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• Regression Methods
– OLS and Regularized Regression (e.g., LASSO)*
– Imai and Ratkovic (2013)

• Single Tree Methods
– Su et al (2009)
– Imai and Strauss (2011)
– Athey and Imbens (2015)*

• Ensemble Methods
– Green and Kern (2012)
– Wager and Athey (2012)*
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Machine Learning’s Contributions

* provide asym confidence intervals, for inference of effects significance 



• Regression Methods
– Pre-specification of the model

• Single Tree Methods
– Greedy and unstable

• Ensemble Methods
– Fairly uninterpretable/no natural subpopulations

• General Limitations
– The mean and only the mean

• Other moments can be effected
• Simpsons Paradox

– Risk minimization not effect maximization
• Small number of subpopulations considered
• No guarantee on their “interestingness”

– No “discovery”, only model inspection
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Limitations



Anomaly Detection Paradigm

• Identifying when a “system” deviates away 
from its expected behavior.
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Treatment Effects Subset Scan (TESS)
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II. Detect subpopulation that is collectively    
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Under H0
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ii. Pij ~ Uniform[0,1] under H0
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Treatment Effects Subset Scan (TESS)
Nonparametric Scan Statistic (NPSS)

Have: S {A1 × … × AM}

There Exist: G(ai)

= {s1 × … × sM}

Select: F(S)

Want: maxS F(S)

I. Compute the statistical anomalousness
of each treatment group subject

•NPSS over an attribute in  O(t log t)

II. Discover subsets of attribute values 
that define the most anomalous outcomes

1. Maximize F(S) over all subsets of          
s1 × … × sM

Only Consider:

.…

Such That:
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Significance of our subpopulation
Compare subpopulation score to maximum 

scores of simulated datasets under H0
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Tennessee Star Analysis (1985)
• Effect of classrooms size on achievement (test 

scores)

• 4 year panel (kindergarten to 3rd grade)

• 6,500 students, 330 classrooms, 80 schools
– Total of over 11,000 records

• Treatment Conditions (randomized within school)
– Regular Size Class (20-25 students)
– Regular Size + Aide Class (20-25 students)
– Small Size Class (13-17 students)
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Tennessee Star Analysis (1985)
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Tennessee Star Analysis

(1)

3.4791

(2.547)

All 2nd Grade

0.000

4263

44

Notes: All estimates are from OLS models. 
Standard errors are in parentheses. 

*** p<0.01, ** p<0.05, * p<0.1 

(2)

-0.2909

(2.277)

All 3rd Grade

0.000

4063

Treatment

Sample

R-squared

Observations



Tennessee Star Analysis (1985)

• Detected Subpopulation
– grade:

• 2nd or 3rd 

– school:
• inner-city or urban 

– experience:
• [10, infinity)

– other features are considered irrelevant
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Tennessee Star Analysis
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Tennessee Star Analysis
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Tennessee Star Analysis

(1) (2) (3)

Treatment 3.4791 51.2497*** 1.4532

(2.547) (8.727) (2.639)

Sample All 2nd Grade Detected
Subpopulation

Undetected 
Subpopulation

R-squared 0.001< 0.108 0.001<

Observations 4263 287 3976
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Notes: All estimates are from OLS models. 
Standard errors are in parentheses. 

*** p<0.01, ** p<0.05, * p<0.1 



Tennessee Star Analysis

(1) (2) (3)

Treatment -0.2909 21.822** 1.6851

(2.277) (9.154) (2.318)

Sample All 3rd Grade Detected Group
(3rd Grade)

Undetected Group
(3rd Grade)

R-squared 0.001< 0.022 0.001<

Observations 4063 258 3805

49

Notes: All estimates are from OLS models. 
Standard errors are in parentheses. 

*** p<0.01, ** p<0.05, * p<0.1 



Conclusion

• Discovering subpopulations with significant 
treatment effects can be paramount

• Machine Learning can flexibly estimate effects but it 
limited when goal is to identify subpopulations with 
large effects

• Anomalous Pattern Detection paradigm offers 
overcome some abilities to overcome these 
limitations
– Maintain  high power to detect by searching over and 

combining signal across various subpopulations
50
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