2013 IEEE 13th International Conference on Data Mining

Dynamic Pattern Detection with Temporal Consistency and Connectivity Constraints

Skyler Speakman, Yating Zhang, Daniel B. Neill*
Event and Pattern Detection Laboratory
Carnegie Mellon University, Pittsburgh PA 15213
Email: neill@cs.cmu.edu™

Abstract—We explore scalable and accurate dynamic pat-
tern detection methods in graph-based data sets. We apply
our proposed Dynamic Subset Scan method to the task of
detecting, tracking, and source-tracing contaminant plumes
spreading through a water distribution system equipped with
noisy, binary sensors. While static patterns affect the same
subset of data over a period of time, dynamic patterns may
affect different subsets of the data at each time step. These
dynamic patterns require a new approach to define and
optimize penalized likelihood ratio statistics in the subset scan
framework, as well as new computational techniques that scale
to large, real-world networks. To address the first concern,
we develop new subset scan methods that allow the detected
subset of nodes to change over time, while incorporating
temporal consistency constraints to reward patterns that do not
dramatically change between adjacent time steps. Second, our
Additive GraphScan algorithm allows our novel scan statistic
to process small graphs (500 nodes) in 4.1 seconds on average
while maintaining an approximation ratio over 99% compared
to an exact optimization method, and to scale to large graphs
with over 12,000 nodes in 30 minutes on average. Evaluation
results across multiple detection, tracking, and source-tracing
tasks demonstrate substantial performance gains achieved by
the Dynamic Subset Scan approach.

Keywords-sensor fusion; likelihood ratio statistics; spatial
and subset scan statistics; water distribution systems

I. INTRODUCTION AND BACKGROUND

Detecting patterns in massive data sets has multiple real-
world applications in fields such as public health, law
enforcement, and security. The “subset scan” approach to
pattern detection treats the problem as a search over sub-
sets of data, with the goal of finding anomalous subsets.
This approach poses two main challenges: appropriately
evaluating the “anomalousness” of a given subset, and the
computational issue of searching through the exponentially
many subsets of the data. Previous approaches ([8], [12],
[10], [11]) have addressed the first concern by “scoring”
each subset using likelihood ratio statistics such as the
expectation-based Poisson (EBP) ([12], [10]) or expectation-
based binomial (EBB) [8] scan statistics. Our current work
allows for a more sophisticated scoring function by pe-
nalizing the likelihood ratio statistic, considering additional
prior information from each data element. The penalized
likelihood ratio typically does not satisfy useful properties
such as “linear-time subset scanning” [11], making efficient
optimization over subsets a challenging task. However, we

1550-4786/13 $31.00 © 2013 IEEE
DOI 10.1109/ICDM.2013.66

697

demonstrate that the EBB likelihood ratio statistic can be
written as an additive function, enabling efficient optimiza-
tion of a penalized version of that statistic over subgraphs.
The first major contribution of our current work is the devel-
opment of temporal consistency constraints which allow for
additional penalties or rewards to act on the scoring function,
rewarding spatial subsets that are temporally consistent
with each other, and efficient optimization of the resulting,
penalized scan statistic to detect dynamic clusters subject
to these constraints. Our second major contribution is the
Additive GraphScan algorithm, which efficiently identifies
anomalous (high scoring), connected subgraphs, thus in-
corporating both (hard) connectivity constraints and (soft)
temporal consistency constraints. Each of these contributions
will be discussed in detail below.

Many complex data sets containing emerging events or
patterns are commonly represented in a known and fixed
graph structure. Examples of this include water pipelines,
transportation routes, power grids, and supply chains in
general. While other recent work ([9], [5]) has focused on
learning graph structure, here we assume a given graph
structure and wish to detect which nodes are currently
affected, by observing data produced at the nodes of the
graph on each time step.

Our motivating example comes from the field of public
health: we focus on detecting, tracking, and source-tracing
contaminant plumes in a water distribution system. Creat-
ing sensor networks for detecting deliberate or accidental
contamination of these systems has been a popular research
domain following the terror attacks of September 11, 2001.
The “Battle of the Water Sensor Networks” (BWSN) [1]
provided real-world data to teams tasked with placing perfect
sensors to quickly detect contaminants and limit the amount
of contaminated water consumed by the population. The
placement problem is an interesting one explored further in
([3], [7]). Our current work focuses on the complementary
problem of fusing data collected from noisy sensors assum-
ing a given placement. Sensor fusion attempts to combine
data from multiple distributed sensors in order to increase
the detection power of the entire network [14].

We proceed by modeling simple, binary sensors at each
pipe junction (graph node) in the system. We assume that a
fixed false positive rate (e.g., FPR = 0.1) and true positive
rate (e.g., TPR = 0.9) are known and that each sensor

@) CO‘ pute
1(!) I
& SOCIety

operates independently of the others in the network. Our
simulations use the network structure and plumes provided
in the BWSN data to generate sensor readings over the
course of 12 one-hour intervals.

Our task is then: Given (1) the graph structure (pipe
network), (2) false positive and true positive rates of the sen-
sors, and (3) independent observations from the sensors over
time, we must provide: (A) whether or not a contaminant is
present in the system for each one-hour time step, (B) hour-
to-hour tracking of which pipe nodes have been affected by
the plume on the current and recent past time steps, and
(C) source-tracing to determine which node(s) in the system
spawned the contaminant. Corresponding evaluation metrics
include: (A) average time (in hours) to plume detection as
a function of false positive rate (number of false alarms per
month), (B) spatial-temporal overlap coefficient between the
true and detected subsets of nodes over time, and (C) spatial
overlap coefficient between the true and identified subsets of
source nodes.

This is not the first work to apply spatial or subset scan
statistics to contamination early warning systems. Koch and
McKenna [6] used Kulldorff’s spatial scan [8] to detect sta-
tistically significant circular clusters of anomalous activity.
They used properties of the pipe network to create a distance
metric based on travel time between sensing nodes in order
to define their “circles”. However, they were not able to
enforce connectivity constraints and take advantage of the
topology of the network. Through our Additive GraphScan
algorithm, we are able to search over connected subsets of
the pipe network to find anomalous connected subgraphs.
Berry et al. [2] have also considered the detection power
of a network of imperfect sensors, showing that it is worth
deploying a sensor network even when individual sensors
have low detection probability. However, their experiments
did not allow for sensors with false positives, making the
detection and source tracing problems much easier to solve
as compared to the more difficult scenario we consider here.

Spatial scan statistics attempt to identify regions of in-
terest or “hot spots”. This is achieved by maximizing a
scoring function F'(.S), typically defined as the likelihood

. _ PrData| H,(5))
ratio F(S) = “PrData| #,)
In this expression H;(S) assumes increased activity in

region S, and H, assumes regular behavior. In this work,
we will be monitoring binary sensors s; each produc-
ing ¢; ~ Bernoulli (FPR) “triggers” under Hy or ¢; ~
Bernoulli (TPR) “triggers” for H;(S) containing node s;.
This makes the expectation-based binomial scan statistic [8]
a logical choice.

, over spatial regions S.

Spatial-femporal scan statistics incorporate the time di-
mension. It is standard to aggregate this temporal infor-
mation over a time window w so that ¢; = >.,_, . ch
Once the temporal information has been aggregated for
each window w = 1... W, maximizing the spatial-temporal

698

scan statistic for that window proceeds identically to the
regular spatial scan statistic; we then maximize over all
window sizes from 1 to . However, an inherent assumption
in this aggregation of temporal information is that the
affected spatial-temporal subset does not change over time.
Therefore, we will refer to this approach as the Static scan
method throughout this text.

We wish to relax this strong assumption on the spatial-
temporal structure in order to increase the power to detect
dynamic patterns that change the affected region over time.
One simple approach is to optimize each of the w time steps
independently. This allows for each time step ¢ to identify
an entirely different spatial region, but does not allow
the sharing of information between time steps, possibly
reducing detection power. We refer to this approach as the
Independent scan method throughout this text.

As a compromise between Static and Independent meth-
ods, we propose the Dynamic Subset Scan which enforces
temporal consistency constraints to allow temporally adja-
cent time steps to share information forward and backward
in time. We demonstrate below that this flexibility increases
power to detect and track dynamic patterns while scaling to
the size of real-world networks.

The rest of the paper is laid out as follows. Section II
introduces temporal consistency constraints, applied to the
expectation-based binomial scoring function, and demon-
strates how the penalized scan statistic can be efficiently
optimized over (not necessarily connected) dynamic subsets.
Section III explains the Additive GraphScan algorithm,
which efficiently identifies high-scoring, connected subsets
of data with an underlying graph structure. Section IV
provides empirical results of our simulations of the water
distribution network from the BWSN, comparing our new
Dynamic Subset Scan approach to several other approaches,
and demonstrating improvements in detection, tracking, and
source-tracing performance. Finally, Section V concludes the

paper.

II. TEMPORAL CONSISTENCY CONSTRAINTS

This section has four sequential objectives. First, we
demonstrate how the expectation-based binomial (EBB)
scoring function may incorporate additional constraints
while remaining straightforward to optimize over all possible
subsets S (i.e., we show that EBB can be written as an
additive function over the data elements s; € .S). Second,
we show that these constraints may be interpreted as the
prior log-odds for a given node s; to be in the detected
subset. We then provide the formal definition of our temporal
consistency constraints based on a probabilistic generative
model that incorporates both forward and backward temporal
consistency. Lastly, we describe the iterative optimization
process that “lines up” the spatial-temporal region according
to the provided temporal consistency constraints.

A. Additive Scoring Function and Additional Terms

We demonstrate that, conditioned on the false and true
positive rates (FPR, TPR) of the sensors, the EBB statistic
can be written as an additive set function over the data
elements s; € S. This is an important feature for two
reasons. First, additive functions are easy to optimize over
all possible subsets. Without connectivity constraints, the
optimization process is simply including all records making
a positive contribution and excluding the rest. Determining
the “most positive” connected subset is more complicated,
and is covered in the Additive GraphScan section below.
Second, additive functions allow for additional penalty terms
A, to be included at the element level while the total penal-
ized scoring function remains additive and thus amenable to
efficient optimization.

Theorem 1: The expectation-based binomial statistic may
be written as F'(S) = >, g Ai, where \; depends only on
the binary sensor response c; for sensor s; (i.e., whether that
sensor triggers or not) as well as the false and true positive
rates of the sensors in general.

Proof: The log-likelihood ratio form of the EBB scan
statistic can be written as follows:

Pr(Data| H, (S))

~ Pr(Data|Hy)

[1,,cs Pr(ci ~ Bernoulli(TPR))

Hs,-,es Pr(c; ~ Bernoulli(FPR))
(TPR)“ (1 — TPR)!

& SEIS (FPR)“ (1 — FPR)1—<:

=Y {Ci log <TPR> + (1 —ci)log <

1— FPR)}
ED
TPR 1-TPR

FPR
Then \; = ¢; log (W) +(1—¢)log (kFPR)' [|
Next, if we assume a bonus or penalty A; for each s; € S,
then we can easily incorporate these terms into the score
function. We define:

Fpen(S) = F(S)+ > A=Y (i + D).

S;ES S;ES

F(S) =

= log

1—-TPR

Fpen(S) is a penalized form of the EBB scan statistic that is
still additive over the data elements s;. We note that the A;
terms are assumed to be a function of only the given data
element s;; they cannot depend on the entire subset .S. We
acknowledge this as a limitation of the current work, and
will investigate extensions to more sophisticated penalties
in future work.

B. Prior Log-odds Interpretation

These soft constraints, A;, have a convenient interpreta-
tion as the prior log-odds that each data element s; will
be included in the detected subset. Let p; be the prior
probability that data element s; will be contained in the

699

detected subset. Then A; can be defined as log (1 fp) The

prior log probability of selecting a subset S is then:

log Pr(S) = log(H Di H (1—pi))

$; €S SiQS
N
=Y (logp; —log(1 —p;)) + Y _log(1 — p;)
s; €8 1=1
N
=3 A=) log(1+exp(Ay)).
s; €S =1

However, we note that the term Zivzl log(1 + exp(A;))
is constant and does not affect the probability of selecting
any particular subset. Thus we can ignore this term when
optimizing over all subsets of the data, and subtract it once
the highest-scoring subset of the data has been identified.
When A; > 0, record s; is more likely to be included in the
detected subset, and the opposite is true when A; < 0. When
A; = 0 for all 4, which is the default setting for spatial-
temporal scan statistics, then every subset S is considered
equally likely a priori.

C. Derivation of Al

We now derive the formulas for A! that correspond to the
following generative model for temporal consistency. Let p!
be the prior probability that data element s; will be contained
in the detected subset S on time step ¢. Let 2! be 1 if data
element s; is included in S%, and O otherwise. Let n} be the
number of neighbors of s; that are included in St, and let
k; be the degree of node s;. Then our generative model of
event propagation, which incorporates temporal consistency
constraints, is defined as:

t—1
%

ki

¢

p.
log< t
1—p!

As a concrete example of the interpretation of this model,
assume g = —1.5, $1 = 5, and B2 = 0. Then, if a node is
included in the previous detected subset, S t=1 it has a 97%
prior probability of being included in the current detected
subset, S*. If it was not included in the previous subset,
then it only has an 18% probability of being included in the
current subset. When S2 > 0, the proportion of neighbors
included in S*~! will further influence the prior probability
of s; being included in the current subset.

) = Bo+ Bzt + Bo (n

We now compute the total impact Al of including !
on the overall penalized log-likelihood ratio score F'(S), as
compared to the score F'(S\ z!) when z! is excluded. Given
the log-linear model of pﬁ above, we have:

Al = (log(pt) — log(1 — pt))
+ Y (los(p™ | at) — log(pit! | 2))

jegt+1

+ Z (log(l

jgs

=P [2}) —log(1

—pith | al)).
()

In equation (2) the initial difference results from the prior
probability of z!, conditioned on a:t 1 and its number of
included neighbors nf ! from the previous time step. This
difference can be calculated directly from the model:

t—1
%

_ n
= Bo+ Bz} + B2 o

log(p;) —log(1 — pf) 3)
The two sums in (2) account for the fact that including
x! changes the prior probabilities of :EE“ and its neighbors

n‘*1 for the next time step. These sums can be rewritten as:

> (log(pit [#f) —log(pi™ | 2t))

jegt+t
+) (log(1 —pitt | ah) —log(1 — pitt | at))
igst
nt
= Y (Bo+Buaf+ oy |)
jest+1 J

: @
=" (o + Buat + B |)
j J

t‘ —
- E (ﬁ0+515€§-+52%|$§)
J

jest+
nt, _
t J
+ Ej f(Bo + Brw; + 62/{:7 | }),

where the function f(z) = log(1 4 exp(z)). Next, we note
that the contributions to equation (4) are equal to O for all
nodes j except for node ¢ and its neighbors. For j = i, the
corresponding terms in (4) simplify to:

t t
B+ f <6o + @Z?) - f (ﬁo + B +ﬁ22?> .G

For each neighbor j of i, the corresponding terms in (4)
simplify to:
nt
T+ (Bo + Bt +52k?)
J

t+1>

k]
Adding the contributions of equations (3), (5), and (6),

t+1
€T
ne

k;
-f (50‘1'5190 + B2

(6)

700

we obtain:
1 n~!
= Bo+ B (z ! + 2 + B ;{

p>

jesttr I
nt nt
+f <50 + 52];) - f <ﬂ0 + 5 +52];>

t
+Y f (50 + Bzl + 52?_)
J

t+1

Zf<50+51$ + B2~

]

)

where the sums are taken over all neighbors j of 7. In the
special case of Sy = 0, equation (7) simplifies to:

-—50+51(t 1+$t+1)+f(50) J(Bo+pB1). (8

Note that, when 2 = 0, we can compute Af exactly.
When 35 # 0, we approximate Al assuming that 3+ 32 <
0 and By + 51 > 0. Noting that f(x) ~ 0 when x < 0, and
f(z) =« when z > 0, we obtain:

t—1
AL o+ By (a7 2t 4y [T
7

1
+ZE

jest+1

t t
- (ﬁo + b1 +ﬁ22§) + Z (ﬁoJrﬁl +521;j)
jES?
-> <50 + B1+ B2~)

t+1
jeES?t
—fh (a7 2l - 1)

t—1
n;

k;

+052

)

However, equation (9) assumes knowledge of which other
elements are contained in S?, and this information would
not be known in advance. Thus we approximate the final
sum over j € S with half the corresponding sum over all
neighbors j of i:

AL =By (2~

t+1

1)

k;

1
QZ<
(10)

The intuitive role of A! is that it must simultaneously
make S* appear likely to have been generated from S*~! and
able to generate S‘T!, thus conveying temporal consistency
information both forwards and backwards in time.

D. Iterative Convergence

We now have clear definitions and interpretations for
Fpen(S) = Zsj:es()‘§ + A!) for the EBB scan statistic with
temporal consistency constraints. However, recall that the
values of A! for a given time step ¢ depend on the detected
subsets at t — 1 and ¢ + 1, which creates a computational
paradox. To solve this, our Dynamic Subset Scan uses an
iterative method that converges to a (local) optimum. To
better approach the global optimum, we can use multiple
restarts as well as simulated annealing (which gradually
increases the strength of the A§ from O to their full values),
wrapped around steps (3)-(13) in the algorithm below.

Algorithm 1 TIterative convergence to local optimum for
Dynamic Subset Scan (without multiple restarts or simulated
annealing)

1: for window duration w from 1 to max window W do
2: Initialize each of the w spatial subsets independently
(i.e., separately compute the highest scoring subsets
S* for each time step ¢, assuming Al = 0 for all s;).
repeat
Randomly select a time step ¢ that is not flagged
as “Checked”. Copy current spatial subset S*.
Compute A! for each node s; given subsets S'~1
and S*!, using equation (8) or (10).
Compute new optimal subset S"* for time step t
using A!. Without connectivity constraints, simply
include all positive contributions A! + Af; with
connectivity constraints, call Additive GraphScan.
if new subset S’ does not improve penalized log-
likelihood ratio of spatial-temporal subset .S then
Revert to S and mark time step ¢ as “Checked”.
end if
if new subset S’ does improve penalized log-
likelihood ratio of spatial-temporal subset S then
Replace S* with S’ and remove “Checked” flags
from time steps ¢t — 1,¢ + 1, and ¢.
end if
until no further changes improve penalized log-
likelihood ratio of spatial-temporal subset S, i.e., all
time steps have been flagged as “Checked”.
14: end for
15: Return the highest scoring spatial-temporal subset S7.

ITI. ADDITIVE GRAPHSCAN

The previous section outlined how the expectation-based
binomial (EBB) scoring function may be penalized with
temporal consistency constraints Fpe,(S) = >, cg(Ai +
A;) while remaining an additive set function over the data
elements s; € S. Optimizing additive functions without
connectivity constraints is very straightforward and con-
sists of including all records with positive contributions

701

(A\; + A; > 0) and excluding the rest. Enforcing hard con-
nectivity constraints on additive functions (i.e. determining
the “most positive” connected subset) is an interesting and
difficult problem. For example, not all nodes making positive
contributions will be included in a high-scoring connected
subset because they are likely disconnected in the underlying
graph structure. Also, a high-scoring connected subset may
include a node with a negative contribution in order to
connect two positive nodes.

We note that GraphScan [13] exactly identifies the highest
scoring connected subset for any scoring function that satis-
fies the Linear-Time Subset Scanning (LTSS) property [11].
It is trivially shown that additive functions satisfy LTSS,
and therefore GraphScan could be used to determine the
highest scoring (“most positive”, in the case of an additive
scoring function) connected subset. However, GraphScan is
designed to optimize over more complex scoring functions;
most importantly, its computation time is exponential in the
graph size and therefore it does not scale well in this setting.
Therefore, we propose Additive GraphScan as an efficient
heuristic alternative to GraphScan which can be used to
identify high-scoring (most positive) connected subsets in a
given graph structure with real-valued weights at each node.

A. Additive GraphScan Algorithm

Additive GraphScan makes use of the following notation.
w(n) is the real-valued weight of node n. A path p is any
connected subgraph of nodes. w(p) is the sum of weights
for every node in the path. g(p) is the gain that would
result from merging path p into a single node. It is the
difference between the weight of the resulting merged node
and the highest weighted node in the path. Identifying and
merging paths with positive gains is an integral part of
Additive GraphScan. g(n,p*) is the gain that would result
from merging two paths together. The first path, p*, is a
previously identified path of interest with positive gain. The
second path is the shortest path between node n and any
point along path p*. g(n,p*) is the difference between the
weight of the resulting merged paths and max(w(n), w(p*)).

pw(n) is the pathweight of a node used when calculating
single source, shortest paths traversing through the node.
Note the difference between the weight of a node w(n)
(which may be positive or negative and is used in the
gain calculations above) and the pathweight of a node
pw(n) (which is non-negative and used in shortest path
calculations). Pathweights of positive nodes are set to O,
reflecting no penalty (or reward) for traversing positive nodes
while identifying shortest paths. Pathweights for negative
nodes with no positive neighbors are —w(n). Pathweights
for negative nodes with positive neighbors have pw(n) =

: (ns)
— min (0’ w(n) + ZpOS neighbors,n; dewrene(ni) We
may think of the positive weights uniformly “diffusing”
over their negative neighbors and then using this altered

weight as the pathweight for negative nodes with positive

neighbors. In the case where a large positive node
overwhelms its negative neighbor, the negative neighbor’s
pathweight is set to O.

Finally, s(nq,ny, n.) determines a fourth node, n in the
graph as a Steiner point for n,,n, and n.. A Steiner point
in this setting is a node that forms the shortest interconnect
between the three provided nodes using the pathweights of
the graph. s(ng,np, ne) returns the shortest interconnecting
path formed between the three nodes going through n.

Some basic pre-processing may be applied to the graph
before running Additive GraphScan. For example, any pos-
itive node with a positive neighbor may be merged together
into a larger, single positive node (adding their weights) and
repeated until no further merges exist. Also, any negative
nodes with degree of 1 or less may be recursively removed
because these are guaranteed to not be included in a high
scoring connected subset. Lastly, any negative node with at
least two positive neighbors may be merged into a single
node if the resulting merged node has a higher weight than
any individual positive neighbor. Additive GraphScan can
then be applied to the pre-processed graph. While detailed
discussion of computational complexity has been omitted
due to space limitations, we note that the algorithm scales
as O(kN?) = O(N?%), dominated by steps (3) and (5).

Algorithm 2 Additive GraphScan
1: while positive gain path merges exist do

2. Identify top-k positive nodes where k& = v/N.

3: Compute path weights pw(n) for all nodes and create
single-source shortest paths from each top-k node.

4: Compute g(p) for each shortest path p between top-
k pairs. Determine highest gain path p* and record
endpoints as n, and np.

5: Compute g(n;, p*) for each remaining top-k node, n;.
Determine highest gain node for p* and record as 7.
If no positive gain exists between p* and any n;, then
merge p* and restart.

6: Form new path p** as the union of p* and the path
connecting p* to n..

7. Compute s(ng,np,n:). Compare w(s(ng,np,ne))

and w(p**). Merge the one with higher weight.
8: end while
9: The highest weight merged node is returned as the most
positive connected subset found by Additive GraphScan.
Note that this node may need to be “unpacked” to
determine the contents in the original graph form.

B. Additive GraphScan Example

We conclude this section by applying Additive Graph-
Scan to a sample pre-processed graph found in Figure 1.
The most positive connected subgraph consists of nodes
{0,1,6,3,4,8,9} where node 6 is the Steiner point used

702

Figure 1. An example graph to demonstrate the Additive GraphScan
algorithm. The large bolded numbers are node identifiers and the small
numbers within each node are the nodes’ corresponding weights. The most
positive subgraph consists of nodes {0,1,6,3,4,8,9} and is correctly
identified by Additive GraphScan.

to connect nodes 0, 4, and 9. Additive GraphScan correctly
identifies this subgraph even though node 6 is not on the
shortest paths connecting nodes 0 and 4 or nodes 4 and
9. A key insight into the strong performance of Additive
GraphScan is delaying path merges while searching for a
potential Steiner point. We begin at step (2:) Nodes O,
4, and 9 are identified as the top-k nodes. (3:) Dijkstra’s
algorithm is called on nodes 0, 4, and 9 providing single-
source shortest path information from each of them. (4:) The
shortest path from node O to node 4, p* = {0, 1,2, 3,4}, has
highest gain of g(p*) = (5—1—2—1+45)—5 = +1. Because
we found a positive gain path between nodes n, 0
and n, = 4, we continue searching for a third node, n..
(5,6:) We find n. = 9 with p** = {0,1,2,3,4,7,8,9} and
w(p**) = 8. (7:) Calculate a Steiner point for nodes 0, 4,
and 9 and note that node 6 forms the shortest interconnect
between these three points. This interconnect is formed by
the nodes {0,1,6,3,4,8,9} and w(s(0,4,9)) = 5—1—
3—1+5—1+5=09. Because w(s(0,4,9)) > w(p**) we
condense s(0,4,9) into a single node with weight 9. After
this merge, no more positive gain path merges exist and the
loop exits. (9:) The highest scoring connected subset is then
{0,1,6,3,4,8,9}. Notice that greedily merging either p* or
p** would have resulted in a sub-optimal merge.

IV. RESULTS
A. Comparison of Additive GraphScan vs. GraphScan

In this section, we compare our fast heuristic, Additive
GraphScan, to the slower, but exact, GraphScan algorithm.
First, we present a runtime analysis comparing the two
optimization algorithms. We used the much larger “network
2” provided in the Battle of the Water Sensor Networks [1]
and created connected subgraphs of various sizes from 50
to 500 nodes from the network. We then processed the
graphs with three different scans: Dynamic Subset Scan with

Runtime Comparison over Various Graph Sizes

20 + o
a=Dynamic with
GraphScan
c15 - -
§ <=Dynamic with
5 Additive GraphScan
o 10 - .
g Independent with
8 Additive GraphScan
45

150
Graph Size (number of nodes)

250 350

Figure 2. Runtime comparisons for the Dynamic Subset Scan with Graph-
Scan and Additive GraphScan as the optimization algorithm. Independent
Scan with Additive GraphScan is also shown.

GraphScan, Dynamic Subset Scan with Additive GraphScan,
and Independent with Additive GraphScan, and reported the
average runtime for each method. These results are shown
in Figure 2.

GraphScan begins to struggle with graph sizes of 250
nodes while Additive GraphScan quickly scans graphs of
500 nodes in approximately 4.1 seconds. Independent with
Additive GraphScan processed the entire 12,000+ node
“Network 2” in 221 seconds while Dynamic with Addi-
tive GraphScan required 1830 seconds (approximately a
half hour). This difference represents the additional calls
to Additive GraphScan required by Dynamic Subset Scan
to “align” the individual spatial subsets according to the
temporal consistency constraints.

We conclude our comparison of Additive GraphScan and
GraphScan by analyzing the scores of the spatial-temporal
subsets identified by the scanning methods using both Ad-
ditive GraphScan and GraphScan. Our approximation ratio
results compare the highest-scoring subsets found by Ad-
ditive GraphScan and GraphScan as a percentage averaged
over 2000 simulations. The ratio of Additive GraphScan’s
to GraphScan’s score did not fall below 99.1%, indicating
that Additive GraphScan is providing a huge speed increase
with minimal loss of accuracy compared to scan statistics
using GraphScan.

B. Detecting, Tracking, and Source-Tracing Plumes

In this section, we evaluate the detection, tracking, and
source-tracing abilities of the Dynamic Subset Scan. The
129-node “Network 1” from the Battle of the Water Sensor
Networks [1] served as the test bed for these evaluations.
We ran two simulations, one with sensors at FPR = 0.1 and
TPR = 0.9 and a second with weaker sensors at FPR =
0.2 and TPR = 0.8. All results below are averaged over 200
contaminant plumes simulated for 12 hours each. A separate

703

Table 1
SUMMARY OF LEARNED PARAMETER VALUES

method FPR | TPR | [B1 | B2

Dynamic 0.1 09 | -13 |66 18

Dynamic 0.2 08 | -13 (36120
Dynamic Alt. | 0.1 09 [-1.1 |182] 0
Dynamic Alt. | 0.2 | 0.8 | -1.2 |24] O

100-plume training set was used for cross-validation for the
scan statistics that required learning parameters.
We compare 4 different spatial-temporal scan statistics:

o Static scan does not allow the detected spatial region
to change over time.

Independent scan allows the detected spatial region to
change over time but does not share temporal informa-
tion between time steps.

Dynamic scan allows the detected spatial region to
change over time and uses temporal consistency con-
straints to “align” the individual time steps.

Dynamic Alt. scan is similar to Dynamic scan but does
not use any information from neighbors when enforcing
temporal consistency constraints, i.e., we force Sy = 0
when learning the model parameters.

For the temporal component of the scans, we set max
window size W = 12. This allows Static, Dynamic, and
Dynamic Alt. to detect a spatial-temporal subset between
1 and 12 hours in duration. However, for the Independent
scan, the highest scoring spatial-temporal region will always
be maximum duration. This consequence of the Independent
scan is discussed further below.

Each of these methods have graph connectivity constraints
enforced through Additive GraphScan. Simpler versions of
the scans without connectivity constraints were evaluated
and had much lower performance for detection, tracking,
and source-tracing. (Detailed results are omitted due to space
limitations.)

We set the [...[> parameters for the Dynamic scan,
and the 5y and (7 parameters for Dynamic Alt., using a
grid search on the separate 100-plume training set. The
parameter values that maximized spatial-temporal overlap
in the training data are shown in Table I. It is interesting to
note the large changes in /5; when moving from the easier to
harder scenarios, while 3y and 5 remain relatively constant.

Figure 3 reports the average time required by each method
to detect a contaminant plume for various false positive rates.
These results were calculated by processing 2160 “back-
ground” hours (approximately 3 months of data) with no
contaminants. These were compared with scores produced
by the scan statistics during the 200 simulated plumes. The
0 false positive alarms interpretation is that it took 4.3 hours

Detecting Contaminant Plumes

| —— i ——] \
7.5 WE—E—Q—:—:—W— 75
‘000-00----..... g

i3] e o Static
@ 6.5 5
& = Independent
8 55 5.5 :
2 ==Dynamic Alt.
g 4 5 Pe s oo e L
I R s— ‘--‘--.... 4.5

3.5 ‘ ‘ T T ‘ T T . T T T ‘ ‘ T T 3.5

0 4 8 12 16 20 24 28 0O 4 8 12 16 20 24 28
Number of False Positives per Month Number of False Positives per Month
Figure 3. Detection results for FPR = 0.1 and TPR = 0.9 sensors on the left and FPR = 0.2 and TPR = 0.8 sensors on the right. We present our

detection results through Activity Monitoring Operating Characteristic (AMOC) curves. These show the average time required for each method to detect
a contaminant in the system, assuming a fixed number of allowable false positives per month.

(on average) for the scores produced by Dynamic Scan to
exceed the largest score found by Dynamic Scan in the
2160 “background” hours. As the threshold for detection
is lowered, the number of false positive alarms increases
but the time to detect decreases, as shown by the Activity
Monitoring Operating Characteristic (AMOC) curves [4] in
Figure 3.

The Static, Dynamic, and Dynamic Alt. methods achieve
similar power for event detection in the easier scenario
(FPR = 0.1, TPR = 0.9). However, Dynamic achieves the
overall best performance (6.62 hours to detect at 0 false
positives) when detecting a weaker signal (FPR = 0.2, TPR
= 0.8). Note the influence that a node’s neighbors have on
distinguishing performance between Dynamic and Dynamic
Alt. in the 0.2/0.8 scenario. The easier scenario did not
require additional information from neighbors in order to
obtain similar performance, but this information is impor-
tant when working with weaker sensors. The Independent
method’s poor performance is due to the relatively high
subset scores found by Independent when no contaminant
is present. Its unconstrained flexibility allows it to overfit
to noise in the background, making detection of a true
contamination event more difficult.

Figure 5 reports the methods’ tracking ability over the
duration of a spreading contaminant plume (12 hours). We
measure a scan statistic’s tracking ability through spatial-
temporal overlap. Spatial-temporal overlap is a combination
of precision and recall applied to spatial-temporal subsets.
A measure of 1.0 corresponds to perfect agreement between
the affected and detected spatial-temporal regions, while 0.0
means the affected and detected regions are disjoint. For two

spatial-temporal subsets, Affected and Detected, the overlap

. . |Affected () Detected| . .
is defined as: |Affected | Detected|” See Figure 4 for details.

The relative performance of the Static and Dynamic
methods in the easier scenario demonstrates Static’s lack

704

@ O

Deteéled

Affected Unaffected
Static
2 Scan
&
Dynamic
Scan

Time

Spatial-Temporal
Overlap

Figure 4. This figure demonstrates the calculation of spatial-temporal
overlap for plume tracking. A plume spreads through a simple 5-node line
graph over the course of four time steps. Affected nodes turn from white
to red as the contaminant spreads. The Static scan method is constrained to
keep the exact same detected spatial region throughout the event duration.
Hence, it may fail to capture the plume at later time steps. Dynamic Scan
allows the detected spatial region to change at each time step, tracking the
plume as it spreads. Due to connectivity constraints, both methods must
return a connected subgraph as the detected spatial region at each time
step. Spatial-temporal overlap is penalized for both false positives and false
negatives. A measure of 1.0 corresponds to perfect agreement between the
affected and detected spatial-temporal regions, while 0.0 means that the
affected and detected regions are disjoint.

of tracking ability as the plume grows over time. Static’s
tracking performance quickly levels off while Dynamic
continues to achieve higher spatial-temporal overlap over
the course of the contamination event. This increase in
performance is due to the (constrained) flexibility allowed
to the Dynamic Subset Scan. The difference in tracking
performance between Static and Dynamic methods is not
as large in the harder scenario, but we again observe

Tracking Contaminant Plumes

o 1 3
oL
S
g 08 - 0.8
(_0“-"0"';5 e » Static
5 06 = o - 0.6 = Independent
o & :
£ - 2 g Dynamic
o O . 0.4 &
i // 2 'y = ==Dynamic Alt.
— =
[} & 2 =
'ﬁ 0.2 ¥ 2 y == 0.2
a & il /é e

0 T T T T T T T T T al ﬁl T T T T T T T T T 0

1 3 5 7) 11 1 3 5 7 9 i1
Hours fromt, Hours from t,
Figure 5. Tracking results for FPR = 0.1 and TPR = 0.9 sensors on the left and FPR = 0.2 and TPR = 0.8 sensors on the right. We measure tracking

ability by reporting the spatial-temporal overlap of the detected and affected subsets over the course of 12 hours.

the importance of incorporating information from a node’s
neighbors. The poor performance of the Independent scan,
particularly in the early stages of the contamination event,
is due to its tendency to report spatial-temporal regions of
maximum duration which are not a good match to the true
affected region.

Figure 6 reports the methods’ ability to identify where
the contaminant originated over the duration of the plume
(12 hours). This is measured through purely spatial overlap
between the earliest time step in the detected region and the
source node(s) of the plume. We note that it is possible for
a quickly spreading plume to affect multiple nodes within
the first hour. In such cases, we treat all of these nodes as
source nodes.

The source-tracing results clearly demonstrate the advan-
tage of sharing information between time steps during the
optimization process. Static’s ability to identify the source
nodes actually decreases over the course of the contam-
ination event as more information is gathered. Exploring
this result further, we observe that Static has very high
spatial recall (0.995) but very low precision (0.144) for
identifying the source nodes on hour 12. This suggests
that Static tends to return very large subsets at the later
stages of the plume. These regions may accurately reflect the
affected subset of nodes on the current time step: a follow-
up investigation, with detailed results omitted due to space
limitations, suggests that the relative performance of Static
and Dynamic as measured by spatial overlap coefficient on
the current time step is very similar. However, the large
regions returned by the Static method harm its ability to
accurately identify the source of the contaminant.

The key to the Dynamic Subset Scan’s success for source-
tracing is the backwards flow of temporal consistency infor-
mation allowed in our model. Dynamic is able to change the
detected subset for previous time steps based on new, more
current data. This gives it superior source-tracing abilities
in both the easier (0.1/0.9) and harder (0.2/0.8) scenarios.

705

For the harder scenario, we again observe the importance of
neighbor information: while the Dynamic method achieves
similar performance to Static during the early stages of the
contamination event and much better performance in the
later stages, the performance of Dynamic Alt. (which does
not use neighbor information) does not surpass Static until
the ninth hour. Finally, we note the substantial increase in
performance of the Independent method at hour 12, though
its overall performance is still low. This is an artifact of
Independent preferring to return 12-hour regions.

V. CONCLUSIONS

This work introduced the Dynamic Subset Scan for de-
tecting, tracking, and source-tracing dynamic patterns that
change the affected subset over time. This novel extension of
the well-known spatial and subset scan statistics is composed
of two main contributions. First is the incorporation of
temporal consistency constraints that may be enforced on
temporally adjacent, spatial subsets. These constraints are
a fruitful compromise between traditional spatial-temporal
scan statistics that do not allow the detected region to change
over time (Static) and the other extreme where temporal
information is ignored (Independent). The key insight to
enforcing temporal consistency constraints is recognizing
that the expectation-based binomial scoring function may be
written as an additive function over the data records. This
allows for additional terms (constraints) to be included in the
penalized log likelihood ratio while remaining efficient to
optimize. Critically, these temporal consistency constraints
were derived to allow temporal information to be shared
both forward and backward in time.

Our second novel contribution is the Additive Graph-
Scan algorithm, which allows the Dynamic Subset Scan
to enforce both soft temporal consistency constraints and
hard connectivity constraints while scaling to large, real
world networks. Additive GraphScan is a fast, heuristic
alternative to GraphScan. However, our results demonstrate

Source-Tracing Contaminant Plumes

0.7 /_//—W_ 0.7

0.6 0.6 o« Static
o /
@ 05 // 0.5 = Independent
[
g 0.4 O 0.4 Dynamic

® “
= 03 ——// * ey 0.3 ==DynamicAlt.
— ®e ®e
=] o e e =
30.2 & “o.q — e® 04, = 0.2
wond a — 2+ 0.1
0 Focaeaeaead B Sooemmemam? |
1 3 5 7 9 T 1 3 5 7 9 il

Hours from t,

Figure 6.

Hours from t,

Source-tracing results for FPR = 0.1 and TPR = 0.9 sensors on the left and FPR = 0.2 and TPR = 0.8 sensors on the right. We measure

source-tracing ability by reporting the spatial overlap between the earliest detected spatial region and the original affected node(s).

an approximation ratio of over 99%, suggesting a very small
sacrifice for dramatic gains in speed and scalability.

The Dynamic Subset Scan was evaluated on data provided
through the “Battle of the Water Sensor Networks” [1].
Dynamic scan succeeded in detecting contamination events
sooner and tracking these events more accurately compared
to other competing methods. The gains were due to Dynamic
Scan’s constrained flexibility: competing methods either
failed to capture the dynamics of the spreading plume
(Static) or were susceptible to over-fitting from lack of
constraints (Independent). In scenarios with a weaker signal
to be detected, incorporating information from a node’s
neighbors in the Dynamic Scan proved worthwhile, lead-
ing to substantial gains in performance on the detection,
tracking, and source-tracing tasks.

In summary, relaxing constraints on spatial-temporal re-
gion shape must be done carefully. Strict temporal con-
straints work well when the affected subset of the data does
not change over time. However, removing them completely
in order to track dynamic patterns performs poorly as
shown by the Independent method results. Dynamic Subset
Scan with temporal consistency and connectivity constraints
provides a scalable solution for future work in dynamic
pattern detection in graph-based or sensor network data.

ACKNOWLEDGMENT

A special thanks to R. Ravi for providing insights on the
use of Steiner points. This work was partially supported by
NSF grants 11S-0916345, 11S-0911032, and 11S-0953330.

REFERENCES

[1] Avi Ostfeld et al. The battle of water sensor networks:
A design challenge for engineers and algorithms. Journal
of Water Resources Planning and Management, 134(6):556—
568, 2008.

706

[2] J. Berry, R. D. Carr, W. Hart, V. J. Leung, C. A. Phillips, and
J. P. Watson. Designing contamination warning systems for
municipal water networks using imperfect sensors. Journal
of Water Resources Planning and Management, 135(4):253—
263, 20009.

J. Berry, L. Fleischer, W. Hart, and C. Phillips. Sensor
placement in municipal water networks. J. Water, 131:237-
243, 2003.

T. Fawcett and F. Provost. Activity monitoring: noticing
interesting changes in behavior. In Proc. 5th Intl. Conf. on
Knowledge Discovery and Data Mining, pages 53-62, 1999.
M. Gomez-Rodriguez, J. Leskovec, and A. Krause. Inferring
networks of diffusion and influence. In Proc. 16th ACM
SIGKDD Conf. on Knowledge Discovery and Data Mining,
pages 1019-1028, 2010.

M. W. Koch and S. A. Mckenna. Distributed sensor fusion
in water quality event detection. Journal of Water Resources
Planning and Management, 137:10-19, 2011.

A. Krause, J. Leskovec, C. Guestrin, J. VanBriesen, and
C. Faloutsos. Efficient sensor placement optimization for
securing large water distribution networks. Journal of Wa-
ter Resources Planning and Management, 134(6):516-526,
November 2008.

M. Kulldorff. A spatial scan statistic. Communications in
Statistics: Theory and Methods, 26(6):1481-1496, 1997.

S. Myers and J. Leskovec. On the convexity of latent
social network inference. In Advances in Neural Information
Processing Systems 23, pages 1741-1749. 2010.

D. B. Neill. Expectation-based scan statistics for monitoring
spatial time series data. International Journal of Forecasting,
25:498-517, 2009.

D. B. Neill. Fast subset scan for spatial pattern detection.
Journal of the Royal Statistical Society (Series B: Statistical
Methodology), 74(2):337-360, 2012.

D. B. Neill, A. W. Moore, M. R. Sabhnani, and K. Daniel.
Detection of emerging space-time clusters. In Proc. 11th ACM
SIGKDD Conf. on Knowledge Discovery and Data Mining,
2005.

S. Speakman and D. B. Neill. Fast graph scan for scalable de-
tection of arbitrary connected clusters. In Proc. International
Society for Disease Surveillance Annual Conf, 2010.

R. Viswanathan and P. K. Varshney. Distributed detection
with multiple sensors: Part I Fundamentals. Proceedings of
the IEEE, pages 54-63, 1997.

(3]

(41

(5]

(6]

(71

(8]
(9]

[10]

[11]

[12]

[13]

[14]

