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•  What is a Markov chain? 

Markov chain of order n is a stochastic process of 
a series of outcomes, in which the probability of 
outcome x depends on the state of the previous n 
outcomes. 

Markov chains 
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•  Markov chain (of first order) and the Chain Rule 

  

! 

P( ! x ) = P(XL ,XL"1,...,X1) =

= P(XL | XL"1,...,X1)P(XL"1,XL"2,...,X1) =

= P(XL | XL"1,...,X1)P(XL"1 | XL"2,...,X1)...P(X1) =

= P(XL | XL"1)P(XL"1 | XL"2)...P(X2 | X1)P(X1) =

= P(X1) P(Xi | Xi"1)
i= 2

L

#

Markov chains (cntd) 

Chain rule: P(A,B,C)=P(C|A,B) P(B|A) P(A) 



l  CG is relatively rare in the genome due to high mutation of methyl-
CG to methyl-TG (or CA) 

l  Methylated CpG residues are often associated with house-keeping 
genes in the promoter and exon regions. 

l  Methyl-CpG binding proteins recruit histone deacetylases and are 
thus responsible for transcriptional repression.  

l  They have roles in gene silencing, genomic imprinting, and X-
chromosome inactivation. 

Application of Markov chains:  
CpG islands 
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CpG islands and DNA Methylation 
Largely confined to CpG dinucleotides 
 
CpG islands - regions of more than 500 bp with CG content > 55% 
 
denoted CpG to not confuse with CG base pair 
 
Methylation often suppressed around genes, promoters 

Can we predict CpG islands? – a good way of identifying 
potential gene regions as well!  – But not so fast!! 8 
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•  Problem: 
Given two sets of sequences from the human genome, 
one with CpG islands and one without, can we calculate a 
model that can predict the CpG islands? 

Application of Markov chains:  
CpG islands 
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Application of Markov chains:  
CpG islands (cntd) 

Training Set:  
l  set of DNA sequences w/ known CpG islands 

Derive two Markov chain models: 
l  ‘+’ model: from the CpG islands 
l  ‘-’ model: from the remainder of sequence  

Transition probabilities for each model: 

 

 
To use these models for discrimination, calculate the 
log-odds ratio: 

•  A state for each of the four letters A,C, G, and 
T in the DNA alphabet 

•            : probability of a residue following 
another residue ∑ +

+
+ =

t' st'

st
st
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+
stc is the number of times 

letter t  followed letter s 
in the CpG islands 
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A .180 .274 .426 .120 

C .171 .368 .274 .188 

G .161 .339 .375 .125 

T .079 .355 .384 .182 

A T 

G C 

aGT aAC 

aGC 

aAT 
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P( t | s,- ) 

P( t | s,+ ) 

Application of Markov chains:  
CpG islands (cntd) 

  

! 

log2
P(
! 
x |+)

P(
! 
x |")

= log2
P(xi+1 | xi,+)
P(xi+1 | xi,")i=1

L

#

log2(P(t | s,+) / P(t | s,!))
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Histogram of log-odd scores 

CpG 
other 

Q1: Given a short sequence x, does it come from CpG island? (Yes-No question) 
•  Evaluate S(x) 

Q2: Given a long sequence x, how do we find CpG islands in it (Where question)? 
•  Calculate the log-odds score for a window of, say, 100 nucleotides around 
every nucleotide, plot it, and predict CpG islands as ones w/ positive values 
•  Drawbacks: Window size? 



HMM: A parse of a sequence 
Given a sequence x = x1……xL, and a HMM with K states, 
A parse of x is a sequence of states π = π1, ……, πL 
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Hidden Markov Models (HMMs) 
•  What is a HMM?  

A Markov process in which the probability of an outcome depends 
also in a (hidden) random variable (state). 

•  Memory-less: future states affected only by current state  

•  We need: 

ü    Ω : alphabet of symbols (outcomes) 

ü   ∫ : set of states (hidden), each of which emits symbols 

ü   A = (akl) : matrix of state transition probabilities 

ü   E = (ek(b)) = (P(xi=b|π=k)) : matrix of emission probabilities 
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1: 1/6 

2: 1/6 

3: 1/6 

4: 1/6 
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6: 1/6 
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4: 1/10 
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6: 1/2 

0.05 

0.1 
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Fa
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Example: the dishonest casino 

ü Ω = {1, 2, 3, 4, 5, 6} 

ü  ∫ = {F, L} 

ü  A : aFF=0.95, aLL=0.9, 
  aFL=0.05, aLF=0.1 

ü  E : eF(b)=1/6 (∀ b∈Ω),  
  eL(“6”)=1/2 
  eL(b)=1/10 (if b≠6) 
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Three main questions on HMMs 
1.  Evaluation problem 

GIVEN  HMM M, sequence x 
FIND  P(x | M ) 
ALGOR.  Forward    O(TN2) 

2.  Decoding problem 
GIVEN  HMM M, sequence x 
FIND  the sequence π of states that maximizes P(π | x, M ) 
ALGOR.  Viterbi, Forward-Backward    O(TN2) 

3.  Learning problem 
GIVEN  HMM M, with unknown prob. parameters, sequence x 
FIND  parameters θ = (π, eij, akl) that maximize P(x | θ, M ) 
ALGOR.  Maximum likelihood (ML), Baum-Welch (EM)   O(TN2) 
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Problem 1: Evaluation 

Find the likelihood a given sequence is 
generated by a particular model 

 

E.g. Given the following sequence is it more likely that it comes from 
a Loaded or a Fair die? 
 

123412316261636461623411221341 
 



Benos 02-710/MSCBIO2070   1-3.Apr.2013 18 

Problem 1: Evaluation (cntd) 

123412316261636461623411221341 

! 

P(Data |F1...F30) = aF ,F " eF (bi)
i=1

30

# =

! 

= 0.9529 " (1/6)30 = 0.226 " 4.52 "10#24 =

=1.02 "10#24

! 

P(Data | L1...L30) = aL,L " eL (bi)
i=1

30

# =

! 

= (1/2)6 " (1/10)24 " 0.9029 =1.56 "10#26 " 0.047 =

= 7.36 "10#28

What happens in a sliding window? 
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Three main questions on HMMs 
ü  Evaluation problem 

GIVEN  HMM M, sequence x 
FIND  P(x | M ) 
ALGOR.  Forward 

1.  Decoding problem 
GIVEN  HMM M, sequence x 
FIND  the sequence π of states that maximizes P(π | x, M ) 
ALGOR.  Viterbi, Forward-Backward    O(TN2) 

2.  Learning problem 
GIVEN  HMM M, with unknown prob. parameters, sequence x 
FIND  parameters θ = (π, eij, akl) that maximize P(x | θ, M ) 
ALGOR.  Maximum likelihood (ML), Baum-Welch (EM)   O(TN2) 
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Problem 2: Decoding 

Given a point xi in a sequence find its most 
probable state 

 

E.g. Given the following sequence is it more likely that the 3rd 
observed “6” comes from a Loaded or a Fair die? 
 

 123412316261636461623411221341 
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The Forward Algorithm - derivation 

l  In order to calculate P(xi) = probability of xi, given the 
HMM, we need to sum over all possible ways of 
generating xi: 

 
 

 

l  To avoid summing over an exponential number of paths π, 
we first define the forward probability:  ! 

P(xi) = P(xi,") =
"

# P(xi |") $ P(")"
#

! 

fk (i) = P(x1...xi," i = k)
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The Forward Algorithm – derivation 
(cntd) 

l  Then, we need to write the fk(i) as a function of the 
previous state, fl(i-1). 

! 

fk (i) = P(x1,...,xi"1,xi,# i = k)

! 

= P(x1,...,xi"1,#1,...,# i"1,# i = k) $ ek (xi)#1 ,...,# i"1
%

! 

= P(x1,...,xi"1,#1,...,# i"2,# i"1 = l) $ al ,k#1 ,...,# i"2
%& ' ( 

) 
* 
+ 

l% $ ek (xi)

! 

= ek (xi) " f l (i #1) " al ,kl$
! 

= P(x1,...,xi"1,# i"1 = l) $ al ,kl% $ ek (xi)

Chain rule: P(A,B,C)=P(C|A,B) P(B|A) P(A) 
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The Forward Algorithm 
We can compute fk(i) for all k, i, using dynamic programming 

! 

f0(0) =1
fk (0) = 0, "k > 0

! 

fk (i) = ek (xi) " f l (i #1) " al,kl$Iteration: 

Termination:   

! 

P( ! x ) = fk (N) " ak,0k#

Initialization: 
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The Backward Algorithm 

l  Forward algorithm determines the most likely state k 
at position i, using the previous observations. 

123412316261636461623411221341 

l  What if we started from the end? 
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The Backward Algorithm – derivation 

! 

bk (i) = P(xi+1,...,xN |" i = k)

! 

= P(xi+1,...,xN ," i+1,...,"N |" i = k)
" i+1 ,...,"N

#

! 

= P(xi+1,...,xN ," i+1 = l," i+2,...,"N |" i = k)
" i+1 ,...,"N

#l#

! 

= bl (i +1) " ak,l "l# el (xi+1)

! 

= ek (xi+1) " ak,l "l# P(xi+2,...,xN ,$ i+2,...,$N |$ i+ i = l)
$ i+2 ,...,$N

#

l  We define the backward probability: 

Chain rule: P(A,B,C)=P(C|A,B) P(B|A) P(A) 
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The Backward Algorithm 
We can compute bk(i) for all k, i, using dynamic programming 

! 

bk (N) = ak,0, "k

! 

bk (i) = ek (xi+1) " bl (i +1) " ak,ll#Iteration: 

Termination:   

! 

P( ! x ) = bk (1) " a0,k " ek (x1)k#

Initialization: 



Posterior probabilities of the 
dishonest casino data 
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Posterior Decoding 
x1    x2    x3 …………………………………………………………..… xN 

P(πi=k|x) 

State 1 

l 

k 

l  Posterior decoding calculates the optimal path that explains the 
data.  

l  For each emitted symbol, xi, it finds the most likely state that 
could produce it, based on the forward and backward 
probabilities. 
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The Viterbi Algorithm – derivation 
l  We define:  

 

l  Then, we need to write the Vk(i) as a function of the previous 
state, Vl(i-1). 

! 

Vk (i) =max{"1 ,...," i#1 } P(x1,...,xi#1,"1,...," i#1," i = k)

! 

Vk (i) = ...= ek (xi) "maxl{al,k "Vl (i #1)}
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The Viterbi Algorithm 

Similar to “aligning” a set of states to a sequence 
Dynamic programming! 
 
Viterbi decoding: traceback 

x1   x2   x3 ………………………………………………………..xN 

State 1 

2 

K 

Vj(i) 
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The Viterbi Algorithm 

Similar to “aligning” a set of states to a sequence 
Dynamic programming! 
 
Viterbi decoding: traceback 

x1   x2   x3 ………………………………………..xN 

State 1 

2 

K 

Vj(i) 



Viterbi results 
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Viterbi, Forward, Backward 
  VITERBI 

 
Initialization: 

 V0(0) = 1 
 Vk(0) = 0, for all k > 0 

 
Iteration: 

 Vl(i) = el(xi)  maxk Vk(i-1) akl  
 
Termination: 

 P(x, π*) =  maxk Vk(N) 
 

  FORWARD 
 
Initialization: 

 f0(0) = 1 
 fk(0) = 0, for all k > 0 

 
Iteration: 

 fl(i) = el(xi) Σk fk(i-1) akl 
 
Termination: 

 P(x) = Σk fk(N) ak0 

BACKWARD 
 
Initialization:   

 bk(N) = ak0, for all k 
 
 
Iteration: 

bl(i) = Σk el(xi+1) akl bk(i+1) 
 
Termination: 

 P(x) = Σk a0k ek(x1) bk(1) 

Time: O(K2N)   Space: O(KN) Time: O(K2N)  Space: O(KN) 
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Three main questions on HMMs 
ü  Evaluation problem 

GIVEN  HMM M, sequence x 
FIND  P(x | M ) 
ALGOR.  Forward 

ü  Decoding problem 
GIVEN  HMM M, sequence x 
FIND  the sequence π of states that maximizes P(π | x, M ) 
ALGOR.  Viterbi, Forward-Backward 

3.  Learning 
GIVEN  HMM M, with unknown prob. parameters, sequence x 
FIND  parameters θ = (π, eij, akl) that maximize P(x | θ, M ) 
ALGOR.  Maximum likelihood (ML), Baum-Welch (EM) 
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Problem 3: Learning 

Given a model (structure) and data, calculate 
model’s parameters 

 

Two scenarios: 
l  Labeled data - Supervised learning 

12341231  62616364616  23411221341 

l  Unlabeled data - Unsupervised learning 
123412316261636461623411221341 

Fair Fair Loaded 
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Two learning scenarios - examples 
1. Supervised learning 

Examples:  
  GIVEN:  the casino player allows us to observe him one evening, as he  
   changes dice and produces 10,000 rolls 

 
  GIVEN:  a genomic region x = x1…x1,000,000 where we have good  
   (experimental) annotations of the CpG islands 

 
2. Unsupervised learning 

Examples: 
 GIVEN:  10,000 rolls of the casino player, but we don’t see when he  
   changes dice 

 
 GIVEN:  a newly sequenced genome; we don’t know how frequent are the 
  CpG islands there, neither do we know their composition 

 
TARGET:  Update the parameters θ of the model to maximize P(x|θ) 
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Supervised learning 
l  Given x = x1…xN for which the true state path π = π1…πN is known 

l  Define: 
  Ak,l  = # times state transition k→l occurs in π 
  Ek(b)  = # times state k in π emits b in x 

 
l  The maximum likelihood parameters θ are: 

l  Problem: overfitting (when training set is small for the model) 

! 

ak,l
ML =

Ak,l

Ak,ii"

! 

ek
ML (b) =

Ek (b)
Ek (c)c"
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Overfitting 
l  Example 

l  Given 10 casino rolls, we observe 
 x = 2, 1, 5, 6, 1, 2, 3, 6, 2, 3 
 π = F, F, F, F, F, F, F, F, F, F 

  
l  Then: 

  aFF = 10/10 = 1.00;    aFL = 0/10 = 0 
  eF(1) = eF(3) = 2/10 = 0.2;  
  eF(2) = 3/10 = 0.3; eF(4) = 0/10 = 0; eF(5) = eF(6) = 1/10 = 0.1 

 
l  Solution: add pseudocounts 

l  Larger pseudocounts ⇒ strong prior belief (need a lot of data to change) 
l  Smaller pseudocounts ⇒ just smoothing (to avoid zero probabilities) 
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Overfitting 
l  Example 

l  Given 10 casino rolls, we observe 
 x = 2, 1, 5, 6, 1, 2, 3, 6, 2, 3 
 π = F, F, F, F, F, F, F, F, F, F 

  
l  Then: 

  aFF = 11/12 = 0.92;  aFL = 1/12 = 0.08 
  eF(1) = eF(3) = 3/16 = 0.1875;  
  eF(2) = 4/16 = 0.25; eF(4) = 1/16 = 0.0625; eF(5) = eF(6) = 2/16 = 0.125 

 
l  Solution: add pseudocounts 

l  Larger pseudocounts ⇒ strong prior belief (need a lot of data to change) 
l  Smaller pseudocounts ⇒ just smoothing (to avoid zero probabilities) 
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Unsupervised learning - ML 
l  Given x = x1…xN for which the true state path π = π1…πN is unknown 

l  EXPECTATION MAXIMIZATION (EM) in a nutshell 
0.  Initialize the parameters θ of the model M 
1.  Calculate the expected values of Ak,l, Ek(b) based on the training 

data and current parameters 
2.  Update θ according to Ak,l, Ek(b) as in supervised learning 
3.  Repeat #1 & #2 until convergence 
 
l  In HMM training, we usually apply a special case of EM, called  

Baum-Welch Algorithm 
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The Baum-Welch (EM) algorithm 
simply put 
•  Recurrence: 

1. Estimate Ak,l and Ek(b) from ak,l and ek(b) overall all training 
sequences (E-step) 

2. Update ak,l and ek(b) using ML (M-step) 
3. Repeat steps #1, #2 with new parameters ak,l and ek(b)  

•  Initialization: 
•  Set A and E to pseudocounts (or priors) 

•  Termination: if Δlog-likelihood < threshold or Ntimes>max_times 
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The Baum-Welch algorithm 
•  Recurrence: 

1. Calculate forward/backwards probs, fk(i) and bk(i), for each training 
sequence 

2. E-step: Estimate the expected number of kàl transitions, Ak,l  

 and the expected number of symbol b appearences in state k, Ek(b) 
 

3.  M-step: Estimate new model parameters ak,l and ek(b) using ML 
across all training sequences 

4.  Estimate the new model’s (log)likelihood to assess convergence 

  

! 

Ak,l = fk (i) " ak,l " el (xi+1) " bl (i +1)
i# /P( ! x |$)

  

! 

Ek (b) = fk (i) " bk (i)
{ i|xi = b}
# /P(! x |$)
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The Baum-Welch algorithm (cntd) 
•  Initialization: pick arbitrary model parameters 

•  Set A and E to pseudocounts (or priors) 
•  Termination: if Δlog-likelihood < threshold or Ntimes>max_times 

The Baum-Welch algorithm: 
-  is monotone 
-  guarantees convergence 
-  is a special case of EM 
-  has many local optima 



An example of Baum-Welch 
(thanks to Sarah Wheelan, JHU) 

l  I observe the dog across the street. 
Sometimes he is inside, sometimes 
outside. 
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l  I assume that since he can not open the door 
himself, then there is another factor, hidden from 
me, that determines his behavior. 

l  Since I am lazy, I will guess there are only two 
hidden states, S1 and S2. 



An example of Baum-Welch (cntd) 

l  One set of observations: 
l  I-I-I-I-I-O-O-I-I-I 

l  Guessing two hidden states.  I need to invent a 
transition and emission matrix. 
l  Note: since Baum-Welch is an EM algorithm the better my initial 

guesses are the better the job I will do in estimating the true 
parameters 

Benos 02-710/MSCBIO2070   1-3.Apr.2013 45 

S1 S2 
S1 0.5 0.5 
S2 0.4 0.6 D

ay
 k

 

Day k+1 
IN OUT 

S1 0.2 0.8 
S2 0.9 0.1 



An example of Baum-Welch (cntd) 

l  Let’s assume initial values of: 
l  P(S1) = 0.3, P(S2) = 0.7 

l  Example guess: if initial I-I came from S1-S2 then the 
probability is: 
0.3 x 0.2 x 0.5 x 0.9 = 0.027 
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S1 S2 
S1 0.5 0.5 
S2 0.4 0.6 D

ay
 k

 

Day k+1 
IN OUT 

S1 0.2 0.8 
S2 0.9 0.1 



An example of Baum-Welch (cntd) 

l  So, our estimate for S1->S2 
transition probability is: 
l  0.285/2.4474 = 0.116 

l   Similarly, calculate the other 
three transition probs and 
normalize so they sum up to 1 

l  Update transition matrix 
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Seq P(Seq) for S1S2 Best P(Seq) 
II 0.027 0.3403 S2S2  
II 0.027 0.3403 S2S2  
II 0.027 0.3403 S2S2  
II 0.027 0.3403 S2S2  
IO 0.003 0.2016 S2S1 
OO 0.012 0.0960 S1S1 
OI 0.108 0.1080 S1S2  
II 0.027 0.3403 S2S2  
II 0.027 0.3403 S2S2  
Total 0.285 2.4474 

l  Now, let’s estimate the transition matrix.  Sequence I-I-
I-I-I-O-O-I-I-I has the following events: 
l  II, II, II, II, IO, OO, OI, II, II 



An example of Baum-Welch (cntd) 
l  Estimating initial probabilities: 

l  Assume all sequences start with hidden state S1, calculate best 
probability 

l  Assume all sequences start with hidden state S2, calculate best 
probability 

l  Normalize to 1. 

l  Now, we have generated the updated transition, 
emission and initial probabilities.  Repeat this method 
until those probabilities converge 
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The Baum-Welch algorithm 

l  Time complexity: 
l  # iterations x O(K2N) 

l  Guaranteed to increase the likelihood P(x | θ)  

l  Not guaranteed to find globally optimal parameters 
l  Converges to a local optimum, depending on initial conditions 

l  Too many parameters / too large model ⇒ 
Overtraining 



Back to: HMM for CpG islands 

Build a single model that combines both 
Markov chains: 

l  ‘+’ states: A+, C+, G+, T+ 
l Emit symbols: A, C, G, T in CpG islands 

l  ‘-’ states: A-, C-, G-, T- 
l Emit symbols: A, C, G, T in non-CpG islands 

If a sequence CGCG is emitted by states  
(C+,G-,C-,G+), then: 

In general, we DO NOT know the path. 
How to estimate the path? 

How do we find CpG islands in a sequence? 

A+ T+ G+ C+ 

A- T- G- C- 

A: 0 
C: 0 
G: 1 
T: 0 

A: 1 
C: 0 
G: 0 
T: 0 

A: 0 
C: 1 
G: 0 
T: 0 

A: 0 
C: 0 
G: 0 
T: 1 

A: 0 
C: 0 
G: 1 
T: 0 

A: 1 
C: 0 
G: 0 
T: 0 

A: 0 
C: 1 
G: 0 
T: 0 

A: 0 
C: 0 
G: 0 
T: 1 

Note: Each set (‘+’ or ‘-’) has an additional set 
of transitions as in previous Markov chain 

0,,,,,0 1111)(
++−−−−++

××××××××= GGCCGGCC aaaaaCGCGP
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What we have.. 
A+ C+ G+ T+ A- C- G- T- 

A+ 
.180 .274 .426 .120 

C+ 
.171 .368 .274 .188 

G+ 
.161 .339 .375 .125 

T+ 
.079 .355 .384 .182 

A- 
.300 .205 .285 .210 

C- 
.233 .298 .078 .302 

G- 
.248 .246 .298 .208 

T- 
.177 .239 .292 .292 

Not a valid transition 
probability matrix nor a 
complete one! 

Note: these transitions out 
of each state add up to one—
no room for transitions 
between (+) and (-) states 
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A model of CpG Islands – 
Transitions 

l  What about transitions between (+) and (-) states? 
l  They affect  

l  Avg. length of CpG island 

l  Avg. separation between two CpG islands   

+ - 

1-p++ 

1-p- - 

p++ p- - 

Length distribution of region +: 
 
P(L=1)       +- = 1-p++ : 
P(L=2)       ++- = p++ (1-p++)  
… 
P[L= l  ] = p++

l-1(1-p++) 
 

1  
1

Expected lengt

Geometric distribution, with mean 

 of a state to continue in that s ah t te
p++

=
−
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What we have.. 
A+ C+ G+ T+ A- C- G- T- 

A+ 
.180 .274 .426 .120 

C+ 
.171 .368 .274 .188 

G+ 
.161 .339 .375 .125 

T+ 
.079 .355 .384 .182 

A- 
.300 .205 .285 .210 

C- 
.233 .298 .078 .302 

G- 
.248 .246 .298 .208 

T- 
.177 .239 .292 .292 

Now a valid transition 
probability matrix and a 
complete one! 

λ+ 

(1-λ-)*freq(bi) 

(1-λ+) * freq(bi) 

λ- 
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Another application: Profile HMMs 

Profile HMMS (Haussler, 1993) 
 
l  Ungapped alignment of sequence X against profile M 

l  ei(a): probability of observing a at position I 

l    

l    

l  What about indels ? 

Benos 02-710/MSCBIO2070   1-3.Apr.2013 54 

P(X |M ) = ei (xi )i=i,...,L!

Score(X |M ) = log(ei (xi ) / qxi )i=1,...,L!



Profile HMMs: “match” states 

LEVK 
LEIR 
LEIK 
LDVE 

Begin M1 M2 M3 End M4 

Pr(L)=1  Pr(E) = 3/4  Pr(V) = 1/2  Pr(R) = 1/4 
 Pr(D) = 1/4  Pr(I) = 1/2  Pr(K) = 1/4 
   Pr(E) = 1/4 

Deriving emission 
probabilities for 
the Match states 

We make a single state HMM to represent above profile, using match 
states only 



Introducing “insert” states to the 
previous HMM 
We want to know whether (for instance) the sequence  
LEKKVK is a good match to the HMM 
 

Begin M1 M2 M3 End M4 

LE--VK 
LE--IR 
LE--IK 
LD--VE 
LEKKVK 

We know it should look like this in the end 



Introducing “delete” states to the 
previous HMM 
We want to know whether (for instance) the sequence  
LEK is a good match to the HMM 
 
LEVK 
LEIR 
LEIK 
LDVE 
LE-K 

Begin M1 M2 M3 End M4 

We know it should look like this in the end 



Three main applications for  
profile HMMs 
1. Find sequence homologs 

l  ie, we represent a sequence family by an HMM and use that 
to identify (“evaluate”) other related sequences  

 
 
 
 
 

LEVK 
LEIR 
LEIK 
LDVE 

Profile  
HMM 

Convert 
KKKKKK 
IKNGTTT 

LEAK 
…… 
GGIAAEEIK 
IIGGGAVVS 

Search 

1
1

( ;#   possible 's ) (  Possibilities)

( | ) ( , | ) ( , ) ( , )
p L L

L
p

i i i i
AllPossibleParses AllPossibleParses i
SP of p K K

P x P x SP a e xλ λ π π π−
=

=

= =∑ ∑ ∏

Evaluation: So Use Forward 
Viterbi is OK too. 
 

λ*( , | )P x SP



Three main applications for profile 
HMM 

2. Align a new sequence to the profile 
l  ie, we expnad our multiple sequence alignment 

 
 
 
 
 

 
This is Decoding: Use Viterbi  

LEVK 
LEIR 
LEIK 
LDVE 
LE-K 

Align 
LEVK 
LEIR 
LEIK 
LDVE 

Profile  
HMM 

Convert 



Three main applications for profile 
HMM 
3. Align a set of sequences from scratch 

l  ie, we want to build a multiple sequence alignment of a set of 
“unaligned sequences” 

 
 
 
 
 

LEVK,LEK, LEIR, LEIK, LDVE 

LEVK 
LEIR 
LEIK 
LDVE 
LE-K 

Align 

This needs parameter estimation:  
use Baum-Welch 
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Making multiple sequence alignment 
from unaligned sequences 
l  Baum-Welch Expectation-maximization method 

l  Start with a model whose length matches the average length of 
the sequences and with random output and transition 
probabilities. 

l  Align all the sequences to the model. 
l  Use the alignment to alter the output and transition probabilities 
l  Repeat. Continue until the model stops changing 

l  By-product: It produced a multiple alignment 



Benos 02-710/MSCBIO2070   1-3.Apr.2013 63 

Acknowledgements 

Some of the slides used in this lecture are adapted or modified 
slides from lectures of: 

l   Serafim Batzoglou, Stanford University 
l   Bino John, Dow Agrosciences 
l   Nagiza F. Samatova, Oak Ridge National Lab 
l   Sarah Wheelan, Johns Hopkins University 
l   Eric Xing, Carnegie-Mellon University 
 
Theory and examples from the following books: 
l   T. Koski, “Hidden Markov Models for Bioinformatics”, 2001, 

Kluwer Academic Publishers 
l  R. Durbin, S. Eddy, A. Krogh, G. Mitchison, “Biological Sequence 

Analysis”, 1998, Cambridge University Press 




