HMMs and applications

Notes from Dr. Takis Benos and DEKM book

Markov chains

What is a Markov chain?

Markov chain of order n is a stochastic process of a series of outcomes, in which the probability of outcome x depends on the state of the previous n outcomes.

Markov chains (cntd)

Markov chain (of first order) and the Chain Rule

$$\begin{split} &P(\vec{x}) = P(X_L, X_{L-1}, ..., X_1) = \\ &= P(X_L \mid X_{L-1}, ..., X_1) P(X_{L-1}, X_{L-2}, ..., X_1) = \\ &= P(X_L \mid X_{L-1}, ..., X_1) P(X_{L-1} \mid X_{L-2}, ..., X_1) ... P(X_1) = \\ &= P(X_L \mid X_{L-1}) P(X_{L-1} \mid X_{L-2}) ... P(X_2 \mid X_1) P(X_1) = \\ &= P(X_1) \prod_{i=2}^{L} P(X_i \mid X_{i-1}) \end{split}$$

Chain rule: P(A,B,C)=P(C|A,B) P(B|A) P(A)

Application of Markov chains: CpG islands

- CG is relatively rare in the genome due to high mutation of methyl-CG to methyl-TG (or CA)
- Methylated CpG residues are often associated with house-keeping genes in the promoter and exon regions.
- Methyl-CpG binding proteins recruit histone deacetylases and are thus responsible for transcriptional repression.
- They have roles in gene silencing, genomic imprinting, and Xchromosome inactivation.

 Methylation of Cytosine

CpG islands and DNA Methylation

Largely confined to CpG dinucleotides

CpG islands - regions of more than 500 bp with CG content > 55%

denoted CpG to not confuse with CG base pair

Methylation often suppressed around genes, promoters

Can we predict CpG islands? - a good way of identifying potential gene regions as well! - But not so fast!!

Application of Markov chains: CpG islands

Problem:

Given two sets of sequences from the human genome, one with CpG islands and one without, can we calculate a model that can predict the CpG islands?

Sequence:
$$S = t \cdot t \cdot a \cdot c \cdot g \cdot g \cdot t$$

Sequence:
$$S = t \cdot t \cdot a \cdot c \cdot g \cdot g \cdot t$$

Oth-order: $P_0(s) = p(t) \cdot p(t) \cdot p(a) \cdot p(c) \cdot p(g) \cdots = \prod_{i=1}^{N} p(s_i)$

1st-order:
$$P_1(s) = p(t) \cdot p(t \mid t) \cdot p(a \mid t) \cdot p(c \mid a) \cdots = p(s_1) \cdot \prod_{i=2}^{N} p(s_i \mid s_{i-1})$$

2nd-order:
$$P_2(s) = p(tt) \cdot p(a \mid tt) \cdot p(c \mid ta) \cdot p(g \mid ac) \cdot \dots = p(s_1 s_2) \cdot \prod_{i=3}^{N} p(s_i \mid s_{i-2} s_{i-1})$$

Application of Markov chains: CpG islands (cntd)

- A state for each of the four letters A,C, G, and T in the DNA alphabet
- probability of a residue following another residue

+	Α	С	G	Т
Α	.180	.274	.426	.120
С	.171	.368	.274	.188
G	.161	.339	.375	.125
Т	.079	.355	.384	.182

Training Set:

set of DNA sequences w/ known CpG islands

Derive two Markov chain models:

- '+' model: from the CpG islands
- '-' model: from the remainder of sequence

Transition probabilities for each model:

$$a_{st}^+ = \frac{c_{st}^+}{\sum_{t'} c_{st'}^+}$$

 c_{st}^+ is the number of times letter t followed letter s in the CpG islands

To use these models for discrimination, calculate the log-odds ratio:

$$S(x) = \log \frac{P(x|\text{model}+)}{P(x|\text{model}-)} = \sum_{i=1}^{L} \log \frac{a_{x_{i-1}x_i}^+}{a_{x_{i-1}x_i}^-}$$

Application of Markov chains: CpG islands (cntd)

P(t	S, +)
. /	•	_ ,	•

+	A	C	G	T
\mathbf{A}	0.180	0.274	9.426	0.120
\mathbf{C}	0.171	0.368	0.274	0.188
\mathbf{G}	0.161	0.339	0.375	0.125
\mathbf{T}	0.079	0.355	0.384	0.182

$$\log_2(P(t | s, +) / P(t | s, -))$$

	A	C	G	T
\mathbf{A}	-0.740	0.419	0.580	-0.803
C	-0.913	0.302	1.812	-0.685
G	-0.624	0.461	0.331	-0.730
T	-1.169	0.573	0.393	-0.679

$$P(t | s, -)$$

_	A	C	G	T
\mathbf{A}	0.300	0.205	0.285	0.210
\mathbf{C}	0.322	0.298	0.078	0.302
\mathbf{G}	0.248	0.246	0.298	0.208
\mathbf{T}	0.177	0.239	0.292	0.292

$$\log_2 \frac{P(\vec{x} \mid +)}{P(\vec{x} \mid -)} = \sum_{i=1}^{L} \log_2 \frac{P(x_{i+1} \mid x_i, +)}{P(x_{i+1} \mid x_i, -)}$$

Histogram of log-odd scores

Q1: Given a short sequence x, does it come from CpG island? (Yes-No question)

• Evaluate S(x)

Q2: Given a long sequence x, how do we find CpG islands in it (Where question)?

- Calculate the log-odds score for a window of, say, 100 nucleotides around every nucleotide, plot it, and predict CpG islands as ones w/ positive values
- Drawbacks: Window size?

HMM: A parse of a sequence

Given a sequence $x = x_1.....x_L$, and a HMM with K states, A parse of x is a sequence of states $\pi = \pi_1,, \pi_L$

Hidden Markov Models (HMMs)

What is a HMM?

A Markov process in which the probability of an outcome depends also in a (hidden) random variable (state).

- Memory-less: future states affected only by current state
- We need:
 - \checkmark Ω : alphabet of symbols (outcomes)
 - \checkmark \int : set of states (hidden), each of which emits symbols
 - \checkmark A = (a_{kl}) : matrix of state transition probabilities
 - \checkmark $E = (e_k(b)) = (P(x_i = b | \pi = k))$: matrix of emission probabilities

Example: the dishonest casino

0.95 1: 1/6

2: 1/6 0.05 3: 1/6 4: 1/6 5: 1/6 6: 1/6

0.1

∟0.9

1: 1/10

2: 1/10

3: 1/10

4: 1/10

5: 1/10

6: 1/2

 $\checkmark \Omega = \{1, 2, 3, 4, 5, 6\}$

✓ ./ = {F, L}

 \checkmark A: a_{FF} =0.95, a_{LL} =0.9, a_{FI} =0.05, $a_{I.F}$ =0.1

✓ $E: e_F(b)=1/6 \ (\forall b \in \Omega),$ e₁("6")=1/2 $e_1(b)=1/10$ (if $b\neq 6$)

Loaded

Three main questions on HMMs

1. Evaluation problem

```
GIVEN HMM M, sequence x

FIND P(x \mid M)

ALGOR. Forward O(TN^2)
```

2. Decoding problem

```
GIVEN HMM M, sequence x
FIND the sequence \pi of states that maximizes P(\pi \mid x, M)
ALGOR. Viterbi, Forward-Backward O(TN^2)
```

3. Learning problem

```
GIVEN HMM M, with unknown prob. parameters, sequence x parameters \theta = (\pi, e_{ij}, a_{kl}) that maximize P(x \mid \theta, M) ALGOR. Maximum likelihood (ML), Baum-Welch (EM) O(TN^2)
```


Problem 1: Evaluation

Find the likelihood a given sequence is generated by a particular model

E.g. Given the following sequence is it more likely that it comes from a Loaded or a Fair die?

123412316261636461623411221341

Problem 1: Evaluation (cntd)

123412316261636461623411221341

$$\begin{split} P(Data \mid F_1...F_{30}) &= \prod_{i=1}^{30} a_{F,F} \cdot e_F(b_i) = \\ &= 0.95^{29} \cdot (1/6)^{30} = 0.226 \cdot 4.52 \cdot 10^{-24} = \\ &= 1.02 \cdot 10^{-24} \end{split}$$

$$P(Data \mid L_1...L_{30}) = \prod_{i=1}^{30} a_{L,L} \cdot e_L(b_i) =$$

$$= (1/2)^6 \cdot (1/10)^{24} \cdot 0.90^{29} = 1.56 \cdot 10^{-26} \cdot 0.047 =$$

$$= 7.36 \cdot 10^{-28}$$

What happens in a sliding window?

Three main questions on HMMs

✓ Evaluation problem

GIVEN HMM M, sequence x

FIND $P(x \mid M)$

ALGOR. Forward

1. Decoding problem

GIVEN HMM M, sequence x

FIND the sequence π of states that maximizes $P(\pi \mid x, M)$

ALGOR. Viterbi, Forward-Backward O(TN2)

2. Learning problem

GIVEN HMM M, with unknown prob. parameters, sequence x

FIND parameters $\theta = (\pi, e_{ij}, a_{kl})$ that maximize $P(x \mid \theta, M)$

ALGOR. Maximum likelihood (ML), Baum-Welch (EM) O(TN2)

Problem 2: Decoding

Given a point x_i in a sequence find its most probable state

E.g. Given the following sequence is it more likely that the 3rd observed "6" comes from a Loaded or a Fair die?

123412316261636461623411221341

The Forward Algorithm - derivation

• In order to calculate $P(x_i)$ = probability of x_i , given the HMM, we need to sum over all possible ways of generating x_i :

$$P(x_i) = \sum_{\pi} P(x_i, \pi) = \sum_{\pi} P(x_i \mid \pi) \cdot P(\pi)$$

• To avoid summing over an exponential number of paths π , we first define the *forward probability*:

$$f_k(i) = P(x_1...x_i, \pi_i = k)$$

The Forward Algorithm - derivation (cntd)

• Then, we need to write the $f_k(i)$ as a function of the previous state, $f_k(i-1)$.

$$\begin{split} f_k(i) &= P(x_1, \dots, x_{i-1}, x_i, \pi_i = k) \\ &= \sum_{\pi_1, \dots, \pi_{i-1}} P(x_1, \dots, x_{i-1}, \pi_1, \dots, \pi_{i-1}, \pi_i = k) \cdot e_k(x_i) \\ &= \sum_{l} \left(\sum_{\pi_1, \dots, \pi_{i-2}} P(x_1, \dots, x_{i-1}, \pi_1, \dots, \pi_{i-2}, \pi_{i-1} = l) \cdot a_{l,k} \right) \cdot e_k(x_i) \\ &= \sum_{l} P(x_1, \dots, x_{i-1}, \pi_{i-1} = l) \cdot a_{l,k} \cdot e_k(x_i) \\ &= e_k(x_i) \cdot \sum_{l} f_l(i-1) \cdot a_{l,k} & \text{Chain rule: } P(A, B, C) = P(C|A, B) \; P(B|A) \; P(A) \end{split}$$

The Forward Algorithm

We can compute $f_k(i)$ for all k, i, using dynamic programming

Initialization:
$$f_0(0) = 1$$

$$f_k(0) = 0, \quad \forall k > 0$$

Iteration:
$$f_k(i) = e_k(x_i) \cdot \sum_l f_l(i-1) \cdot a_{l,k}$$

Termination:
$$P(\vec{x}) = \sum_{k} f_k(N) \cdot a_{k,0}$$

The Backward Algorithm

• Forward algorithm determines the most likely state k at position i, using the *previous* observations.

123412316261636461623411221341

• What if we started from the end?

The Backward Algorithm - derivation

We define the backward probability:

$$\begin{aligned} b_k(i) &= P(x_{i+1}, \dots, x_N \mid \pi_i = k) \\ &= \sum_{\pi_{i+1}, \dots, \pi_N} P(x_{i+1}, \dots, x_N, \pi_{i+1}, \dots, \pi_N \mid \pi_i = k) \\ &= \sum_{l} \sum_{\pi_{i+1}, \dots, \pi_N} P(x_{i+1}, \dots, x_N, \pi_{i+1} = l, \pi_{i+2}, \dots, \pi_N \mid \pi_i = k) \\ &= \sum_{l} e_k(x_{i+1}) \cdot a_{k,l} \cdot \sum_{\pi_{i+2}, \dots, \pi_N} P(x_{i+2}, \dots, x_N, \pi_{i+2}, \dots, \pi_N \mid \pi_{i+i} = l) \\ &= \sum_{l} b_l(i+1) \cdot a_{k,l} \cdot e_l(x_{i+1}) \end{aligned}$$

Chain rule: P(A,B,C)=P(C|A,B) P(B|A) P(A)

The Backward Algorithm

We can compute $b_k(i)$ for all k, i, using dynamic programming

Initialization:
$$b_k(N) = a_{k,0}, \forall k$$

Iteration:
$$b_k(i) = \sum_{l} e_k(x_{i+1}) \cdot b_l(i+1) \cdot a_{k,l}$$

Termination:
$$P(\vec{x}) = \sum_{k} b_k(1) \cdot a_{0,k} \cdot e_k(x_1)$$

Posterior probabilities of the dishonest casino data

Figure 3.6 The posterior probability of being in the state corresponding to the fair die in the casino example. The x axis shows the number of the roll. The shaded areas show when the roll was generated by the loaded die.

Posterior Decoding

- Posterior decoding calculates the optimal path that explains the data.
- For each emitted symbol, x_i , it finds the most likely state that could produce it, based on the *forward* and *backward* probabilities.

The Viterbi Algorithm - derivation

• We define:

$$V_k(i) = \max_{\{\pi_1,...,\pi_{i-1}\}} P(x_1,...,x_{i-1},\pi_1,...,\pi_{i-1},\pi_i = k)$$

• Then, we need to write the $V_k(i)$ as a function of the previous state, $V_k(i-1)$.

$$V_k(i) = \dots = e_k(x_i) \cdot \max_{l} \{a_{l,k} \cdot V_l(i-1)\}$$

The Viterbi Algorithm

Similar to "aligning" a set of states to a sequence Dynamic programming!

Viterbi decoding: traceback

The Viterbi Algorithm

Similar to "aligning" a set of states to a sequence Dynamic programming!

Viterbi decoding: traceback

Viterbi results

Rolls Die Viterbi	315116246446644245311321631164152133625144543631656626566666 FFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls Die Viterbi	651166453132651245636664631636663162326455236266666625151631 LLLLLLFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLL
Rolls Die Viterbi	222555441666566563564324364131513465146353411126414626253356 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls Die Viterbi	366163666466232534413661661163252562462255265252266435353336 LLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls Die Viterbi	233121625364414432335163243633665562466662632666612355245242 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

Viterbi, Forward, Backward

VITERBI

Initialization:

$$V_0(0) = 1$$

 $V_k(0) = 0$, for all $k > 0$

Iteration:

$$V_i(i) = e_i(x_i) \max_k V_k(i-1) a_{ki}$$

Termination:

$$P(x, \pi^*) = \max_k V_k(N)$$

Time: O(K²N) Space: O(KN)

FORWARD

Initialization:

$$f_0(0) = 1$$

 $f_k(0) = 0$, for all $k > 0$

Iteration:

$$f_{i}(i) = e_{i}(x_{i}) \sum_{k} f_{k}(i-1) a_{ki}$$

Termination:

$$P(x) = \sum_{k} f_{k}(N) a_{k0}$$

BACKWARD

Initialization:

$$b_k(N) = a_{k0}$$
, for all k

Iteration:

$$b_{i}(i) = \sum_{k} e_{i}(x_{i}+1) a_{ki} b_{k}(i+1)$$

Termination:

$$P(x) = \sum_{k} a_{0k} e_{k}(x_{1}) b_{k}(1)$$

Time: O(K²N) Space: O(KN)

Three main questions on HMMs

✓ Evaluation problem

GIVEN HMM M, sequence x

FIND $P(x \mid M)$

ALGOR. Forward

✓ Decoding problem

GIVEN HMM M, sequence x

FIND the sequence π of states that maximizes $P(\pi \mid x, M)$

ALGOR. Viterbi, Forward-Backward

3. Learning

GIVEN HMM M, with unknown prob. parameters, sequence x

FIND parameters $\theta = (\pi, e_{ij}, a_{kl})$ that maximize $P(x \mid \theta, M)$

ALGOR. Maximum likelihood (ML), Baum-Welch (EM)

Problem 3: Learning

Given a model (structure) and data, calculate model's parameters

Two scenarios:

Labeled data - Supervised learning

Unlabeled data - Unsupervised learning

123412316261636461623411221341

Two learning scenarios - examples

1. Supervised learning

Examples:

GIVEN: the casino player allows us to observe him one evening, as he

changes dice and produces 10,000 rolls

a genomic region $x = x_1...x_{1,000,000}$ where we have good

(experimental) annotations of the CpG islands

2. Unsupervised learning

Examples:

10,000 rolls of the casino player, but we don't see when he

changes dice

a newly sequenced genome; we don't know how frequent are the CpG islands there, neither do we know their composition GIVEN:

TARGET: Update the parameters θ of the model to maximize $P(x|\theta)$

Supervised learning

- Given $x = x_1...x_N$ for which the true state path $\pi = \pi_1...\pi_N$ is known
 - Define:

```
A_{k,l} = # times state transition k \rightarrow l occurs in \pi = # times state k in \pi emits b in x
```

• The maximum likelihood parameters θ are:

$$a_{k,l}^{ML} = \frac{A_{k,l}}{\sum_{i} A_{k,i}}$$
 $e_{k}^{ML}(b) = \frac{E_{k}(b)}{\sum_{c} E_{k}(c)}$

Problem: overfitting (when training set is small for the model)

Overfitting

Example

Given 10 casino rolls, we observe

$$\mathbf{x} = 2$$
, 1, 5, 6, 1, 2, 3, 6, 2, 3
 $\pi = \mathbf{F}$, \mathbf{F}

• Then:

```
a_{FF} = 10/10 = 1.00; a_{FL} = 0/10 = 0

e_{F}(1) = e_{F}(3) = 2/10 = 0.2;

e_{F}(2) = 3/10 = 0.3; e_{F}(4) = 0/10 = 0; e_{F}(5) = e_{F}(6) = 1/10 = 0.1
```

- Solution: add pseudocounts
 - Larger pseudocounts ⇒ strong prior belief (need a lot of data to change)
 - Smaller pseudocounts ⇒ just smoothing (to avoid zero probabilities)

Overfitting

Example

• Given 10 casino rolls, we observe

$$\mathbf{x} = 2, 1, 5, 6, 1, 2, 3, 6, 2, 3$$

 $\pi = F, F, F, F, F, F, F, F, F, F$

• Then:

```
a_{FF} = 11/12 = 0.92; a_{FL} = 1/12 = 0.08

e_{F}(1) = e_{F}(3) = 3/16 = 0.1875;

e_{F}(2) = 4/16 = 0.25; e_{F}(4) = 1/16 = 0.0625; e_{F}(5) = e_{F}(6) = 2/16 = 0.125
```

- Solution: add pseudocounts
 - Larger pseudocounts ⇒ strong prior belief (need a lot of data to change)
 - Smaller pseudocounts ⇒ just smoothing (to avoid zero probabilities)

Unsupervised learning - ML

- Given $x = x_1...x_N$ for which the true state path $\pi = \pi_1...\pi_N$ is unknown
 - EXPECTATION MAXIMIZATION (EM) in a nutshell
 - o. Initialize the parameters θ of the model M
 - 1. Calculate the expected values of $A_{k,l}$, $E_k(b)$ based on the training data and current parameters
 - 2. Update θ according to $A_{k,l}$, $E_k(b)$ as in supervised learning
 - 3. Repeat #1 & #2 until convergence
 - In HMM training, we usually apply a special case of EM, called Baum-Welch Algorithm

The Baum-Welch (EM) algorithm simply put

- Recurrence:
 - 1. Estimate $A_{k,l}$ and $E_k(b)$ from $a_{k,l}$ and $e_k(b)$ overall all training sequences (E-step)
 - 2. Update $a_{k,l}$ and $e_k(b)$ using ML (M-step)
 - 3. Repeat steps #1, #2 with new parameters $a_{k,l}$ and $e_k(b)$
- Initialization:
 - Set A and E to pseudocounts (or priors)
- Termination: if Δlog-likelihood < threshold or Ntimes>max_times

The Baum-Welch algorithm

- Recurrence:
 - 1. Calculate forward/backwards probs, $f_k(i)$ and $b_k(i)$, for each training sequence
 - 2. E-step: Estimate the expected number of $k \rightarrow l$ transitions, $A_{k,l}$

$$A_{k,l} = \sum_{i} f_k(i) \cdot a_{k,l} \cdot e_l(x_{i+1}) \cdot b_l(i+1) / P(\vec{x} \mid \theta)$$

and the expected number of symbol b appearences in state k, $E_k(b)$

$$E_k(b) = \sum_{\{i \mid x_i = b\}} f_k(i) \cdot b_k(i) / P(\vec{x} \mid \theta)$$

- 3. M-step: Estimate new model parameters $a_{k,l}$ and $e_k(b)$ using ML across all training sequences
- 4. Estimate the new model's (log)likelihood to assess convergence

The Baum-Welch algorithm (cntd)

- Initialization: pick arbitrary model parameters
 - Set A and E to pseudocounts (or priors)
- Termination: if ∆log-likelihood < threshold or Ntimes>max_times

The Baum-Welch algorithm:

- is monotone
- guarantees convergence
- is a special case of EM
- has many local optima

An example of Baum-Welch

(thanks to Sarah Wheelan, JHU)

• I observe the dog across the street. Sometimes he is inside, sometimes outside.

- I assume that since he can not open the door himself, then there is another factor, hidden from me, that determines his behavior.
- Since I am lazy, I will guess there are only two hidden states, S_1 and S_2 .

- One set of observations:
 - I-I-I-I-O-O-I-I-I
- Guessing two hidden states. I need to invent a transition and emission matrix.
 - Note: since Baum-Welch is an EM algorithm the better my initial guesses are the better the job I will do in estimating the true parameters

Day k+1

K		51	52		
Day	51	0.5	0.5		
	52	0.4	0.6		

	IN	OUT
51	0.2	0.8
52	0.9	0.1

- Let's assume initial values of:
 - $P(S_1) = 0.3$, $P(S_2) = 0.7$
- Example guess: if initial I-I came from S_1 - S_2 then the probability is:

 $0.3 \times 0.2 \times 0.5 \times 0.9 = 0.027$

Day
$$k+1$$

K		51	52
αλ	51	0.5	0.5
2	52	0.4	0.6

	IN OUT		
S 1	0.2	0.8	
52	0.9	0.1	

- Now, let's estimate the transition matrix. Sequence I-I-I-I-O-O-I-I-I has the following events:
 - II, II, II, IO, OO, OI, II, II
- So, our estimate for $S_1 -> S_2$ transition probability is:
 - 0.285/2.4474 = 0.116
- Similarly, calculate the other three transition probs and normalize so they sum up to 1
- Update transition matrix

Seq	$P(Seq)$ for S_1S_2	Best P(Seq)
II	0.027	0.3403 S ₂ S ₂
II	0.027	0.3403 S ₂ S ₂
II	0.027	0.3403 S ₂ S ₂
II	0.027	0.3403 S ₂ S ₂
IO	0.003	0.2016 S ₂ S ₁
00	0.012	0.0960 S ₁ S ₁
OI	0.108	0.1080 S ₁ S ₂
II	0.027	0.3403 S ₂ S ₂
II	0.027	0.3403 S ₂ S ₂
Total	0.285	2.4474

- Estimating initial probabilities:
 - Assume all sequences start with hidden state S_1 , calculate best probability
 - Assume all sequences start with hidden state S_2 , calculate best probability
 - Normalize to 1.
- Now, we have generated the updated transition, emission and initial probabilities. Repeat this method until those probabilities converge

The Baum-Welch algorithm

- Time complexity:
 - # iterations $\times O(K^2N)$
- Guaranteed to increase the likelihood $P(x \mid \theta)$
- Not guaranteed to find globally optimal parameters
 - Converges to a local optimum, depending on initial conditions
- Too many parameters / too large model ⇒
 Overtraining

Back to: HMM for CpG islands

How do we find CpG islands in a sequence?

Build a single model that combines both Markov chains:

•Emit symbols: A, C, G, T in CpG islands

•Emit symbols: A, C, G, T in non-CpG islands

If a sequence CGCG is emitted by states (C_+,G_-,C_-,G_+) , then:

$$P(CGCG) = a_{0,C_{+}} \times 1 \times a_{C_{+},G_{-}} \times 1 \times a_{G_{-},C_{-}} \times 1 \times a_{C_{-},G_{+}} \times 1 \times a_{G_{+},0}$$

In general, we DO NOT know the path. How to estimate the path?

Note: Each set ('+' or '-') has an additional set of transitions as in previous Markov chain

What we have...

	A ₊	C ₊	G ₊	T ₊	A_	C_	G ₋	T.
A ₊	.180	.274	.426	.120				
C ₊	.171	.368	.274	.188				
G ₊		.339	.375	.125				
T ₊		.355	.384	.182				
A_					.300	.205	.285	.210
C_					.233	.298	.078	.302
G ₋					.248	.246	.298	.208
T_					.177	.239	.292	.292

Note: these transitions out of each state add up to one—no room for transitions between (+) and (-) states

Not a valid transition probability matrix nor a complete one!

A model of CpG Islands - Transitions

- What about transitions between (+) and (-) states?
- They affect
 - Avg. length of CpG island
 - Avg. separation between two CpG islands

1-p₊₊ p₋₋

1-p__

Length distribution of region +:

P(L=1)
$$\Longrightarrow$$
 +- = 1-p₊₊:
P(L=2) \Longrightarrow ++- = p₊₊ (1-p₊₊)
...
P[L= ℓ] = p₊₊ ℓ -1(1-p₊₊)

Geometric distribution, with mean = $\frac{1}{1-p_{++}}$

Expected length of a state to continue in that state

What we have...

	A ₊	C ₊	G,	T ₊	A_	C_	G ₋	T_
A ₊	.180	.274	.426	.120				
C ₊	.171	.368	.274	.188				
G,	.161	.339	.375	.125				
T ₊	.079	.355	.384	.182				
A ₋					.300	.205	.285	.210
C_					.233	.298	.078	.302
G ₋					.248	.246	.298	.208
T_					.177	.239	.292	.292

$$(1-\lambda_{+})$$
 * freq(b_i)

Now a valid transition probability matrix and a complete one!

Another application: Profile HMMs

Profile HMMS (Haussler, 1993)

- Ungapped alignment of sequence X against profile M
 - $e_i(a)$: probability of observing a at position I

$$P(X \mid M) = \prod_{i=i,\dots,L} e_i(x_i)$$

•
$$Score(X \mid M) = \sum_{i=1,...,L} \log(e_i(x_i) / q_{x_i})$$

What about indels?

Profile HMMs: "match" states

LEVK LEIR LEIK LDVE

We make a single state HMM to represent above profile, using match states only

Introducing "insert" states to the previous HMM

We want to know whether (for instance) the sequence LEKKVK is a good match to the HMM

Introducing "delete" states to the previous HMM

We want to know whether (for instance) the sequence LEK is a good match to the HMM

- 1. Find sequence homologs
 - ie, we represent a sequence family by an HMM and use that to identify ("evaluate") other related sequences

Evaluation: So Use Forward Viterbi is OK too. $P(x,SP^* | \lambda)$

$$P(x \mid \lambda) = \sum_{\substack{\text{AllPossible Parses} \\ (SP^{p}; \# \text{ of possible } p \text{'s} = K^{L})}} P(x, SP^{p} \mid \lambda) = \sum_{\substack{\text{AllPossible Parses} \\ (K^{L} \text{ Possibilities})}} \prod_{i=1}^{L} a(\pi_{i-1}, \pi_{i}) e(\pi_{i}, x_{i})$$

Three main applications for profile HMM

- 2. Align a new sequence to the profile
 - ie, we expnad our multiple sequence alignment

This is Decoding: Use Viterbi

Three main applications for profile HMM

- 3. Align a set of sequences from scratch
 - ie, we want to build a multiple sequence alignment of a set of "unaligned sequences"

LEVK, LEK, LEIR, LEIK, LDVE

LEVK
LEIR
LEIK
LDVE
LE-K

This needs parameter estimation: use Baum-Welch

Making multiple sequence alignment from unaligned sequences

- Baum-Welch Expectation-maximization method
 - Start with a model whose length matches the average length of the sequences and with random output and transition probabilities.
 - Align all the sequences to the model.
 - Use the alignment to alter the output and transition probabilities
 - Repeat. Continue until the model stops changing
- By-product: It produced a multiple alignment

Acknowledgements

Some of the slides used in this lecture are adapted or modified slides from lectures of:

- Serafim Batzoglou, Stanford University
- Bino John, Dow Agrosciences
- Nagiza F. Samatova, Oak Ridge National Lab
- Sarah Wheelan, Johns Hopkins University
- Eric Xing, Carnegie-Mellon University

Theory and examples from the following books:

- T. Koski, "Hidden Markov Models for Bioinformatics", 2001, Kluwer Academic Publishers
- R. Durbin, S. Eddy, A. Krogh, G. Mitchison, "Biological Sequence Analysis", 1998, Cambridge University Press