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History



History of GAs

• As early as 1962, John Holland's work on 

adaptive systems laid the foundation for later 

developments.

• By the 1975, the publication of the book 

Adaptation in Natural and Artificial Systems, 

by Holland and his students and colleagues.



History of GAs

• early to mid-1980s, genetic algorithms were 

being applied to a broad range of subjects.

• In 1992 John Koza has used genetic algorithm 

to evolve programs to perform certain tasks. 

He called his method "genetic programming" 

(GP). 



What is GA

• A genetic algorithm (or GA) is a search technique 

used in computing to find true or approximate 

solutions to optimization and search problems. 

• (GA)s are categorized as global search heuristics. 

• (GA)s are a particular class of evolutionary 

algorithms that use techniques inspired by 

evolutionary biology such as inheritance, 

mutation, selection, and crossover (also called 

recombination).



What is GA

• The evolution usually starts from a population 
of randomly generated individuals and 
happens in generations. 

• In each generation, the fitness of every 
individual in the population is evaluated, 
multiple individuals are selected from the 
current population (based on their fitness), and 
modified to form a new population.



What is GA

• The new population is used in the next iteration 
of the algorithm. 

• The algorithm terminates when either a 
maximum number of generations has been 
produced, or a satisfactory fitness level has 
been reached for the population. 

No convergence rule 

or guarantee!



Vocabulary

• Individual - Any possible solution 

• Population - Group of all individuals

• Fitness – Target function that we are optimizing (each 
individual has a fitness) 

• Trait - Possible aspect (features) of an individual

• Genome - Collection of all chromosomes (traits) for an 

individual.



Basic Genetic Algorithm

• Start with a large “population” of randomly generated

“attempted solutions” to a problem

• Repeatedly do the following:

– Evaluate each of the attempted solutions

– (probabilistically) keep a subset of the best 

solutions 

– Use these solutions to generate a new population

• Quit when you have a satisfactory solution (or you 

run out of time)
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Example:
the MAXONE problem

Suppose we want to maximize the number of 

ones in a string of l binary digits

Is it a trivial problem?

It may seem so because we know the answer in 

advance

However, we can think of it as maximizing the 

number of correct answers, each encoded by 1, 

to l yes/no difficult questions`
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Example (cont)

• An individual is encoded (naturally) as a string of l
binary digits

• The fitness f of a candidate solution to the MAXONE 
problem is the number of ones in its genetic code

• We start with a population of n random strings. 
Suppose that l = 10 and n = 6
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Example (initialization)

We toss a fair coin 60 times and get the 

following initial population:

s1 = 1111010101 f (s1) = 7

s2 = 0111000101 f (s2) = 5

s3 = 1110110101 f (s3) = 7

s4 = 0100010011 f (s4) = 4

s5 = 1110111101 f (s5) = 8

s6 = 0100110000 f (s6) = 3
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Step 1: Selection

We randomly (using a biased coin) select a subset of 

the individuals based on their fitness:
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Selected set

Suppose that, after performing selection, we get 

the following population:

s1` = 1111010101 (s1)

s2` = 1110110101 (s3)

s3` = 1110111101 (s5)

s4` = 0111000101 (s2)

s5` = 0100010011 (s4)

s6` = 1110111101 (s5)
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Step 2: crossover

• Next we mate strings for crossover. For each 

couple we first decide (using some pre-defined 

probability, for instance 0.6) whether to actually 

perform the crossover or not

• If we decide to actually perform crossover, we 

randomly extract the crossover points, for 

instance 2 and 5
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Crossover result 

s1` = 1111010101 s2` = 1110110101 

Before crossover:

After crossover:
s1`` = 1110110101 s2`` = 1111010101
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Step 3: mutations
The final step is to apply random mutations: for each bit that we are to copy to 

the new population we allow a small probability of error (for instance 0.1)

Initial strings

s1`` = 1110110101

s2`` = 1111010101

s3`` = 1110111101

s4`` = 0111000101

s5`` = 0100011101

s6`` = 1110110011

After mutating

s1``` = 1110100101

s2``` = 1111110100

s3``` = 1110101111

s4``` = 0111000101

s5``` = 0100011101

s6``` = 1110110001
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And now, iterate …

In one generation, the total population fitness 

changed from 34 to 37, thus improved by ~9%

At this point, we go through the same process 

all over again, until a stopping criterion is met



Biological motivation



Biological Background 

“The cell”
• Every animal cell is a complex of many small 

“factories” working together.

• The nucleus in the center of the cell.

• The nucleus contains the genetic information



• Genetic information is stored in the chromosomes

• Each chromosome is built of DNA

• Genes are encoded in the chromosomes

• Genes code for proteins

• Every gene has a unique

position on the chromosome

Biological Background 

“Chromosomes”



• The entire combination of genes is called genotype

• A genotype leads to a phenotype (eye color, height, 

disease predisposition)

• The phenotype is affected by changes to the 

underlying genetic code

Biological Background: Genotype and phenotype



• Reproduction of genetical information
• Mitosis

• Meiosis

• Mitosis is copying the same 

genetic information to new 

offspring: there is no 

exchange of information

• Mitosis is the normal way of 

growing of multicell structures,

like organs.

Biological Background 

“Reproduction ”



• Meiosis is the basis of sexual 

reproduction

• After meiotic division 2 gametes 

appear

• In reproduction two gametes 

conjugate to a zygote which 

will become the new individual

• Crossovers leads to new genotype 

Biological Background 

Reproduction 



Mutations

• In any copying process errors can occur, so single 

(point) mutations ate pretty common.

• Other types of errors, including affecting longer 

regoins (either deletion, inversions, substitutions etc.) 

can also occur



“Natural selection”

• The origin of species: “Preservation of favourable 

variations and rejection of unfavourable variations.”

• There are more individuals born than can survive, 

so there is a continuous struggle for life.

• Individuals with an advantage have a greater 

chance for survive: so survival of the fittest.



• Methods of representation

• Methods of selection

• Methods of Reproduction

GA Operators



Common representation methods

• Binary strings.

• Arrays of integers (usually bound)

• Arrays of letters

• ….



There are many different strategies to select the 

individuals to be copied over into the next 

generation

Methods of Selection



Methods of Selection

• Roulette-wheel selection.

• Elitist selection.

• Fitness-proportionate selection.

• Scaling selection.

• Rank selection.

• …



• Conceptually, this can be represented as a 

game of roulette - each individual gets a slice 

of the wheel, but more fit ones get larger slices 

than less fit ones.

Roulette wheel selection



Roulette wheel selection

No. String Fitness % Of Total

1 01101 169 14.4

2 11000     576 49.2

3 01000 64 5.5

4 10011 361 30.9

Total 1170 100.0



• Elitist selection: 

Chose only the most fit members of each 

generation.

• Cutoff selection:

Select only those that are above a certain 

cutoff for the target function.

Other selection methods



• There are primary methods:

–Crossover

–Mutation

Methods of Reproduction



– Two parents produce two offspring

– Two options:

1.  The chromosomes of the two parents are copied 

to the next generation

2. The two parents are randomly recombined 

(crossed-over) to form new offsprings

Methods of Reproduction: 

Crossover



Several possible crossover 

strategies
• Randomly select a single point for a crossover

• Multi point crossover

• Uniform crossover



Parents:                 1010001110 0011010010

Offspring:               0101010010 0011001110

Two-point crossover

• Avoids cases where genes at the beginning 
and end of a chromosome are always split



Crossover

• Single point crossover





• Two point crossover (Multi point crossover)

Cross point



Uniform crossover
• A random subset is chosen

• The subset is taken from parent 1 and the other bits from parent 2. 

Subset:    BAABBAABBB     (Randomly generated)

Parents:      1010001110 0011010010

Offspring:   0011001010 1010010110



Methods of Reproduction: 

Mutations

– Generating new offspring from single parent





A (slightly more involved)  

example

The Traveling Salesman Problem:

Find a tour of a given set of cities so that 

– each city is visited only once

– the total distance traveled is minimized



Representation

Representation is an ordered list of city

numbers known as an order-based GA.

1) London     3) Dunedin        5) Beijing     7) Tokyo

2) Venice      4) Singapore     6) Phoenix   8) Victoria

CityList1 (3   5   7   2   1   6   4   8)

CityList2 (2   5   7   6   8   1   3   4)



Crossover combines inversion and recombination:

*             *

Parent1 (3   5   7   2   1   6   4   8)

Parent2 (2   5   7   6   8   1   3   4)

Child (5   8   7   2   1   6   3   4)

This operator is called the Order1 crossover.

Crossover



Mutation involves reordering of the list:

* *

Before:            (5   8   7   2   1   6   3   4)

After:               (5   8   6   2   1   7   3   4)

Mutation



TSP Example: 30 Cities
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Solution i (Distance = 941)
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Solution j(Distance = 800)
44

62

69

67

78

64

62

54

42

50

40

40

38

21

35

67

60

60

40

42

50

99

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100

y

x

TSP30 (Performance = 800)



Solution k(Distance = 652)
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Best Solution (Distance = 420)
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Domain Application Type

Control Gas pipeline, missile evasion

Design Aircraft design, keyboard configuration,  communication networks

Game playing Poker, checkers

Security Encryption and Decryption

Robotics Trajectory planning

GA Applications



Benefits of Genetic Algorithms

• Concept is easy to understand

• Modular, separate from application

• Supports multi-objective optimization

• Always an answer; answer gets better with time.

• Easy to exploit previous or alternate solutions

• Flexible building blocks for hybrid applications.



Automatic design and manufacture 

of robotic lifeforms 

Biological life is in control of its own means of reproduction... 

But this autonomy of design and manufacture has not yet 

been realized artificially… Here we report the results of a 

combined computational and experimental approach in which 

simple electromechanical systems are evolved through 

simulations from basic building blocks (bars, actuators and 

artificial neurons); the 'fittest' machines are then fabricated 

robotically... We thus achieve autonomy of design and 

construction using evolution in a 'limited universe' physical 

simulation coupled to automatic fabrication.

Nature 2000


