1.

Perceptrons
02-251 Spring 2019
April 9, 2019

Reference Reading

Two good textbooks on Al that contain this material:

e Russell, Norvig. Artificial Intelligence: A Modern Approach.
e Luger and Stubblefield, Artificial Intelligence.

Much of the material below is taken from the above two sources.

2.1

2.2

Neurons

A high-level view of neurons in the brain

The neuron is the basic cell type that makes up the brain.

Neurons have three main parts: a cell body (called the soma), a number of fibers branching
off of the soma (called dendrites), and a long fiber called an axon.

The dendrites and the axon connect to other neurons, forming a network of neurons.

The neuron acts as a signal collector and emitter: input signals enter from the dendrites,
are integrated by the soma and, once the total signal strength is large enough, a signal is
sent down the axon. The signal sent down the axon is an electrical pulse called an action
potential. This signal reaches other neurons, transmitting the signal to other neurons through
connections between the axon and the dendrites of other neurons.

The connection between an axon and a dendrite is called a synapse. Synapses can excite or
inhibit the electric potential of the neuron to which they are connected.

The strength of existing connections and the structure of connections (which neurons are
connected) can change over time, which is what enables a collection of neurons to learn.

Axons can be very long (centimeters to a meter).

A neuron may be connected to thousands of other neurons.

Collections of neurons

The human brain contains approximately 10! neurons and 10 synapses.

Neurons fire on the scale of milliseconds, so relatively slowly, but operate in a massively
parallel way — all the neurons are able to process information simultaneously.

e The neural network of the flatworm, C. elegans has been completely characterized. It has

3.1

3.2

302 neurons that are consistently connected in the same way. See http://www.wormatlas.
org/neuronalwiring.html

Efforts are underway to map the connections of larger brains using various techniques such
as imaging.

The Perceptron

A simple model of a neuron

An early model of a neuron is the perceptron.
Perceptrons have many inputs Iy, ..., I, but only one output O.

Each input I; is associated with a weight w; that represents the strength of the connection
from the input. This models the strength of the synapse connecting to the perceptron. The
weights are part of the neuron and not part of the input.

The weight can be positive (for an excitatory connection) or negative (for an inhibitory
connection)

The output is either 1 or 0 depending on whether the total weighted input is above or below
a given threshold €. (Some people define the output as +1 or —1, which is equivalent.)

In other words:
0=1 (Zwili26> =1(w-1>0),

where w and I are vectors collecting the weights and inputs, and 1(x) is the indicator function
that returns 1 if x is true and 0 if x is false.

Functions perceptrons can represent

Perceptrons can represent various functions (McCulloch and Pitts (1942)):
AND output 1 if all the inputs are 1: Set each w; =1 and § =n
OR output 1 if any of the inputs are 1: Set each w; =1 and § =1

NOT output 1 only if all the inputs are 0: Set each w; = —1 and 8 = —0.5. If all the inputs
are (0, the total weight will be 0, which is > —0.5, so the output will be 1. If any input
is 1, then the total weight will be < —1, so the output will be 0. (When n = 1, this is
the familiar NOT function.)

NAND Output 1 if some input is 0: Set each w; = —1 and § = —n + 0.5. If all the inputs
are 1, then the total weight will be —n, which is < —n + 0.5, so the output will be 0. If
some input is 0, then the total weight will be at least —(n — 1), which is > —n + 0.5, so
the output will be 1.

Majority output 1 if a majority of the inputs are 1: Set each w; = 1 and 6 = n/2

3.3

3.4

Perceptrons cannot represent all functions

XOR: Output 1 if exactly 1 input is 1.

The problem is that by construction the perceptron can only separate linearly separable points
because the perceptron equation is an equation of a line (for 2 inputs), plane (for 3 inputs)
or hyperplane (for more than 3 inputs). E.g.:

wily + wals +w3ls +60 =0
The input (Iy,...,I,) is a point in n-dimensional space. The output is a label y of this point.

To compute a function like AND, XOR, etc., the perceptron should output the right y for
the given input point I.

Points that are on one side of the perceptron hyperplane cause the output to be 0; points on
the other side cause the output to be 1.

1d ° 1 @ ° 1 @ o

AND OR XOR

0P D 04 = < @ 04 {
0 1 0 1 0 1

So, perceptrons can only output the correct label for every point if the points are linearly
separable: meaning that the points with y = 0 are on one side of the hyperplane, and those
with y = 1 are on the other side.

Comparison to Decision Trees

Decision trees are another model to represent classifiers. They are binary trees, where each
node asks a YES/NO question about a point. The leaves are labeled with the predictions.
For example, a node might ask “Is I1g = 17" In the case of 0/1 labels, the leaves would each
be labeled by either 0 or 1.

Decisions trees are more powerful than perceptrons in that they can classify non-linearly
separable points:

1= +

- - x < 0.5?

- yes no

+ 4 y <0.5? y <0.5?

x
4

e However, sometimes that power comes at very large space and complexity cost. Consider
again the Majority function:

— Input = n bits I1,..., I,.
— positives = inputs with > n/2 bits set to 1.
— negatives = inputs with < n/2 bits set to 1.

e We saw that a simple perception with n weights and 1 threshold can perfectly predict this
set.

e Decision trees can perfectly predict it too, but look at how big the tree is:

11=1?

yes no

¥ Y
O(n) levels = O(2") nodes
’I3=1? ’I3=1?‘ ’I3=1?‘ ’I3:1?

afoloNololcll

3.5 Training Perceptrons
e Perceptrons can be trained on a set of examples: ([(@), y(j)) where yU) is the correct answer
for the example — it’s what we want the perceptron to output.

e To make things more uniform, we can convert the threshold 6 into a weight wy, if we assume
that Iy is always —1. Then we output 1 iff:

wo(—1) +wily + -+ wplp >0
wily + -+ wpdy, > wy =10

e If the output of a particular example ((I1, ..., I;,),y) is O, then define

Error =y — 0.

e If Error > 0 then the output was too small, and we want to increase O.
e If Error < 0 then the output was too big, and we want to decrease O.

e Each term w;l; in the perceptron contributes to the total weight. If I; > 0, then increasing
w; will help us increase O; if I; < 0, then decreasing w; will help us increase O.

e So I; X Error gives us a value with the right sign:

— Error > 0: want to increase O:

« I; > 0: want to increase w; (I; x Error is positive)

« I; < 0: want to decrease w; (I; x Error is negative)
— Error < 0: want to decrease O:

« I; > 0: want to decrease w; (I; X Error is negative)

« I; < 0: want to increase w; (I; x Error is positive)

e Therefore, we can update the weights to make this one example closer to correct using:

w; < w; +a x I; x Error

e Here, « is the learning rate: a parameter we choose to decide how fast we update the weight.
A bigger a will change the weights more quickly.

e Perceptron Training Algorithm:

Repeat:
for each example (I, y):
0 = ComputeQutputOfPerceptron(I)
Error =y - 0
for each weight w_i:
w_i = w_i + alpha * I_i * Error
Until all the outputs are correct

e Theorem: If the input is linearly separable, the perceptron training algorithm will find weights
that correctly label every point.

e Why? There is no local minimal in weight space.

e Intuition: Consider a set of separable points and a line ¢ given by the current weights. The
total error of this line is Ly =) |y; — O;|. Suppose for simplicity that O;,y; € {0,1}. Then
Ly is the number of points that are incorrectly classified by the line. If you pick a line that
has non-zero total error, there is always a direction you can move it in that will decrease the
error by moving a point to the correct side, assuming the points are linearly separable. In
other words, we can always shift ¢ towards the correct linear separating line £* in such a way
that we don’t increase the error. Therefore, the weight space has no local minima and the
“gradient descent”-like perceptron training algorithm will find the global optimal (which is 0
by assumption).

e Note 1: if the inputs are NOT linearly separable, then nothing is guaranteed by this algorithm.

e Note 2: for linearly separable points, there are usually many possible separating lines. This
algorithm can return any of them. The line of maximal margin seems like a better one
to return. This is the one that has the most “wiggle room” before misclassifying a point.
Support Vector Machines are a model that finds this line of maximal margin.

Other Activation Functions

e This analysis follows Luger and Stubblefield, Artificial Intelligence, pp 673-675.

4.1

So far we have seen the standard perceptron that uses a simple threshold to determine the
output. A downside of this is that if my total weight was § — ¢ — that is just below the
activation threshold — then my observed error will be the same as if my total weight was
—00.

It makes sense then to replace the hard threshold with a softer threshold.

A typical choice is the logistic function:

1

T =1

Here X is a parameter that controls how sharp the transition is: when A is large, the transition
is very sharp; when it is small, the transition is smoother. Asymptotically, at very low x the
function approaches 0 and at high « the function approaches 1.

Why this function? It’s nicely parameterized by A, it’s continuous, and it’s differentiable.
There are other possible functions that serve the same purpose.

So now the output of the network is f(> ", w;l;).

Let’s derive the update rule for the perceptron learning algorithm for an activation function
f that is continuous and differentiable:

Update rule for other activation functions*

This section is slightly more advanced. You don’t need to know it in detail, but if you work through
it, it will give you some more intuition about the perceptron weight update rule.

Define SError = (1/2)(y; —O;)? as the squared error of the perceptron’s output O; compared
with the desired output y; on a particular example (I,y;). (The 1/2 is for mathematical
convenience; you’ll see why later.)

We want to compute %. That is, what is the rate of change in the error as we change a

weight wy?
By the chain rule, we have:

0SError 6SError 60;

— 1
Swr 50, " dwy (1)

We can compute the first term directly:

§SError §(1/2)(y; — 0;)?

50; 50; =5 =0l ®

We get the negative because the derivative of y; — O; with respect to O; is —1, and the 1/2
disappears by bringing the power 2 down.

. Fy Cwi L
Now we want to compute 00; _ 0f(;wili)
dwy dwp,

flg(x)) is ¢'(z) f'(g(x)), we have:

0fQuswils) _ o (Z wizk> (3)

. Again by the chain rule, where the derivative of

dwp

since I, is the derivative of the inner function), w;I. So, putting together (2) and (3) into
(1), we have:

60SError
2 — (i~ OIS (Z w@)

5wk

e We want to decrease the error, so we want to move in the direction opposite of this gradient,
so we want to change wy by some amount:

E
_o25ETer a(yi — Oi)I.f’ (Z wiIk)

dwy,

This leads to the update rule:

wi = wi + aly; — Oi) I f' (Z wz’[k>

Compare this to our original update rule: wy < +a x Error X I,. Since Error = y; — O;, this
new update rule is the same, except we multiply by the derivative of the activation function!

