTRACT

* SCPD for S. cerevisiae

* RegulonDB for E. coli

* PRODORIC for prokaryotes



Motif discovery

* Three approaches:

Enumeration
Deterministic optimization
Probabilistic optimization

e Enumeration

Dictionary-based methods count # of occurrences of all n-mers in the target
sequence and calculate which ones are overrepresented

Motif based description on exact occurrence is too rigid, use a flexible consensus
description..or..

Search the space of all degenerate consensus sequences up to a given length

Use a consensus sequence and allow mismatches, use suffix tree representation to
find all such motifs in target sequences

No getting stuck in local minima, but these methods may overlook some of the
subtle patterns present in the real binding sites



Deterministic optimization

Use EM to simultaneously optimize a position
weight matrix (PWM) description of a motif
and the binding probabilities for tis associated
sites

Initialize the weight matrix for the motif with a
single n-mer subsequence plus a small amount
of background nucleotide target sequences
For each n-mer in the target sequence,
calculate the probability that it was generated
by the motif, and compare that with the
probability assigned by a background sequence
distribution

EM takes a weighted average across these
probabilities to generate a more refined motif
model

Algorithm iterates between calculating the
probability of each site based on the current
motif model and calculating a new motif based
on the probabilities

Sites in target sequences
AATCAGTTATCTGTTGTATACCCGGAGTCC
ALGGTUGARATGUARAARUCGGTTCTTGCACGTA
GRGATAACCGCTTGATATGACTCATTTGCC
ATATTCCGGACGCTEGTGACGATCOGETTTS
GRACGCAACCAGTTCAGTGCTTATCATGAR

ARTCAGTTATCTGTTETATACCCOGEAGTCC
AGGTCGAATGCARARCGETTCTTGCACGTA
GAGATAACCGCTTGATATGACTCATTTGCC
ATATTCCGGACGCTGTGACGATCCGETTTG
GAACGCAACCAGTTCAGTGCTTATCATGAA
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Deterministic optimization

e MEME: multiple EM for motif

o . Sites in target sequences Motif model
elicitation AATCAGTTATCTGTTGTATACCCGGAGTCC
. . . AGGTCGAATGCAARACGGTTCTTGCACGTA
* MEME pe rforms a sin g le iteration GRAGATAACCGCTTGATATGACTCATTTGCC
fO r eac h n-mer int h e ta rget ATATTCCGGACGCTGTGACGATCOGGTTTS
] GAACGCAACCAGTTCAGTGCTTATCATGAA _

sequences, selects the best motif - AAIQA 1T
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* Fin d a d d itiona | mot IfS by mas kl ng GAACGCAACCAGTTCAGTGCTTATCATGAR

the sequences matched by the first — AA.;CA,JT

motif and rerunning the algorithm
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Probabilistic Optimization

* Gibbs sampling: stochastic implementation of EM
* |nitialize motif model with randomly selected set of sites
* Every site in the target sequence is scored against this initial motif model

* At each iteration, probabilistically decide whether to add a new site and/or
remove an old site from the motif model, weighted by the binding
probability of these sites

* Update the resulting motif model and recalculate the binding probabilities

e After many iterations, we would have sampled the joint probability
distribution of motif models and sites assigned to the motif, focusing in on
the best fitting combinations



Which one to use?

* Tompa et al compared 13 different motif discovery algorithms

* Enumerative approaches: Weeder and YMF performed well on eukaryotic
sequences with known motifs

* Each algo covered only a small subset of known binding sites, with relatively
little overlap between the algorithms

* Best to combine results from multiple discovery tools: MotifSampler

* Implementation details may be more important than optimization procedure
* How to represent motifs
* Whether to optimize motif width and number of occurrences
* Which objective function



Binding energy and searching for new sites

* Affinity of a DNA binding protein to a specific binding site is typically correlated
with how well the site matches the consensus sequnces

* But not all matches in a binding site are equally forgiving of mismatches and not
all matches at a given position have the same effect

* Assume each position contributes to the binding energy independently, we could
measure the effect of binding energy of all possible base changes

* The resulting PWM, call it W(b,i), can be used to calculate the specific-binding
free energy (relative to random background DNA) of a sequence S, where S(i) is
the base occurring in position i in sequence S:

- AG(S) = X W(S(i),i)



Biophysical interpretation

* We usually have a list of known binding sites, without any affinity
information.

* |f we assume that the genomic DNA is random with base frequencies pb,
we can optimize the values of PWM such that the probability of binding to
the known binding sites (versus the more abundant background DNA) is
maximized.

* Optimal weight matrix: ;; |

Wi(b,i) = lugjpi

2 P,

* Information content of a sequence can pe interpreted as an estimate of the
average specific binding energy to the entire set of known binding sites, in

competition with genomic DNA



Which one of the motifs is biologically
relevant?

e Information content
e Lo-likelihood
* MAP score

* Group specificity: probability of having this many target sequences containing the
site (or this many sites within the target sequences), considering the prevalence
of the motif throughout the genome

. Seguence specifity: emphasize both the number of sequences with binding sites,
and the number of sites per sequence

 Positional bias or uniformity: real TF binding sites often (but not always) show a
marked preference for a specific region upstream of the genes they regulate. So
measure how uniform the binding site locations are distributed with respect to
transcription start site of the gene.

* Experimental: phylogenetic footprinting and ChlIP-chip analysis




Guidelines

* |f possible, remove spurious patterns from target sequences
(RepeatMasker)

* Use multiple motif prediction algorithms

* Run probabilistic algorithms many time

e Retrieve multiple motifs

* Try a range of motif widths and expected number of sites

* Filter out motifs with biologically implausible distribution of information
content (‘block filtering’)

 Combine similar motifs, AlighACE, cluster and take best representative
* Use AlignACE to match up with known motifs for the organism
* Evaluate resulting motifs with criterion on the previous page



agagagttaa accttgtgtg
tctgtatagt agctactata
cagacacaca aaacctagat
aagtgtaata tgaaaacata
tttttattca aattta
tettetttat aacacaa
ggccaaccge caagtct
ccatttattt accagtt
aaaataacat tgeggtgeg
agccgtaact aaatatcgaa
catttaacgg cattaagact
cgatacaaca aggagttaat
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AlignACE

MDScan

Assemble input data. Results may be improved by
restricting the input to high-confidence sequences.

@ Some algorithms achieve improved performance by
using phylogenetic conservation information from
orthologous sequences or information about protein
DNA-binding domains.

@ Choose several motif discovery programs for the
analysis. For recommended programs see Figure 3.

Test the statistical significance of the resulting
motifs. Use control calculations to estimate the
empirical distribution of scores produced by each

/ﬂ @ program on random data.

Clustering and post-processing the motifs. Motif
discovery analyses often produce many similar motifs,
which may be combined using clustering. Phylogenetic
conservation information may be used to filter out
statistically significant, but non-conserved motifs that
are more likely to correspond to spurious sequence
patterns.

Interpretation of motifs. Algorithms exist for linking
motifs to transcription factors and for combining motif
discovery with expression data.



Multi-purpose packages

Motif Scanning

TAMO TAMO integrates several motif discovery programs. It includes Ahab The Ahab webserver allows users to scan for motifs in a set of sequences.
support for motif scanning, scoring, evaluation of statistical Motifs may be user-specified or selected from a database of pre-defined
significance, clustering, comparison, input/output, conversion matrices.
between different motif representations, and visualization. http://aaspard.bio.nyu.edu/Ahab html
hitp /fraenkel mit edu/webtame/ o

BEST 'BEST is a suite of four motif discovery tools integrated in a Clover Clover identifies overrepresented motifs in a set of sequences basedona
graphical user interface. BEST incorporates the BioOptimizer pre-compiled library of motif matrices.
tool used to rank and improve the predictive power of the htto://zlab.bu.edu/clover/
discovered motifs.
|hitp://webster.cs.uga.edu/~che/BEST/ _

TOUCAN2 TOUCAN?2 provides an interface to the Ensembl and EMBL MAST MAST allows users to scan sequence databases for matches to motifs. It
databases of sequence and annotation. It incorporates tools produces detailed annotations and figures for matches in the input
for sequence alignment, motif discovery, and scanning. sequences.

\http /lhomes esat kuleuven.be/~saerts/software/toucan.php | h_ttp //meme sdsc. edulmemelmtro html

Expander Expander is a tool for analyzing expression data. [t can cluster Monkey Monkey analyzes multlple sequence alignments to identify evolutionarily
genes, identify over-represented functional categories in conserved matches to a motif.
clusters, and scan corresponding promoter regions for motifs. http:/frana.Ibl gov/~alan/Monkey htm

) ‘h(tp /lwww.cs.tau.ac |l/~rshamsr/expander/

MDScan MDScan uses ChIP-chup enrichment ratio data to help the motif cisRED cisRED is a database of conserved motifs and motif patterns obtained by

BioProspector search. BioProspector is a Gibb's sampling program. genome scale motif dlsceve(y. ORegAnno is a database of regulatory
CompareProspector incorporates comparative genomics, ‘ sites curated from the scientific literature.

Compare- biasing the search to regions of high conservation. ORegAnno nﬂptllwww.dsred.orql

Prospector hip //seqmotifs.stanford.edu /

Consensus The Consensus program finds motifs in a set of unaligned ucsc Online repository of genomic sequence, multiple sequence alignments,

PhyloCon sequences. PhyloCon builds on this framework by modeliqg Genome and annotation data. The browser includes tracks for identifying
‘conservation across orthologous genes from multiple species. conserved transcription factor binding sites.
|nttp:/fural. wustl. edu/ Browser hitp://genome. ucsc.edu/

Weeder An enumerative motif discovery program that performed well in ENSEMBL | Another online genomic sequence repository. Includes online tools for
‘a recent comparative analysis of fourteen algorithms. : data mining as well as BLAST searches.
http://www_pesolelab.it/ http //www.ensembl.ora/index.htmi

MEME fThe popular EM-based motif discovery program. Partofthe TRANSFAC Commercial database of transcription factors, binding sites, and motifs.
MEME/MAST system for motif discovery and search. Includes several tools for motif scanning in sequence.
{http://meme.sdsc.edu/memefintro.html http:/iwww.gene-regulation.com/

AlignACE A Gibbs sampling algorithm that can identify multiple motifs in JASPAR ‘Curated public database of transcription factor binding specificities
a sequence set using an iterative masking procedure. represented as PWMs.
http://atlas.med.harvard. edu/ hitp //jaspar.cab ki se/

Motif Discovery Programs Databases




Searching for new motifs with biophysics

* The binding energy PWM can be used to search for novel sites, using
a scoring threshold based on scores of known binding sites

* False positives?
* Do simultaneous optimization of weight matrix and thresholds
* But for large eukaryotic genomes, expect low affinity hits.

e Other factors: chromatin structure, cooperative binding must play a
role in determining in vivo specificity of associated TFs



Cis regulatory module (CRM)

e Stretch of DNA, usually 100-1000 DNA bp in length
* # of TFs can bind and regular expression of nearby genes

* Cis because they are typically located on the same DNA as the genes
they control, as oppoed to trans, which refers to effects on genes not
located on the same strand or farther away

* One cis-regulatory element can regular several genes
* One gene can have several cis-regulatory modules



Motifs 1, 2 and 3
are bound to TFs

and thus are
active

Motif 4 is not
TFs 1 and 2 are
shown to be
interacting
Experiment on
yeast-cell cycle
Look for gene
expression to
know which
elements are
active
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MCB element
ACGCGT regulates
G1/S phase
Expression
changes for G1/S
but not G2/M
Box plots: log
(Eg/Egc) for
genes in two
different phases
Linear regression
models
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