
Algorithms in Nature

Genetic algorithms

History

History of GAs

• As early as 1962, John Holland's work on

adaptive systems laid the foundation for later

developments.

• By the 1975, the publication of the book

Adaptation in Natural and Artificial Systems,

by Holland and his students and colleagues.

History of GAs

• early to mid-1980s, genetic algorithms were

being applied to a broad range of subjects.

• In 1992 John Koza has used genetic algorithm

to evolve programs to perform certain tasks.

He called his method "genetic programming"

(GP).

What is GA

• A genetic algorithm (or GA) is a search technique

used in computing to find true or approximate

solutions to optimization and search problems.

• (GA)s are categorized as global search heuristics.

• (GA)s are a particular class of evolutionary

algorithms that use techniques inspired by

evolutionary biology such as inheritance,

mutation, selection, and crossover (also called

recombination).

What is GA

• The evolution usually starts from a population
of randomly generated individuals and
happens in generations.

• In each generation, the fitness of every
individual in the population is evaluated,
multiple individuals are selected from the
current population (based on their fitness), and
modified to form a new population.

What is GA

• The new population is used in the next iteration
of the algorithm.

• The algorithm terminates when either a
maximum number of generations has been
produced, or a satisfactory fitness level has
been reached for the population.

No convergence rule

or guarantee!

Vocabulary

• Individual - Any possible solution

• Population - Group of all individuals

• Fitness – Target function that we are optimizing (each
individual has a fitness)

• Trait - Possible aspect (features) of an individual

• Genome - Collection of all chromosomes (traits) for an

individual.

Basic Genetic Algorithm

• Start with a large “population” of randomly generated

“attempted solutions” to a problem

• Repeatedly do the following:

– Evaluate each of the attempted solutions

– (probabilistically) keep a subset of the best

solutions

– Use these solutions to generate a new population

• Quit when you have a satisfactory solution (or you

run out of time)

10

Example:
the MAXONE problem

Suppose we want to maximize the number of

ones in a string of l binary digits

Is it a trivial problem?

It may seem so because we know the answer in

advance

However, we can think of it as maximizing the

number of correct answers, each encoded by 1,

to l yes/no difficult questions`

11

Example (cont)

• An individual is encoded (naturally) as a string of l
binary digits

• The fitness f of a candidate solution to the MAXONE
problem is the number of ones in its genetic code

• We start with a population of n random strings.
Suppose that l = 10 and n = 6

12

Example (initialization)

We toss a fair coin 60 times and get the

following initial population:

s1 = 1111010101 f (s1) = 7

s2 = 0111000101 f (s2) = 5

s3 = 1110110101 f (s3) = 7

s4 = 0100010011 f (s4) = 4

s5 = 1110111101 f (s5) = 8

s6 = 0100110000 f (s6) = 3

13

Step 1: Selection

We randomly (using a biased coin) select a subset of

the individuals based on their fitness:

21

n

3

Area is

Proportional

to fitness

value

Individual i will have a

probability to be chosen 
i

if

if

)(

)(

4

14

Selected set

Suppose that, after performing selection, we get

the following population:

s1` = 1111010101 (s1)

s2` = 1110110101 (s3)

s3` = 1110111101 (s5)

s4` = 0111000101 (s2)

s5` = 0100010011 (s4)

s6` = 1110111101 (s5)

15

Step 2: crossover

• Next we mate strings for crossover. For each

couple we first decide (using some pre-defined

probability, for instance 0.6) whether to actually

perform the crossover or not

• If we decide to actually perform crossover, we

randomly extract the crossover points, for

instance 2 and 5

16

Crossover result

s1` = 1111010101 s2` = 1110110101

Before crossover:

After crossover:
s1`` = 1110110101 s2`` = 1111010101

17

Step 3: mutations
The final step is to apply random mutations: for each bit that we are to copy to

the new population we allow a small probability of error (for instance 0.1)

Initial strings

s1`` = 1110110101

s2`` = 1111010101

s3`` = 1110111101

s4`` = 0111000101

s5`` = 0100011101

s6`` = 1110110011

After mutating

s1``` = 1110100101

s2``` = 1111110100

s3``` = 1110101111

s4``` = 0111000101

s5``` = 0100011101

s6``` = 1110110001

Introduction to Genetic Algorithms 18

And now, iterate …

In one generation, the total population fitness

changed from 34 to 37, thus improved by ~9%

At this point, we go through the same process

all over again, until a stopping criterion is met

Biological motivation

Biological Background

“The cell”
• Every animal cell is a complex of many small

“factories” working together.

• The nucleus in the center of the cell.

• The nucleus contains the genetic information

• Genetic information is stored in the chromosomes

• Each chromosome is built of DNA

• Genes are encoded in the chromosomes

• Genes code for proteins

• Every gene has a unique

position on the chromosome

Biological Background

“Chromosomes”

• The entire combination of genes is called genotype

• A genotype leads to a phenotype (eye color, height,

disease predisposition)

• The phenotype is affected by changes to the

underlying genetic code

Biological Background: Genotype and phenotype

• Reproduction of genetical information
• Mitosis

• Meiosis

• Mitosis is copying the same

genetic information to new

offspring: there is no

exchange of information

• Mitosis is the normal way of

growing of multicell structures,

like organs.

Biological Background

“Reproduction ”

• Meiosis is the basis of sexual

reproduction

• After meiotic division 2 gametes

appear

• In reproduction two gametes

conjugate to a zygote which

will become the new individual

• Crossovers leads to new genotype

Biological Background

Reproduction

Mutations

• In any copying process errors can occur, so single

(point) mutations ate pretty common.

• Other types of errors, including affecting longer

regoins (either deletion, inversions, substitutions etc.)

can also occur

“Natural selection”

• The origin of species: “Preservation of favourable

variations and rejection of unfavourable variations.”

• There are more individuals born than can survive,

so there is a continuous struggle for life.

• Individuals with an advantage have a greater

chance for survive: so survival of the fittest.

• Methods of representation

• Methods of selection

• Methods of Reproduction

GA Operators

Common representation methods

• Binary strings.

• Arrays of integers (usually bound)

• Arrays of letters

• ….

There are many different strategies to select the

individuals to be copied over into the next

generation

Methods of Selection

Methods of Selection

• Roulette-wheel selection.

• Elitist selection.

• Fitness-proportionate selection.

• Scaling selection.

• Rank selection.

• …

• Conceptually, this can be represented as a

game of roulette - each individual gets a slice

of the wheel, but more fit ones get larger slices

than less fit ones.

Roulette wheel selection

Roulette wheel selection

No. String Fitness % Of Total

1 01101 169 14.4

2 11000 576 49.2

3 01000 64 5.5

4 10011 361 30.9

Total 1170 100.0

• Elitist selection:

Chose only the most fit members of each

generation.

• Cutoff selection:

Select only those that are above a certain

cutoff for the target function.

Other selection methods

• There are primary methods:

–Crossover

–Mutation

Methods of Reproduction

– Two parents produce two offspring

– Two options:

1. The chromosomes of the two parents are copied

to the next generation

2. The two parents are randomly recombined

(crossed-over) to form new offsprings

Methods of Reproduction:

Crossover

Several possible crossover

strategies
• Randomly select a single point for a crossover

• Multi point crossover

• Uniform crossover

Parents: 1010001110 0011010010

Offspring: 0101010010 0011001110

Two-point crossover

• Avoids cases where genes at the beginning
and end of a chromosome are always split

Crossover

• Single point crossover





• Two point crossover (Multi point crossover)

Cross point

Uniform crossover
• A random subset is chosen

• The subset is taken from parent 1 and the other bits from parent 2.

Subset: BAABBAABBB (Randomly generated)

Parents: 1010001110 0011010010

Offspring: 0011001010 1010010110

Methods of Reproduction:

Mutations

– Generating new offspring from single parent



A (slightly more involved)

example

The Traveling Salesman Problem:

Find a tour of a given set of cities so that

– each city is visited only once

– the total distance traveled is minimized

Representation

Representation is an ordered list of city

numbers known as an order-based GA.

1) London 3) Dunedin 5) Beijing 7) Tokyo

2) Venice 4) Singapore 6) Phoenix 8) Victoria

CityList1 (3 5 7 2 1 6 4 8)

CityList2 (2 5 7 6 8 1 3 4)

Crossover combines inversion and recombination:

* *

Parent1 (3 5 7 2 1 6 4 8)

Parent2 (2 5 7 6 8 1 3 4)

Child (5 8 7 2 1 6 3 4)

This operator is called the Order1 crossover.

Crossover

Mutation involves reordering of the list:

* *

Before: (5 8 7 2 1 6 3 4)

After: (5 8 6 2 1 7 3 4)

Mutation

TSP Example: 30 Cities

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100

y

x

Solution i (Distance = 941)

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100

y

x

TSP30 (Performance = 941)

Solution j(Distance = 800)
44

62

69

67

78

64

62

54

42

50

40

40

38

21

35

67

60

60

40

42

50

99

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100

y

x

TSP30 (Performance = 800)

Solution k(Distance = 652)

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100

y

x

TSP30 (Performance = 652)

Best Solution (Distance = 420)
42

38

35

26

21

35

32

7

38

46

44

58

60

69

76

78

71

69

67

62

84

94

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100

y

x

TSP30 Solution (Performance = 420)

Domain Application Type

Control Gas pipeline, missile evasion

Design Aircraft design, keyboard configuration, communication networks

Game playing Poker, checkers

Security Encryption and Decryption

Robotics Trajectory planning

GA Applications

Benefits of Genetic Algorithms

• Concept is easy to understand

• Modular, separate from application

• Supports multi-objective optimization

• Always an answer; answer gets better with time.

• Easy to exploit previous or alternate solutions

• Flexible building blocks for hybrid applications.

Automatic design and manufacture

of robotic lifeforms

Biological life is in control of its own means of reproduction...

But this autonomy of design and manufacture has not yet

been realized artificially… Here we report the results of a

combined computational and experimental approach in which

simple electromechanical systems are evolved through

simulations from basic building blocks (bars, actuators and

artificial neurons); the 'fittest' machines are then fabricated

robotically... We thus achieve autonomy of design and

construction using evolution in a 'limited universe' physical

simulation coupled to automatic fabrication.

Nature 2000

