HMMs and applications

Notes from Dr. Takis Benos
and DEKM book

Markov chains

- What is a Markov chain?

Markov chain of order n is a stochastic process of a series of outcomes, in which the probability of outcome x depends on the state of the previous n outcomes.

Markov chains (cntd)

- Markov chain (of first order) and the Chain Rule

$$
\begin{aligned}
& P(\vec{x})=P\left(X_{L}, X_{L-1}, \ldots, X_{1}\right)= \\
& =P\left(X_{L} \mid X_{L-1}, \ldots, X_{1}\right) P\left(X_{L-1}, X_{L-2}, \ldots, X_{1}\right)= \\
& =P\left(X_{L} \mid X_{L-1}, \ldots, X_{1}\right) P\left(X_{L-1} \mid X_{L-2}, \ldots, X_{1}\right) \ldots P\left(X_{1}\right)= \\
& =P\left(X_{L} \mid X_{L-1}\right) P\left(X_{L-1} \mid X_{L-2}\right) \ldots P\left(X_{2} \mid X_{1}\right) P\left(X_{1}\right)= \\
& =P\left(X_{1}\right) \prod_{i=2}^{L} P\left(X_{i} \mid X_{i-1}\right)
\end{aligned}
$$

Application of Markov chains: CpG islands

- CG is relatively rare in the genome due to high mutation of methylCG to methyl-TG (or CA)
- Methylated CpG residues are often associated with house-keeping genes in the promoter and exon regions.
- Methyl-CpG binding proteins recruit histone deacetylases and are thus responsible for transcriptional repression.
- They have roles in gene silencing, genomic imprinting, and Xchromosome inactivation.

Methylation of Cytosine

CpG islands and DNA Methylation

Largely confined to CpG dinucleotides
CpG islands - regions of more than 500 bp with CG content > 55\% denoted CpG to not confuse with CG base pair

Methylation often suppressed around genes, promoters
Base Position |
GC Percent
Known Genes
Human mRNAs
CpG Elands

14000000 I
14500000
15000000 I
15600000

Can we predict CpG islands? - a good way of identifying potential gene regions as well! - But not so fast!!

Application of Markov chains: CpG islands

- Problem:

Given two sets of sequences from the human genome, one with CpG islands and one without, can we calculate a model that can predict the CpG islands?

Sequence: $\quad s=t \cdot t \cdot a \cdot c \cdot g \cdot g \cdot t$
$0^{\text {th }}$-order: $\quad P_{0}(s)=\mathrm{p}(t) \cdot \mathrm{p}(t) \cdot \mathrm{p}(a) \cdot \mathrm{p}(c) \cdot \mathrm{p}(g) \cdots=\prod_{i=1}^{N} \mathrm{p}\left(s_{i}\right)$
$1^{\text {st }}$-order: $\quad P_{1}(s)=\mathrm{p}(t) \cdot \mathrm{p}(t \mid t) \cdot \mathrm{p}(a \mid t) \cdot \mathrm{p}(c \mid a) \cdots=\mathrm{p}\left(s_{1}\right) \cdot \prod_{i=2}^{N} \mathrm{p}\left(s_{i} \mid s_{i-1}\right)$
2nd_order: $\quad P_{2}(s)=\mathrm{p}(t t) \cdot \mathrm{p}(a \mid t t) \cdot \mathrm{p}(c \mid t a) \cdot \mathrm{p}(g \mid a c) \cdots=\mathrm{p}\left(s_{1} s_{2}\right) \cdot \prod_{i=3}^{N} \mathrm{p}\left(s_{i} \mid s_{i-2} s_{i-1}\right)$

Application of Markov chains: CpG islands (cntd)

- A state for each of the four letters A,C, G, and T in the DNA alphabet
- \longleftrightarrow probability of a residue following another residue

$\boldsymbol{+}$	\mathbf{A}	\mathbf{C}	\mathbf{G}	\mathbf{T}
\mathbf{A}	.180	.274	.426	.120
\mathbf{C}	.171	.368	.274	.188
\mathbf{G}	.161	.339	.375	.125
\mathbf{T}	.079	.355	.384	.182

Training Set:

- set of DNA sequences w/ known CpG islands

Derive two Markov chain models:

- '+' model: from the CpG islands
- '-' model: from the remainder of sequence

Transition probabilities for each model:

$$
a_{s t}^{+}=\frac{c_{s t}^{+}}{\sum_{t^{\prime}} c_{s t^{\prime}}^{+}}
$$

$\boldsymbol{c}_{\boldsymbol{s t}}^{+}$is the number of times letter \boldsymbol{t} followed letter \boldsymbol{s} in the CpG islands

To use these models for discrimination, calculate the log-odds ratio:

$$
\boldsymbol{S}(x)=\log \frac{P(x \mid \text { model }+)}{P(x \mid \text { model }-)}=\sum_{i=1}^{L} \log \frac{a_{x_{i-1} x_{i}}^{+}}{a_{x_{i-1} x_{i}}^{-}}
$$

Application of Markov chains: CpG islands (cntd)

Histogram of log-odd scores

other

Q1: Given a short sequence x, does it come from CpG island? (Yes-No question)

- Evaluate $S(x)$

Q2: Given a long sequence x, how do we find $C p G$ islands in it (Where question)?

- Calculate the log-odds score for a window of, say, 100 nucleotides around every nucleotide, plot it, and predict CpG islands as ones w/ positive values
- Drawbacks: Window size?

HMM: A parse of a sequence

Given a sequence $x=x_{1} \ldots . . . x_{L}$, and a HMM with K states, A parse of x is a sequence of states $\pi=\pi_{1}, \ldots \ldots ., \pi_{L}$

Benos 02-710/MSCBIO2070 1-3.Apr. 2013

Hidden Markov Models (HMMs)

- What is a HMM?

A Markov process in which the probability of an outcome depends also in a (hidden) random variable (state).

- Memory-less: future states affected only by current state
- We need:
$\checkmark \quad \Omega$: alphabet of symbols (outcomes)
$\checkmark S$: set of states (hidden), each of which emits symbols
$\checkmark A=\left(a_{k}\right)$: matrix of state transition probabilities
$\checkmark \quad E=\left(e_{k}(b)\right)=\left(P\left(x_{i}=b / \pi=k\right)\right)$: matrix of emission probabilities

Example: the dishonest casino

$0.95 \longrightarrow$			Q0.9		$\checkmark \Omega=\{1,2,3,4,5,6\}$
后	1: $1 / 6$	0.05	1:1/10		$\checkmark S=\{\mathrm{F}, \mathrm{L}\}$
	2: 1/6		2:1/10		\checkmark A : $a_{F F}=0.95, a_{L L}=0.9$,
	3: $1 / 6$		3: $1 / 10$	$\begin{aligned} & 5 \\ & \hline 0 \end{aligned}$	$a_{F L}=0.05, a_{L F}=0.1$
	4: $1 / 6$	\lessdot	4: $1 / 10$	-	$\checkmark E: e_{F}(b)=1 / 6(\forall b \in \Omega)$,
	5: $1 / 6$		5: $1 / 10$		$e_{L}(" 6$ ") $=1 / 2$
	6:1/6		6:1/2		$e_{L}(b)=1 / 10$ (if $b \neq 6$)

Three main questions on HMMs

1. Evaluation problem

GIVEN HMM M, sequence x
FIND $\quad P(x \mid M)$
ALGOR. Forward $O\left(T N^{2}\right)$
2. Decoding problem

GIVEN HMM M, sequence x
FIND the sequence π of states that maximizes $P(\pi \mid x, M)$
ALGOR. Viterbi, Forward-Backward $O\left(T^{2}\right)^{2}$
3. Learning problem

GIVEN HMM M, with unknown prob. parameters, sequence x
FIND parameters $\theta=\left(\pi, e_{i j}, a_{k \mid}\right)$ that maximize $P(x \mid \theta, M)$
ALGOR. Maximum likelihood (ML), Baum-Welch (EM) O(TN2)

Problem 1: Evaluation

Find the likelihood a given sequence is generated by a particular model
E.g. Given the following sequence is it more likely that it comes from a Loaded or a Fair die?

123412316261636461623411221341

Problem 1: Evaluation (cntd)

123412316261636461623411221341

$$
\begin{aligned}
P\left(\text { Data } \mid F_{1} \ldots F_{30}\right) & =\prod_{i=1}^{30} a_{F, F} \cdot e_{F}\left(b_{i}\right)= \\
& =0.95^{29} \cdot(1 / 6)^{30}=0.226 \cdot 4.52 \cdot 10^{-24}= \\
& =1.02 \cdot 10^{-24}
\end{aligned}
$$

$$
\begin{aligned}
P\left(\text { Data } \mid L_{1} \ldots L_{30}\right) & =\prod_{i=1}^{30} a_{L, L} \cdot e_{L}\left(b_{i}\right)= \\
& =(1 / 2)^{6} \cdot(1 / 10)^{24} \cdot 0.90^{29}=1.56 \cdot 10^{-26} \cdot 0.047= \\
& =7.36 \cdot 10^{-28}
\end{aligned}
$$

What happens in a sliding window?

Three main questions on HMMs

\checkmark Evaluation problem
GIVEN HMM M, sequence x
FIND $\quad P(x \mid M)$
ALGOR. Forward

1. Decoding problem

GIVEN HMM M, sequence x
FIND the sequence π of states that maximizes $P(\pi \mid x, M)$
ALGOR. Viterbi, Forward-Backward $O\left(T^{2}\right)^{2}$
2. Learning problem

GIVEN HMM M, with unknown prob. parameters, sequence x FIND parameters $\theta=\left(\pi, e_{i j}, a_{k \mid}\right)$ that maximize $P(x \mid \theta, M)$
ALGOR. Maximum likelihood (ML), Baum-Welch (EM) O(TN2)

Problem 2: Decoding

Given a point x_{i} in a sequence find its mos t probable state

E.g. Given the following sequence is it more likely that the 3rd observed " 6 " comes from a Loaded or a Fair die?

123412316261636461623411221341

The Forward Algorithm - derivation

- In order to calculate $P\left(x_{i}\right)=$ probability of x_{i}, given the HMM, we need to sum over all possible ways of generating x_{i} :

$$
P\left(x_{i}\right)=\sum_{\pi} P\left(x_{i}, \pi\right)=\sum_{\pi} P\left(x_{i} \mid \pi\right) \cdot P(\pi)
$$

- To avoid summing over an exponential number of paths π, we first define the forward probability.

$$
f_{k}(i)=P\left(x_{1} \ldots x_{i}, \pi_{i}=k\right)
$$

The Forward Algorithm - derivation (cntd)

- Then, we need to write the $f_{k}(1)$ as a function of the previous state, $f(i-1)$.

$$
\begin{aligned}
f_{k}(i) & =P\left(x_{1}, \ldots, x_{i-1}, x_{i}, \pi_{i}=k\right) \\
& =\sum_{\pi_{1}, \ldots, \pi_{i-1}} P\left(x_{1}, \ldots, x_{i-1}, \pi_{1}, \ldots, \pi_{i-1}, \pi_{i}=k\right) \cdot e_{k}\left(x_{i}\right) \\
& =\sum_{l}(\underbrace{\sum_{\pi_{1}, \ldots, \pi_{i-2}} P\left(x_{1}, \ldots, x_{i-1}, \pi_{1}, \ldots, \pi_{i-2}, \pi_{i-1}\right.}=l) \cdot a_{l, k}) \cdot e_{k}\left(x_{i}\right) \\
& =\sum_{l} P\left(x_{1}, \ldots, x_{i-1}, \pi_{i-1}=l\right) \cdot a_{l, k} \cdot e_{k}\left(x_{i}\right) \\
& =e_{k}\left(x_{i}\right) \cdot \sum_{l} f_{l}(i-1) \cdot a_{l, k} \quad \text { Chain rule: } P(A, B, C)=P(C \mid A, B) P(B \mid A) P(A)
\end{aligned}
$$

The Forward Algorithm

We can compute $f_{k}(i)$ for all k, i, using dynamic programming
Initialization: $\quad f_{0}(0)=1$
$f_{k}(0)=0, \quad \forall k>0$

Iteration:

$$
f_{k}(i)=e_{k}\left(x_{i}\right) \cdot \sum_{l} f_{l}(i-1) \cdot a_{l, k}
$$

Termination: $\quad P(\vec{x})=\sum_{k} f_{k}(N) \cdot a_{k, 0}$

The Backward Algorithm

- Forward algorithm determines the most likely state k at position i, using the previous observations. 123412316261 ¢36461623411221341

- What if we started from the end?

The Backward Algorithm - derivation

- We define the backward probability.

$$
\begin{aligned}
b_{k}(i) & =P\left(x_{i+1}, \ldots, x_{N} \mid \pi_{i}=k\right) \\
& =\sum_{\pi_{i+1}, \ldots, \pi_{N}} P\left(x_{i+1}, \ldots, x_{N}, \pi_{i+1}, \ldots, \pi_{N} \mid \pi_{i}=k\right) \\
& =\sum_{l} \sum_{\pi_{i+1}, \ldots, \pi_{N}} P\left(x_{i+1}, \ldots, x_{N}, \pi_{i+1}=l, \pi_{i+2}, \ldots, \pi_{N} \mid \pi_{i}=k\right) \\
& =\sum_{l} e_{k}\left(x_{i+1}\right) \cdot a_{k, l} \cdot \sum_{\pi_{i+2}, \ldots, \pi_{N}} P\left(x_{i+2}, \ldots, x_{N}, \pi_{i+2}, \ldots, \pi_{N} \mid \pi_{i+i}=l\right) \\
& =\sum_{l} b_{l}(i+1) \cdot a_{k, l} \cdot e_{l}\left(x_{i+1}\right)
\end{aligned}
$$

Chain rule: $P(A, B, C)=P(C \mid A, B) P(B \mid A) P(A)$

The Backward Algorithm

We can compute $b_{k}(i)$ for all k, i, using dynamic programming
Initialization: $\quad b_{k}(N)=a_{k, 0}, \quad \forall k$

Iteration:

$$
b_{k}(i)=\sum_{l} e_{k}\left(x_{i+1}\right) \cdot b_{l}(i+1) \cdot a_{k, l}
$$

Termination: $\quad P(\vec{x})=\sum_{k} b_{k}(1) \cdot a_{0, k} \cdot e_{k}\left(x_{1}\right)$

Posterior probabilities of the dishonest casino data

Figure 3.6 The posterior probability of being in the state corresponding to the fair die in the casino example. The x axis shows the number of the roll. The shaded areas show when the roll was generated by the loaded die.

Posterior Decoding

$\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}$

- Posterior decoding calculates the optimal path that explains the data.
- For each emitted symbol, x_{i}, it finds the most likely state that could produce it, based on the forward and backward probabilities.

The Viterbi Algorithm - derivation

- We define:

$$
V_{k}(i)=\max _{\left\{\pi_{1}, \ldots, \pi_{i-1}\right\}} P\left(x_{1}, \ldots, x_{i-1}, \pi_{1}, \ldots, \pi_{i-1}, \pi_{i}=k\right)
$$

- Then, we need to write the $V_{k}(i)$ as a function of the previous state, $V(i-1)$.

$$
V_{k}(i)=\ldots=e_{k}\left(x_{i}\right) \cdot \max _{l}\left\{a_{l, k} \cdot V_{l}(i-1)\right\}
$$

The Viterbi Algorithm

$$
x_{1} \quad x_{2} \quad x_{3} \ldots \ldots . ~\left(x_{N}\right.
$$

State 1

Similar to "aligning" a set of states to a sequence
Dynamic programming!
Viterbi decoding: traceback

The Viterbi Algorithm

\qquad

Similar to "aligning" a set of states to a sequence
Dynamic programming!

Viterbi decoding: traceback

Viterbi results

Rolls 315116246446644245311321631164152133625144543631656626566666
Die FFHLLLLLLLLLLLLLLL Viterbi FFHFFFLLLLLLLLLLLL
Rolls 651166453132651245636664631636663162326455236266666625151631
Die LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLFFFLLLLLLLLLLLLLLFFFFFFFFF
Viterbi LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLFFFFFFFF
Rolls 222555441666566563564324364131513465146353411126414626253356
Die FFFFFFFFLLLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLL,
Viterbi FFEJ
Rolls 366163666466232534413661661163252562462255265252266435353336
Die LLLLLLLLFF
Viterbi LLLLLLLLLLLLFF
*
Rolls 233121625364414432335163243633665562466662632666612355245242
Die FFFFFFFFFFFFFFFFFFFFFFFFFFFULLLLLLLLLLLLLLLLLLLLLFFFFFFFFFFF
Viterbi FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFGLLLLLLLLLLLLLLLLLLFFFFFFFFFFF

Viterbi, Forward, Backward

VITERBI

Initialization:

$$
\begin{aligned}
& V_{0}(0)=1 \\
& V_{k}(0)=0, \text { for all } k>0
\end{aligned}
$$

Iteration:

$V_{1}(i)=e_{1}\left(x_{i}\right) \max _{k} V_{k}(i-1) a_{k l}$
Termination:
$P\left(x, \pi^{*}\right)=\max _{k} V_{k}(N)$

Time: $\mathrm{O}\left(\mathrm{K}^{2} \mathrm{~N}\right)$ Space: $\mathrm{O}(\mathrm{KN})$

FORWARD	BACKWARD
Initialization: $\begin{aligned} & f_{0}(0)=1 \\ & f_{k}(0)=0, \text { for all } k>0 \end{aligned}$	Initialization: $b_{k}(N)=a_{k 0}$, for all k
Iteration: $f_{l}(i)=e_{l}\left(x_{i}\right) \sum_{k} f_{k}(i-1) a_{k l}$	Iteration: $b_{l}(i)=\sum_{k} e_{l}\left(x_{i}+1\right) a_{k \mid} b_{k}(i+1)$
Termination: $P(x)=\Sigma_{k} f_{k}(N) a_{k 0}$	Termination: $P(x)=\sum_{k} a_{0 k} e_{k}\left(x_{1}\right) b_{k}(1)$

Three main questions on HMMs

\checkmark Evaluation problem
GIVEN HMM M, sequence x
FIND $\quad P(x \mid M)$
ALGOR. Forward
\checkmark Decoding problem
GIVEN HMM M, sequence x
FIND the sequence π of states that maximizes $P(\pi \mid x, M)$
ALGOR. Viterbi, Forward-Backward
3. Learning

GIVEN HMM M, with unknown prob. parameters, sequence x FIND parameters $\theta=\left(\pi, e_{i j}, a_{k \mid}\right)$ that maximize $P(x \mid \theta, M)$
ALGOR. Maximum likelihood (ML), Baum-Welch (EM)

Problem 3: Learning

Given a model (structure) and data, calculate model's parameters

Two scenarios:

- Labeled data - Supervised learning

12341231	62616364616	
Fair	23411221341 Loaded	Fair

- Unlabeled data - Unsupervised learning

$$
123412316261636461623411221341
$$

Two learning scenarios - examples

1. Supervised learning

Examples:
GIVEN: the casino player allows us to observe him one evening, as he changes dice and produces 10,000 rolls

GIVEN: a genomic region $x=x_{1} \ldots x_{1,000,000}$ where we have good (experimental) annotations of the CpG islands
2. Unsupervised learning

Examples:
GIVEN: 10,000 rolls of the casino player, but we don' + see when he changes dice

GIVEN: a newly sequenced genome; we don't know how frequent are the CpG islands there, neither do we know their composition

TARGET: Update the parameters θ of the model to maximize $P(x \mid \theta)$

Supervised learning

- Given $x=x_{1} \ldots x_{N}$ for which the true state path $\pi=\pi_{1} \ldots \pi_{N}$ is known
- Define:
$A_{k, l}=\#$ times state transition $k \rightarrow /$ occurs in π
$E_{k}(b)=\#$ times state k in π emits b in x
- The maximum likelihood parameters θ are:

$$
a_{k, l}^{M L}=\frac{A_{k, l}}{\sum_{i} A_{k, i}} \quad e_{k}^{M L}(b)=\frac{E_{k}(b)}{\sum_{c} E_{k}(c)}
$$

- Problem: overfitting (when training set is small for the model)

Overfitting

- Example
- Given 10 casino rolls, we observe

$$
\begin{aligned}
& \mathrm{x}=2,1,5,6,1,2,3,6,2,3 \\
& \pi=F, F, F, F, F, F, F, F, F, F
\end{aligned}
$$

- Then:

$$
\begin{aligned}
& a_{F F}=10 / 10=1.00 ; \quad a_{F L}=0 / 10=0 \\
& e_{F}(1)=e_{F}(3)=2 / 10=0.2 ; \\
& e_{F}(2)=3 / 10=0.3 ; e_{F}(4)=0 / 10=0 ; e_{F}(5)=e_{F}(6)=1 / 10=0.1
\end{aligned}
$$

- Solution: add pseudocounts
- Larger pseudocounts \Rightarrow strong prior belief (need a lot of data to change)
- Smaller pseudocounts \Rightarrow just smoothing ($\dagger 0$ avoid zero probabilities)

Overfitting

- Example
- Given 10 casino rolls, we observe

$$
\begin{aligned}
& \mathrm{x}=2,1,5,6,1,2,3,6,2,3 \\
& \pi=F, F, F, F, F, F, F, F, F, F
\end{aligned}
$$

- Then:

$$
\begin{aligned}
& a_{F F}=11 / 12=0.92 ; \quad a_{F L}=1 / 12=0.08 \\
& e_{F}(1)=e_{F}(3)=3 / 16=0.1875 ; \\
& e_{F}(2)=4 / 16=0.25 ; e_{F}(4)=1 / 16=0.0625 ; e_{F}(5)=e_{F}(6)=2 / 16=0.125
\end{aligned}
$$

- Solution: add pseudocounts
- Larger pseudocounts \Rightarrow strong prior belief (need a lot of data to change)
- Smaller pseudocounts \Rightarrow just smoothing (†o avoid zero probabilities)

Unsupervised learning - ML

- Given $x=x_{1} \ldots x_{N}$ for which the true state path $\pi=\pi_{1} \ldots \pi_{N}$ is unknown
- EXPECTATION MAXIMIZATION (EM) in a nutshell

0. Initialize the parameters θ of the model M
1. Calculate the expected values of $A_{k, l}, E_{k}(b)$ based on the training data and current parameters
2. Update θ according to $A_{k, l} E_{k}(b)$ as in supervised learning
3. Repeat \#1 \& \#2 until convergence

- In HMM training, we usually apply a special case of EM, called Baum-Welch Algorithm

The Baum-Welch (EM) algorithm simply put

- Recurrence:

1. Estimate $A_{k, l}$ and $E_{k}(b)$ from $a_{k, l}$ and $e_{k}(b)$ overall all training sequences (E-step)
2. Update $a_{k, l}$ and $e_{k}(b)$ using ML (M-step)
3. Repeat steps \#1, \#2 with new parameters $a_{k, /}$ and $e_{k}(b)$

- Initialization:
- Set A and E to pseudocounts (or priors)
- Termination: if $\Delta l o g$-likelihood < threshold or Ntimes>max_times

The Baum-Welch algorithm

- Recurrence:

1. Calculate forward/backwards probs, $f_{k}(i)$ and $b_{k}(i)$, for each training sequence
2. E-step: Estimate the expected number of $k \rightarrow 1$ transitions, $A_{k, 1}$

$$
A_{k, l}=\sum_{i} f_{k}(i) \cdot a_{k, l} \cdot e_{l}\left(x_{i+1}\right) \cdot b_{l}(i+1) / P(\vec{x} \mid \theta)
$$

and the expected number of symbol b appearences in state $k, E_{k}(b)$

$$
E_{k}(b)=\sum_{\left\{i \mid x_{i}=b\right\}} f_{k}(i) \cdot b_{k}(i) / P(\vec{x} \mid \theta)
$$

3. M-step: Estimate new model parameters $a_{k, /}$ and $e_{k}(b)$ using ML across all training sequences
4. Estimate the new model's (log)likelihood to assess convergence

The Baum-Welch algorithm (cntd)

- Initialization: pick arbitrary model parameters
- Set A and E to pseudocounts (or priors)
- Termination: if $\Delta l o g$-likelihood < threshold or Ntimes>max_times

The Baum-Welch algorithm:

- is monotone
- guarantees convergence
- is a special case of EM
- has many local optima

An example of Baum-Welch

(thanks to Sarah Wheelan, JHU)

- I observe the dog across the street. Sometimes he is inside, sometimes outside.

- I assume that since he can not open the door himself, then there is another factor, hidden from me, that determines his behavior.
- Since I am lazy, I will guess there are only two hidden states, S_{1} and S_{2}.

An example of Baum-Welch (cntd)

- One set of observations:
- I-I-I-I-I-O-O-I-I-I
- Guessing two hidden states. I need to invent a transition and emission matrix.
- Note: since Baum-Welch is an EM algorithm the better my initial guesses are the better the job I will do in estimating the true parameters

Day $k+1$

	IN	OUT
S1	0.2	0.8
S2	0.9	0.1

An example of Baum-Welch (cntd)

- Let's assume initial values of:
- $P\left(S_{1}\right)=0.3, P\left(S_{2}\right)=0.7$
- Example guess: if initial I-I came from $S_{1}-S_{2}$ then the probability is:
$0.3 \times 0.2 \times 0.5 \times 0.9=0.027$
Day $k+1$

	IN	OUT
S1	0.2	0.8
S2	0.9	0.1

An example of Baum-Welch (cntd)

- Now, let's estimate the transition matrix. Sequence I-I-I-I-I-O-O-I-I-I has the following events:
- II, II, II, II, IO, OO, OI, II, II
- So, our estimate for $S_{1} \gg S_{2}$ transition probability is:
- 0.285/2.4474 = 0.116
- Similarly, calculate the other three transition probs and normalize so they sum up to 1
- Update transition matrix

Seq	$P\left(\right.$ Seq for $S_{1} S_{2}$	Best $P($ Seq $)$
II	0.027	$0.3403 \mathrm{~S}_{2} \mathrm{~S}_{2}$
II	0.027	$0.3403 \mathrm{~S}_{2} \mathrm{~S}_{2}$
II	0.027	$0.3403 \mathrm{~S}_{2} \mathrm{~S}_{2}$
II	0.027	$0.3403 \mathrm{~S}_{2} \mathrm{~S}_{2}$
IO	0.003	$0.2016 \mathrm{~S}_{2} \mathrm{~S}_{1}$
OO	0.012	$0.0960 \mathrm{~S}_{1} \mathrm{~S}_{1}$
OI	0.108	$0.1080 \mathrm{~S}_{1} \mathrm{~S}_{2}$
II	0.027	$0.3403 \mathrm{~S}_{2} \mathrm{~S}_{2}$
II	0.027	$0.3403 \mathrm{~S}_{2} \mathrm{~S}_{2}$
Total	0.285	2.4474

An example of Baum-Welch (cntd)

- Estimating initial probabilities:
- Assume all sequences start with hidden state S_{1}, calculate best probability
- Assume all sequences start with hidden state S_{2}, calculate best probability
- Normalize to 1.
- Now, we have generated the updated transition, emission and initial probabilities. Repeat this method until those probabilities converge

The Baum-Welch algorithm

- Time complexity:
- \# iterations $\times \mathrm{O}\left(\mathrm{K}^{2} \mathrm{~N}\right)$
- Guaranteed to increase the likelihood $P(x \mid \theta)$
- Not guaranteed to find globally optimal parameters
- Converges to a local optimum, depending on initial conditions
- Too many parameters / too large model \Rightarrow Overtraining

Back to: HMM for CpG islands

How do we find $C p G$ islands in a sequence?
Build a single model that combines both Markov chains:

- '+' states: $A_{+}, C_{+}, G_{+}, T_{+}$
- Emit symbols: A, C, G, T in CpG islands
- '-' states: $A_{-}, C_{-}, G_{-}, T_{-}$
-Emit symbols: A, C, G, T in non-CpG islands
If a sequence CGCG is emitted by states $\left(C_{+}, G_{-}, C_{-}, G_{+}\right)$, then:

$$
P(C G C G)=a_{0, C_{+}} \times 1 \times a_{C_{+}, G_{-}} \times 1 \times a_{G_{-}, C_{-}} \times 1 \times a_{C_{-}, G_{+}} \times 1 \times a_{G_{+}, 0}
$$

In general, we DO NOT know the path. How to estimate the path?
Note: Each set ('+' or '-') has an additional set of transitions as in previous Markov chain

What we have..

	A_{+}	C_{+}	G_{+}	T_{+}	A_{-}	C_{-}	G_{-}	T_{-}
A_{+}	.180	.274	.426	.120				
C_{+}	.171	.368	.274	.188				
G_{+}	.161	.339	.375	.125				
T_{+}	.079	.355	.384	.182				
A_{-}					.300	.205	.285	.210
C_{-}					.233	.298	.078	.302
G_{-}					.248	.246	.298	.208
T_{-}					.177	.239	.292	.292

Note: these transitions out of each state add up to oneno room for transitions between (+) and (-) states

Not a valid transition probability matrix nor a complete one!

A model of CpG Islands Transitions

- What about transitions between (+) and (-) states?
- They affect
- Avg. length of CpG island
- Avg. separation between two CpG islands

Length distribution of region + :

$$
\begin{aligned}
& P(L=1) \Rightarrow+-=1-p_{++}: \\
& P(L=2) \Rightarrow++=p_{++}\left(1-p_{++}\right)
\end{aligned}
$$

$$
P[L=\zeta]=p_{++}{ }^{\epsilon-1}\left(1-p_{++}\right)
$$

1-p.- Geometric distribution, with mean $=\frac{1}{1-p_{++}}$
Expected length of a state to continue in that state

What we have..

	A_{+}	C_{+}	G+	T+	A		C.	G.	T.	$\left(1-\lambda_{+}\right) *$ freq $\left(\mathrm{b}_{\mathrm{i}}\right)$
A_{+}	.80	274	${ }^{298}$	120						
C_{+}	171	${ }_{368}$	274	188						Now a valid transition
G_{+}	161	${ }_{3} 3$	335	125						probability matrix and a complete one
T_{+}	. 07	. 35	.384	.182						
A.					300		205	295	210	
c.					23.		298	.078	302	
G.					288		226	${ }^{298}$	228	
T.					17		23	. 222	229	
)*f	rea								$\sim \lambda$

Another application: Profile HMMs

Profile HMMS (Haussler, 1993)

- Ungapped alignment of sequence X against profile M
- $e_{i}(a)$: probability of observing a at position I
- $P(X \mid M)=\prod_{i=i, \ldots, L} e_{i}\left(x_{i}\right)$
- $\operatorname{Score}(X \mid M)=\sum_{i=1, \ldots, L} \log \left(e_{i}\left(x_{i}\right) / q_{x_{i}}\right)$
- What about indels?

Profile HMMs: "match" states

LEVK
 LEIR
 LEIK
 LDVE

We make a single state HMM to represent above profile, using match states only

$$
\begin{array}{llll}
\operatorname{Pr}(L)=1 & \operatorname{Pr}(E)=3 / 4 & \operatorname{Pr}(V)=1 / 2 & \operatorname{Pr}(R)=1 / 4 \\
& \operatorname{Pr}(D)=1 / 4 & \operatorname{Pr}(\mathrm{I})=1 / 2 & \operatorname{Pr}(\mathrm{~K})=1 / 4 \\
& & & \operatorname{Pr}(E)=1 / 4
\end{array}
$$

Deriving emission probabilities for
the Match states

Introducing "insert" states to the previous HMM

We want to know whether (for instance) the sequence LEKKVK is a good match to the HMM

Introducing "delete" states to the previous HMM

We want to know whether (for instance) the sequence LEK is a good match to the HMM

LEVK
LEIR We know it should look like this in the end
LEIK
LDVE
LE_K

Three main applications for profile HMMs

1. Find sequence homologs

- ie, we represent a sequence family by an HMM and use that to identify ("evaluate") other related sequences
LEVK
LEIR
LEIK
LDVE

	Search	KKKKKK IKNGTTT
Profile		LEAK
HMM		GGIAAEEIK
		IIGGGAVVS

Evaluation: So Use Forward Viterbi is OK too. $P\left(x, S P^{*} \mid \lambda\right)$

$$
P(x \mid \lambda)=\sum_{\substack{\text { AllPossibleParses } \\\left(S P^{p} ; \# \text { of possible } p^{\prime}=K^{L}\right)}} P\left(x, S P^{p} \mid \lambda\right)=\sum_{\substack{\text { AllpossibleParses } \\\left(K^{L} \text { Possibilities }\right)}} \prod_{i=1}^{L} a\left(\pi_{i-1} \pi_{i}\right) e\left(\pi_{i}, x_{i}\right)
$$

Three main applications for profile HMM

2. Align a new sequence to the profile

- ie, we expnad our multiple sequence alignment

LEVK			LEVK LEIR	Convert
LEIK				
LDVE		Profile HMM	LEIR LEIK LDVE LE-K	

This is Decoding: Use Viterbi

Three main applications for profile HMM

3. Align a set of sequences from scratch

- ie, we want to build a multiple sequence alignment of a set of "unaligned sequences"

LEVK, LEK, LEIR, LEIK, LDVE \quad Align | LEVK |
| :--- |
| LEIR |
| LEIK |
| LDVE |
| LE-K |

This needs parameter estimation: use Baum-Welch

Making multiple sequence alignment from unaligned sequences

- Baum-Welch Expectation-maximization method
- Start with a model whose length matches the average length of the sequences and with random output and transition probabilities.
- Align all the sequences to the model.
- Use the alignment to alter the output and transition probabilities
- Repeat. Continue until the model stops changing
- By-product: It produced a multiple alignment

Acknowledgements

Some of the slides used in this lecture are adapted or modified slides from lectures of:

- Serafim Batzoglou, Stanford University
- Bino John, Dow Agrosciences
- Nagiza F. Samatova, Oak Ridge National Lab
- Sarah Wheelan, Johns Hopkins University
- Eric Xing, Carnegie-Mellon University

Theory and examples from the following books:

- T. Koski, "Hidden Markov Models for Bioinformatics", 2001, Kluwer Academic Publishers
- R. Durbin, S. Eddy, A. Krogh, G. Mitchison, "Biological Sequence Analysis", 1998, Cambridge University Press

