
Dynamic Pattern Detection with Temporal Consistency and Connectivity Constraints

Skyler Speakman, Yating Zhang, Daniel B. Neill∗
Event and Pattern Detection Laboratory

Carnegie Mellon University, Pittsburgh PA 15213
Email: neill@cs.cmu.edu∗

Abstract—We explore scalable and accurate dynamic pat-
tern detection methods in graph-based data sets. We apply
our proposed Dynamic Subset Scan method to the task of
detecting, tracking, and source-tracing contaminant plumes
spreading through a water distribution system equipped with
noisy, binary sensors. While static patterns affect the same
subset of data over a period of time, dynamic patterns may
affect different subsets of the data at each time step. These
dynamic patterns require a new approach to define and
optimize penalized likelihood ratio statistics in the subset scan
framework, as well as new computational techniques that scale
to large, real-world networks. To address the first concern,
we develop new subset scan methods that allow the detected
subset of nodes to change over time, while incorporating
temporal consistency constraints to reward patterns that do not
dramatically change between adjacent time steps. Second, our
Additive GraphScan algorithm allows our novel scan statistic
to process small graphs (500 nodes) in 4.1 seconds on average
while maintaining an approximation ratio over 99% compared
to an exact optimization method, and to scale to large graphs
with over 12,000 nodes in 30 minutes on average. Evaluation
results across multiple detection, tracking, and source-tracing
tasks demonstrate substantial performance gains achieved by
the Dynamic Subset Scan approach.

Keywords-sensor fusion; likelihood ratio statistics; spatial
and subset scan statistics; water distribution systems

I. INTRODUCTION AND BACKGROUND

Detecting patterns in massive data sets has multiple real-

world applications in fields such as public health, law

enforcement, and security. The “subset scan” approach to

pattern detection treats the problem as a search over sub-

sets of data, with the goal of finding anomalous subsets.

This approach poses two main challenges: appropriately

evaluating the “anomalousness” of a given subset, and the

computational issue of searching through the exponentially

many subsets of the data. Previous approaches ([8], [12],

[10], [11]) have addressed the first concern by “scoring”

each subset using likelihood ratio statistics such as the

expectation-based Poisson (EBP) ([12], [10]) or expectation-

based binomial (EBB) [8] scan statistics. Our current work

allows for a more sophisticated scoring function by pe-
nalizing the likelihood ratio statistic, considering additional

prior information from each data element. The penalized

likelihood ratio typically does not satisfy useful properties

such as “linear-time subset scanning” [11], making efficient

optimization over subsets a challenging task. However, we

demonstrate that the EBB likelihood ratio statistic can be

written as an additive function, enabling efficient optimiza-

tion of a penalized version of that statistic over subgraphs.

The first major contribution of our current work is the devel-

opment of temporal consistency constraints which allow for

additional penalties or rewards to act on the scoring function,

rewarding spatial subsets that are temporally consistent

with each other, and efficient optimization of the resulting,

penalized scan statistic to detect dynamic clusters subject

to these constraints. Our second major contribution is the

Additive GraphScan algorithm, which efficiently identifies

anomalous (high scoring), connected subgraphs, thus in-

corporating both (hard) connectivity constraints and (soft)

temporal consistency constraints. Each of these contributions

will be discussed in detail below.

Many complex data sets containing emerging events or

patterns are commonly represented in a known and fixed

graph structure. Examples of this include water pipelines,

transportation routes, power grids, and supply chains in

general. While other recent work ([9], [5]) has focused on

learning graph structure, here we assume a given graph

structure and wish to detect which nodes are currently

affected, by observing data produced at the nodes of the

graph on each time step.

Our motivating example comes from the field of public

health: we focus on detecting, tracking, and source-tracing

contaminant plumes in a water distribution system. Creat-

ing sensor networks for detecting deliberate or accidental

contamination of these systems has been a popular research

domain following the terror attacks of September 11, 2001.

The “Battle of the Water Sensor Networks” (BWSN) [1]

provided real-world data to teams tasked with placing perfect
sensors to quickly detect contaminants and limit the amount

of contaminated water consumed by the population. The

placement problem is an interesting one explored further in

([3], [7]). Our current work focuses on the complementary

problem of fusing data collected from noisy sensors assum-

ing a given placement. Sensor fusion attempts to combine

data from multiple distributed sensors in order to increase

the detection power of the entire network [14].

We proceed by modeling simple, binary sensors at each

pipe junction (graph node) in the system. We assume that a

fixed false positive rate (e.g., FPR = 0.1) and true positive

rate (e.g., TPR = 0.9) are known and that each sensor

2013 IEEE 13th International Conference on Data Mining

1550-4786/13 $31.00 © 2013 IEEE

DOI 10.1109/ICDM.2013.66

697

operates independently of the others in the network. Our

simulations use the network structure and plumes provided

in the BWSN data to generate sensor readings over the

course of 12 one-hour intervals.

Our task is then: Given (1) the graph structure (pipe

network), (2) false positive and true positive rates of the sen-

sors, and (3) independent observations from the sensors over

time, we must provide: (A) whether or not a contaminant is

present in the system for each one-hour time step, (B) hour-

to-hour tracking of which pipe nodes have been affected by

the plume on the current and recent past time steps, and

(C) source-tracing to determine which node(s) in the system

spawned the contaminant. Corresponding evaluation metrics

include: (A) average time (in hours) to plume detection as

a function of false positive rate (number of false alarms per

month), (B) spatial-temporal overlap coefficient between the

true and detected subsets of nodes over time, and (C) spatial

overlap coefficient between the true and identified subsets of

source nodes.

This is not the first work to apply spatial or subset scan

statistics to contamination early warning systems. Koch and

McKenna [6] used Kulldorff’s spatial scan [8] to detect sta-

tistically significant circular clusters of anomalous activity.

They used properties of the pipe network to create a distance

metric based on travel time between sensing nodes in order

to define their “circles”. However, they were not able to

enforce connectivity constraints and take advantage of the

topology of the network. Through our Additive GraphScan

algorithm, we are able to search over connected subsets of

the pipe network to find anomalous connected subgraphs.

Berry et al. [2] have also considered the detection power

of a network of imperfect sensors, showing that it is worth

deploying a sensor network even when individual sensors

have low detection probability. However, their experiments

did not allow for sensors with false positives, making the

detection and source tracing problems much easier to solve

as compared to the more difficult scenario we consider here.

Spatial scan statistics attempt to identify regions of in-

terest or “hot spots”. This is achieved by maximizing a

scoring function F (S), typically defined as the likelihood

ratio F (S) = Pr(Data |H1(S))

Pr(Data |H0)
, over spatial regions S.

In this expression H1(S) assumes increased activity in

region S, and H0 assumes regular behavior. In this work,

we will be monitoring binary sensors si each produc-

ing ci ∼ Bernoulli (FPR) “triggers” under H0 or ci ∼
Bernoulli (TPR) “triggers” for H1(S) containing node si.
This makes the expectation-based binomial scan statistic [8]

a logical choice.

Spatial-temporal scan statistics incorporate the time di-

mension. It is standard to aggregate this temporal infor-

mation over a time window w so that ci =
∑

t=1...w cti.
Once the temporal information has been aggregated for

each window w = 1 . . .W , maximizing the spatial-temporal

scan statistic for that window proceeds identically to the

regular spatial scan statistic; we then maximize over all

window sizes from 1 to W . However, an inherent assumption

in this aggregation of temporal information is that the

affected spatial-temporal subset does not change over time.

Therefore, we will refer to this approach as the Static scan

method throughout this text.

We wish to relax this strong assumption on the spatial-

temporal structure in order to increase the power to detect

dynamic patterns that change the affected region over time.

One simple approach is to optimize each of the w time steps

independently. This allows for each time step t to identify

an entirely different spatial region, but does not allow

the sharing of information between time steps, possibly

reducing detection power. We refer to this approach as the

Independent scan method throughout this text.

As a compromise between Static and Independent meth-

ods, we propose the Dynamic Subset Scan which enforces

temporal consistency constraints to allow temporally adja-

cent time steps to share information forward and backward

in time. We demonstrate below that this flexibility increases

power to detect and track dynamic patterns while scaling to

the size of real-world networks.

The rest of the paper is laid out as follows. Section II

introduces temporal consistency constraints, applied to the

expectation-based binomial scoring function, and demon-

strates how the penalized scan statistic can be efficiently

optimized over (not necessarily connected) dynamic subsets.

Section III explains the Additive GraphScan algorithm,

which efficiently identifies high-scoring, connected subsets

of data with an underlying graph structure. Section IV

provides empirical results of our simulations of the water

distribution network from the BWSN, comparing our new

Dynamic Subset Scan approach to several other approaches,

and demonstrating improvements in detection, tracking, and

source-tracing performance. Finally, Section V concludes the

paper.

II. TEMPORAL CONSISTENCY CONSTRAINTS

This section has four sequential objectives. First, we

demonstrate how the expectation-based binomial (EBB)

scoring function may incorporate additional constraints

while remaining straightforward to optimize over all possible

subsets S (i.e., we show that EBB can be written as an

additive function over the data elements si ∈ S). Second,

we show that these constraints may be interpreted as the

prior log-odds for a given node si to be in the detected

subset. We then provide the formal definition of our temporal

consistency constraints based on a probabilistic generative

model that incorporates both forward and backward temporal

consistency. Lastly, we describe the iterative optimization

process that “lines up” the spatial-temporal region according

to the provided temporal consistency constraints.

698

A. Additive Scoring Function and Additional Terms

We demonstrate that, conditioned on the false and true

positive rates (FPR, TPR) of the sensors, the EBB statistic

can be written as an additive set function over the data

elements si ∈ S. This is an important feature for two

reasons. First, additive functions are easy to optimize over

all possible subsets. Without connectivity constraints, the

optimization process is simply including all records making

a positive contribution and excluding the rest. Determining

the “most positive” connected subset is more complicated,

and is covered in the Additive GraphScan section below.

Second, additive functions allow for additional penalty terms

Δi to be included at the element level while the total penal-
ized scoring function remains additive and thus amenable to

efficient optimization.

Theorem 1: The expectation-based binomial statistic may

be written as F (S) =
∑

si∈S λi, where λi depends only on

the binary sensor response ci for sensor si (i.e., whether that

sensor triggers or not) as well as the false and true positive

rates of the sensors in general.

Proof: The log-likelihood ratio form of the EBB scan

statistic can be written as follows:

F (S) = log
Pr(Data|H1(S))

Pr(Data|H0)

= log

∏
si∈S Pr(ci ∼ Bernoulli(TPR))∏
si∈S Pr(ci ∼ Bernoulli(FPR))

= log
∏
si∈S

(TPR)ci(1− TPR)1−ci

(FPR)ci(1− FPR)1−ci

=
∑
si∈S

[
ci log

(
TPR

FPR

)
+ (1− ci) log

(
1− TPR

1− FPR

)]

Then λi = ci log
(

TPR
FPR

)
+ (1− ci) log

(
1−TPR
1−FPR

)
.

Next, if we assume a bonus or penalty Δi for each si ∈ S,

then we can easily incorporate these terms into the score

function. We define:

Fpen(S) = F (S) +
∑
si∈S

Δi =
∑
si∈S

(λi +Δi).

Fpen(S) is a penalized form of the EBB scan statistic that is

still additive over the data elements si. We note that the Δi

terms are assumed to be a function of only the given data

element si; they cannot depend on the entire subset S. We

acknowledge this as a limitation of the current work, and

will investigate extensions to more sophisticated penalties

in future work.

B. Prior Log-odds Interpretation

These soft constraints, Δi, have a convenient interpreta-

tion as the prior log-odds that each data element si will

be included in the detected subset. Let pi be the prior

probability that data element si will be contained in the

detected subset. Then Δi can be defined as log
(

pi

1−pi

)
. The

prior log probability of selecting a subset S is then:

log Pr(S) = log(
∏
si∈S

pi
∏
si /∈S

(1− pi))

=
∑
si∈S

(log pi − log(1− pi)) +
N∑
i=1

log(1− pi)

=
∑
si∈S

Δi −
N∑
i=1

log(1 + exp(Δi)).

However, we note that the term
∑N

i=1 log(1 + exp(Δi))
is constant and does not affect the probability of selecting

any particular subset. Thus we can ignore this term when

optimizing over all subsets of the data, and subtract it once

the highest-scoring subset of the data has been identified.

When Δi > 0, record si is more likely to be included in the

detected subset, and the opposite is true when Δi < 0. When

Δi = 0 for all i, which is the default setting for spatial-

temporal scan statistics, then every subset S is considered

equally likely a priori.

C. Derivation of Δt
i

We now derive the formulas for Δt
i that correspond to the

following generative model for temporal consistency. Let pti
be the prior probability that data element si will be contained

in the detected subset St on time step t. Let xt
i be 1 if data

element si is included in St, and 0 otherwise. Let nt
i be the

number of neighbors of si that are included in St, and let

ki be the degree of node si. Then our generative model of

event propagation, which incorporates temporal consistency

constraints, is defined as:

log

(
pti

1− pti

)
= β0 + β1x

t−1
i + β2

nt−1
i

ki
. (1)

As a concrete example of the interpretation of this model,

assume β0 = −1.5, β1 = 5, and β2 = 0. Then, if a node is

included in the previous detected subset, St−1, it has a 97%

prior probability of being included in the current detected

subset, St. If it was not included in the previous subset,

then it only has an 18% probability of being included in the

current subset. When β2 > 0, the proportion of neighbors

included in St−1 will further influence the prior probability

of si being included in the current subset.

We now compute the total impact Δt
i of including xt

i

on the overall penalized log-likelihood ratio score F (S), as

compared to the score F (S\xt
i) when xt

i is excluded. Given

the log-linear model of pti above, we have:

699

Δt
i =

(
log(pti)− log(1− pti)

)
+

∑
j∈St+1

(
log(pt+1

j | xt
i)− log(pt+1

j | x̄t
i)
)

+
∑

j �∈St+1

(
log(1− pt+1

j | xt
i)− log(1− pt+1

j | x̄t
i)
)
.

(2)

In equation (2), the initial difference results from the prior

probability of xt
i, conditioned on xt−1

i and its number of

included neighbors nt−1
i from the previous time step. This

difference can be calculated directly from the model:

log(pti)− log(1− pti) = β0 + β1x
t−1
i + β2

nt−1
i

ki
. (3)

The two sums in (2) account for the fact that including

xt
i changes the prior probabilities of xt+1

i and its neighbors

nt+1
i for the next time step. These sums can be rewritten as:∑

j∈St+1

(
log(pt+1

j | xt
i)− log(pt+1

j | x̄t
i)
)

+
∑

j �∈St+1

(
log(1− pt+1

j | xt
i)− log(1− pt+1

j | x̄t
i)
)

=
∑

j∈St+1

(β0 + β1x
t
j + β2

nt
j

kj
| xt

i)

−
∑
j

f(β0 + β1x
t
j + β2

nt
j

kj
| xt

i)

−
∑

j∈St+1

(β0 + β1x
t
j + β2

nt
j

kj
| x̄t

i)

+
∑
j

f(β0 + β1x
t
j + β2

nt
j

kj
| x̄t

i),

(4)

where the function f(x) = log(1 + exp(x)). Next, we note

that the contributions to equation (4) are equal to 0 for all

nodes j except for node i and its neighbors. For j = i, the

corresponding terms in (4) simplify to:

β1x
t+1
i + f

(
β0 + β2

nt
i

ki

)
− f

(
β0 + β1 + β2

nt
i

ki

)
. (5)

For each neighbor j of i, the corresponding terms in (4)

simplify to:

β2

(
xt+1
j

kj

)
+ f

(
β0 + β1x

t
j + β2

nt
j

kj

)

−f
(
β0 + β1x

t
j + β2

nt
j + 1

kj

)
.

(6)

Adding the contributions of equations (3), (5), and (6),

we obtain:

Δt
i = β0 + β1

(
xt−1
i + xt+1

i

)
+ β2

⎛
⎝nt−1

i

ki
+

∑
j∈St+1

1

kj

⎞
⎠

+ f

(
β0 + β2

nt
i

ki

)
− f

(
β0 + β1 + β2

nt
i

ki

)

+
∑
j

f

(
β0 + β1x

t
j + β2

nt
j

kj

)

−
∑
j

f

(
β0 + β1x

t
j + β2

nt
j + 1

kj

)
,

(7)

where the sums are taken over all neighbors j of i. In the

special case of β2 = 0, equation (7) simplifies to:

Δt
i = β0 + β1

(
xt−1
i + xt+1

i

)
+ f (β0)− f (β0 + β1) . (8)

Note that, when β2 = 0, we can compute Δt
i exactly.

When β2 �= 0, we approximate Δt
i assuming that β0+β2 �

0 and β0+β1 � 0. Noting that f(x) ≈ 0 when x� 0, and

f(x) ≈ x when x� 0, we obtain:

Δt
i ≈ β0 + β1

(
xt−1
i + xt+1

i

)
+ β2

⎛
⎝nt−1

i

ki
+

∑
j∈St+1

1

kj

⎞
⎠

−
(
β0 + β1 + β2

nt
i

ki

)
+

∑
j∈St

(
β0 + β1 + β2

nt
j

kj

)

−
∑
j∈St

(
β0 + β1 + β2

nt
j + 1

kj

)

=β1

(
xt−1
i + xt+1

i − 1
)

+β2

⎛
⎝nt−1

i

ki
+

∑
j∈St+1

1

kj
−

∑
j∈St

(
1

ki
+

1

kj

)⎞
⎠ .

(9)

However, equation (9) assumes knowledge of which other

elements are contained in St, and this information would

not be known in advance. Thus we approximate the final

sum over j ∈ St with half the corresponding sum over all

neighbors j of i:

Δt
i ≈β1

(
xt−1
i + xt+1

i − 1
)

+β2

⎛
⎝nt−1

i

ki
+

∑
j∈St+1

1

kj
− 1

2

∑
j

(
1

ki
+

1

kj

)⎞
⎠ .

(10)

The intuitive role of Δt
i is that it must simultaneously

make St appear likely to have been generated from St−1 and

able to generate St+1, thus conveying temporal consistency

information both forwards and backwards in time.

700

D. Iterative Convergence

We now have clear definitions and interpretations for

Fpen(S) =
∑

st
i
∈S(λ

t
i+Δt

i) for the EBB scan statistic with

temporal consistency constraints. However, recall that the

values of Δt
i for a given time step t depend on the detected

subsets at t − 1 and t + 1, which creates a computational

paradox. To solve this, our Dynamic Subset Scan uses an

iterative method that converges to a (local) optimum. To

better approach the global optimum, we can use multiple

restarts as well as simulated annealing (which gradually

increases the strength of the Δt
i from 0 to their full values),

wrapped around steps (3)-(13) in the algorithm below.

Algorithm 1 Iterative convergence to local optimum for

Dynamic Subset Scan (without multiple restarts or simulated

annealing)

1: for window duration w from 1 to max window W do
2: Initialize each of the w spatial subsets independently

(i.e., separately compute the highest scoring subsets

St for each time step t, assuming Δt
i = 0 for all si).

3: repeat
4: Randomly select a time step t that is not flagged

as “Checked”. Copy current spatial subset St.

5: Compute Δt
i for each node si given subsets St−1

and St+1, using equation (8) or (10).

6: Compute new optimal subset S′t for time step t
using Δt

i. Without connectivity constraints, simply

include all positive contributions λt
i + Δt

i; with

connectivity constraints, call Additive GraphScan.

7: if new subset S′t does not improve penalized log-

likelihood ratio of spatial-temporal subset S then
8: Revert to St and mark time step t as “Checked”.

9: end if
10: if new subset S′t does improve penalized log-

likelihood ratio of spatial-temporal subset S then
11: Replace St with S′t and remove “Checked” flags

from time steps t− 1, t+ 1, and t.
12: end if
13: until no further changes improve penalized log-

likelihood ratio of spatial-temporal subset S, i.e., all

time steps have been flagged as “Checked”.

14: end for
15: Return the highest scoring spatial-temporal subset S∗w.

III. ADDITIVE GRAPHSCAN

The previous section outlined how the expectation-based

binomial (EBB) scoring function may be penalized with

temporal consistency constraints Fpen(S) =
∑

si∈S(λi +
Δi) while remaining an additive set function over the data

elements si ∈ S. Optimizing additive functions without
connectivity constraints is very straightforward and con-

sists of including all records with positive contributions

(λi +Δi > 0) and excluding the rest. Enforcing hard con-

nectivity constraints on additive functions (i.e. determining

the “most positive” connected subset) is an interesting and

difficult problem. For example, not all nodes making positive

contributions will be included in a high-scoring connected

subset because they are likely disconnected in the underlying

graph structure. Also, a high-scoring connected subset may

include a node with a negative contribution in order to

connect two positive nodes.

We note that GraphScan [13] exactly identifies the highest

scoring connected subset for any scoring function that satis-

fies the Linear-Time Subset Scanning (LTSS) property [11].

It is trivially shown that additive functions satisfy LTSS,

and therefore GraphScan could be used to determine the

highest scoring (“most positive”, in the case of an additive

scoring function) connected subset. However, GraphScan is

designed to optimize over more complex scoring functions;

most importantly, its computation time is exponential in the

graph size and therefore it does not scale well in this setting.

Therefore, we propose Additive GraphScan as an efficient

heuristic alternative to GraphScan which can be used to

identify high-scoring (most positive) connected subsets in a

given graph structure with real-valued weights at each node.

A. Additive GraphScan Algorithm

Additive GraphScan makes use of the following notation.

w(n) is the real-valued weight of node n. A path p is any

connected subgraph of nodes. w(p) is the sum of weights

for every node in the path. g(p) is the gain that would

result from merging path p into a single node. It is the

difference between the weight of the resulting merged node

and the highest weighted node in the path. Identifying and

merging paths with positive gains is an integral part of

Additive GraphScan. g(n, p∗) is the gain that would result

from merging two paths together. The first path, p∗, is a

previously identified path of interest with positive gain. The

second path is the shortest path between node n and any

point along path p∗. g(n, p∗) is the difference between the

weight of the resulting merged paths and max(w(n), w(p∗)).
pw(n) is the pathweight of a node used when calculating

single source, shortest paths traversing through the node.

Note the difference between the weight of a node w(n)
(which may be positive or negative and is used in the

gain calculations above) and the pathweight of a node

pw(n) (which is non-negative and used in shortest path

calculations). Pathweights of positive nodes are set to 0,

reflecting no penalty (or reward) for traversing positive nodes

while identifying shortest paths. Pathweights for negative

nodes with no positive neighbors are −w(n). Pathweights

for negative nodes with positive neighbors have pw(n) =

−min
(
0, w(n) +

∑
pos neighbors,ni

w(ni)

degree(ni)

)
. We

may think of the positive weights uniformly “diffusing”

over their negative neighbors and then using this altered

weight as the pathweight for negative nodes with positive

701

neighbors. In the case where a large positive node

overwhelms its negative neighbor, the negative neighbor’s

pathweight is set to 0.

Finally, s(na, nb, nc) determines a fourth node, ns in the

graph as a Steiner point for na, nb, and nc. A Steiner point

in this setting is a node that forms the shortest interconnect

between the three provided nodes using the pathweights of

the graph. s(na, nb, nc) returns the shortest interconnecting

path formed between the three nodes going through ns.

Some basic pre-processing may be applied to the graph

before running Additive GraphScan. For example, any pos-

itive node with a positive neighbor may be merged together

into a larger, single positive node (adding their weights) and

repeated until no further merges exist. Also, any negative

nodes with degree of 1 or less may be recursively removed

because these are guaranteed to not be included in a high

scoring connected subset. Lastly, any negative node with at

least two positive neighbors may be merged into a single

node if the resulting merged node has a higher weight than

any individual positive neighbor. Additive GraphScan can

then be applied to the pre-processed graph. While detailed

discussion of computational complexity has been omitted

due to space limitations, we note that the algorithm scales

as O(kN2) = O(N2.5), dominated by steps (3) and (5).

Algorithm 2 Additive GraphScan

1: while positive gain path merges exist do
2: Identify top-k positive nodes where k =

√
N .

3: Compute path weights pw(n) for all nodes and create

single-source shortest paths from each top-k node.

4: Compute g(p) for each shortest path p between top-

k pairs. Determine highest gain path p∗ and record

endpoints as na and nb.

5: Compute g(ni, p
∗) for each remaining top-k node, ni.

Determine highest gain node for p∗ and record as nc.

If no positive gain exists between p∗ and any ni, then

merge p∗ and restart.

6: Form new path p∗∗ as the union of p∗ and the path

connecting p∗ to nc.

7: Compute s(na, nb, nc). Compare w(s(na, nb, nc))
and w(p∗∗). Merge the one with higher weight.

8: end while
9: The highest weight merged node is returned as the most

positive connected subset found by Additive GraphScan.

Note that this node may need to be “unpacked” to

determine the contents in the original graph form.

B. Additive GraphScan Example

We conclude this section by applying Additive Graph-

Scan to a sample pre-processed graph found in Figure 1.

The most positive connected subgraph consists of nodes

{0, 1, 6, 3, 4, 8, 9} where node 6 is the Steiner point used

Figure 1. An example graph to demonstrate the Additive GraphScan
algorithm. The large bolded numbers are node identifiers and the small
numbers within each node are the nodes’ corresponding weights. The most
positive subgraph consists of nodes {0, 1, 6, 3, 4, 8, 9} and is correctly
identified by Additive GraphScan.

to connect nodes 0, 4, and 9. Additive GraphScan correctly

identifies this subgraph even though node 6 is not on the

shortest paths connecting nodes 0 and 4 or nodes 4 and

9. A key insight into the strong performance of Additive

GraphScan is delaying path merges while searching for a

potential Steiner point. We begin at step (2:) Nodes 0,

4, and 9 are identified as the top-k nodes. (3:) Dijkstra’s

algorithm is called on nodes 0, 4, and 9 providing single-

source shortest path information from each of them. (4:) The

shortest path from node 0 to node 4, p∗ = {0, 1, 2, 3, 4}, has

highest gain of g(p∗) = (5−1−2−1+5)−5 = +1. Because

we found a positive gain path between nodes na = 0
and nb = 4, we continue searching for a third node, nc.

(5,6:) We find nc = 9 with p∗∗ = {0, 1, 2, 3, 4, 7, 8, 9} and

w(p∗∗) = 8. (7:) Calculate a Steiner point for nodes 0, 4,

and 9 and note that node 6 forms the shortest interconnect

between these three points. This interconnect is formed by

the nodes {0, 1, 6, 3, 4, 8, 9} and w(s(0, 4, 9)) = 5 − 1 −
3− 1 + 5− 1 + 5 = 9. Because w(s(0, 4, 9)) > w(p∗∗) we

condense s(0, 4, 9) into a single node with weight 9. After

this merge, no more positive gain path merges exist and the

loop exits. (9:) The highest scoring connected subset is then

{0, 1, 6, 3, 4, 8, 9}. Notice that greedily merging either p∗ or

p∗∗ would have resulted in a sub-optimal merge.

IV. RESULTS

A. Comparison of Additive GraphScan vs. GraphScan

In this section, we compare our fast heuristic, Additive

GraphScan, to the slower, but exact, GraphScan algorithm.

First, we present a runtime analysis comparing the two

optimization algorithms. We used the much larger “network

2” provided in the Battle of the Water Sensor Networks [1]

and created connected subgraphs of various sizes from 50

to 500 nodes from the network. We then processed the

graphs with three different scans: Dynamic Subset Scan with

702

Figure 2. Runtime comparisons for the Dynamic Subset Scan with Graph-
Scan and Additive GraphScan as the optimization algorithm. Independent
Scan with Additive GraphScan is also shown.

GraphScan, Dynamic Subset Scan with Additive GraphScan,

and Independent with Additive GraphScan, and reported the

average runtime for each method. These results are shown

in Figure 2.

GraphScan begins to struggle with graph sizes of 250

nodes while Additive GraphScan quickly scans graphs of

500 nodes in approximately 4.1 seconds. Independent with

Additive GraphScan processed the entire 12,000+ node

“Network 2” in 221 seconds while Dynamic with Addi-

tive GraphScan required 1830 seconds (approximately a

half hour). This difference represents the additional calls

to Additive GraphScan required by Dynamic Subset Scan

to “align” the individual spatial subsets according to the

temporal consistency constraints.

We conclude our comparison of Additive GraphScan and

GraphScan by analyzing the scores of the spatial-temporal

subsets identified by the scanning methods using both Ad-

ditive GraphScan and GraphScan. Our approximation ratio

results compare the highest-scoring subsets found by Ad-

ditive GraphScan and GraphScan as a percentage averaged

over 2000 simulations. The ratio of Additive GraphScan’s

to GraphScan’s score did not fall below 99.1%, indicating

that Additive GraphScan is providing a huge speed increase

with minimal loss of accuracy compared to scan statistics

using GraphScan.

B. Detecting, Tracking, and Source-Tracing Plumes

In this section, we evaluate the detection, tracking, and

source-tracing abilities of the Dynamic Subset Scan. The

129-node “Network 1” from the Battle of the Water Sensor

Networks [1] served as the test bed for these evaluations.

We ran two simulations, one with sensors at FPR = 0.1 and

TPR = 0.9 and a second with weaker sensors at FPR =

0.2 and TPR = 0.8. All results below are averaged over 200

contaminant plumes simulated for 12 hours each. A separate

Table I
SUMMARY OF LEARNED PARAMETER VALUES

method FPR TPR β0 β1 β2

Dynamic 0.1 0.9 -1.3 6.6 1.8

Dynamic 0.2 0.8 -1.3 3.6 2.0

Dynamic Alt. 0.1 0.9 -1.1 8.2 0

Dynamic Alt. 0.2 0.8 -1.2 2.4 0

100-plume training set was used for cross-validation for the

scan statistics that required learning parameters.

We compare 4 different spatial-temporal scan statistics:

• Static scan does not allow the detected spatial region

to change over time.

• Independent scan allows the detected spatial region to

change over time but does not share temporal informa-

tion between time steps.

• Dynamic scan allows the detected spatial region to

change over time and uses temporal consistency con-

straints to “align” the individual time steps.

• Dynamic Alt. scan is similar to Dynamic scan but does

not use any information from neighbors when enforcing

temporal consistency constraints, i.e., we force β2 = 0
when learning the model parameters.

For the temporal component of the scans, we set max
window size W = 12. This allows Static, Dynamic, and

Dynamic Alt. to detect a spatial-temporal subset between

1 and 12 hours in duration. However, for the Independent

scan, the highest scoring spatial-temporal region will always

be maximum duration. This consequence of the Independent

scan is discussed further below.

Each of these methods have graph connectivity constraints

enforced through Additive GraphScan. Simpler versions of

the scans without connectivity constraints were evaluated

and had much lower performance for detection, tracking,

and source-tracing. (Detailed results are omitted due to space

limitations.)

We set the β0 . . . β2 parameters for the Dynamic scan,

and the β0 and β1 parameters for Dynamic Alt., using a

grid search on the separate 100-plume training set. The

parameter values that maximized spatial-temporal overlap

in the training data are shown in Table I. It is interesting to

note the large changes in β1 when moving from the easier to

harder scenarios, while β0 and β2 remain relatively constant.

Figure 3 reports the average time required by each method

to detect a contaminant plume for various false positive rates.

These results were calculated by processing 2160 “back-

ground” hours (approximately 3 months of data) with no

contaminants. These were compared with scores produced

by the scan statistics during the 200 simulated plumes. The

0 false positive alarms interpretation is that it took 4.3 hours

703

Figure 3. Detection results for FPR = 0.1 and TPR = 0.9 sensors on the left and FPR = 0.2 and TPR = 0.8 sensors on the right. We present our
detection results through Activity Monitoring Operating Characteristic (AMOC) curves. These show the average time required for each method to detect
a contaminant in the system, assuming a fixed number of allowable false positives per month.

(on average) for the scores produced by Dynamic Scan to

exceed the largest score found by Dynamic Scan in the

2160 “background” hours. As the threshold for detection

is lowered, the number of false positive alarms increases

but the time to detect decreases, as shown by the Activity

Monitoring Operating Characteristic (AMOC) curves [4] in

Figure 3.

The Static, Dynamic, and Dynamic Alt. methods achieve

similar power for event detection in the easier scenario

(FPR = 0.1, TPR = 0.9). However, Dynamic achieves the

overall best performance (6.62 hours to detect at 0 false

positives) when detecting a weaker signal (FPR = 0.2, TPR

= 0.8). Note the influence that a node’s neighbors have on

distinguishing performance between Dynamic and Dynamic

Alt. in the 0.2/0.8 scenario. The easier scenario did not

require additional information from neighbors in order to

obtain similar performance, but this information is impor-

tant when working with weaker sensors. The Independent

method’s poor performance is due to the relatively high

subset scores found by Independent when no contaminant

is present. Its unconstrained flexibility allows it to overfit

to noise in the background, making detection of a true

contamination event more difficult.

Figure 5 reports the methods’ tracking ability over the

duration of a spreading contaminant plume (12 hours). We

measure a scan statistic’s tracking ability through spatial-
temporal overlap. Spatial-temporal overlap is a combination

of precision and recall applied to spatial-temporal subsets.

A measure of 1.0 corresponds to perfect agreement between

the affected and detected spatial-temporal regions, while 0.0

means the affected and detected regions are disjoint. For two

spatial-temporal subsets, Affected and Detected, the overlap

is defined as:
|Affected

⋂
Detected|

|Affected
⋃

Detected| . See Figure 4 for details.

The relative performance of the Static and Dynamic

methods in the easier scenario demonstrates Static’s lack

Figure 4. This figure demonstrates the calculation of spatial-temporal
overlap for plume tracking. A plume spreads through a simple 5-node line
graph over the course of four time steps. Affected nodes turn from white
to red as the contaminant spreads. The Static scan method is constrained to
keep the exact same detected spatial region throughout the event duration.
Hence, it may fail to capture the plume at later time steps. Dynamic Scan
allows the detected spatial region to change at each time step, tracking the
plume as it spreads. Due to connectivity constraints, both methods must
return a connected subgraph as the detected spatial region at each time
step. Spatial-temporal overlap is penalized for both false positives and false
negatives. A measure of 1.0 corresponds to perfect agreement between the
affected and detected spatial-temporal regions, while 0.0 means that the
affected and detected regions are disjoint.

of tracking ability as the plume grows over time. Static’s

tracking performance quickly levels off while Dynamic

continues to achieve higher spatial-temporal overlap over

the course of the contamination event. This increase in

performance is due to the (constrained) flexibility allowed

to the Dynamic Subset Scan. The difference in tracking

performance between Static and Dynamic methods is not

as large in the harder scenario, but we again observe

704

Figure 5. Tracking results for FPR = 0.1 and TPR = 0.9 sensors on the left and FPR = 0.2 and TPR = 0.8 sensors on the right. We measure tracking
ability by reporting the spatial-temporal overlap of the detected and affected subsets over the course of 12 hours.

the importance of incorporating information from a node’s

neighbors. The poor performance of the Independent scan,

particularly in the early stages of the contamination event,

is due to its tendency to report spatial-temporal regions of

maximum duration which are not a good match to the true

affected region.

Figure 6 reports the methods’ ability to identify where
the contaminant originated over the duration of the plume

(12 hours). This is measured through purely spatial overlap

between the earliest time step in the detected region and the

source node(s) of the plume. We note that it is possible for

a quickly spreading plume to affect multiple nodes within

the first hour. In such cases, we treat all of these nodes as

source nodes.

The source-tracing results clearly demonstrate the advan-

tage of sharing information between time steps during the

optimization process. Static’s ability to identify the source

nodes actually decreases over the course of the contam-

ination event as more information is gathered. Exploring

this result further, we observe that Static has very high

spatial recall (0.995) but very low precision (0.144) for

identifying the source nodes on hour 12. This suggests

that Static tends to return very large subsets at the later

stages of the plume. These regions may accurately reflect the

affected subset of nodes on the current time step: a follow-

up investigation, with detailed results omitted due to space

limitations, suggests that the relative performance of Static

and Dynamic as measured by spatial overlap coefficient on

the current time step is very similar. However, the large

regions returned by the Static method harm its ability to

accurately identify the source of the contaminant.

The key to the Dynamic Subset Scan’s success for source-

tracing is the backwards flow of temporal consistency infor-

mation allowed in our model. Dynamic is able to change the

detected subset for previous time steps based on new, more

current data. This gives it superior source-tracing abilities

in both the easier (0.1/0.9) and harder (0.2/0.8) scenarios.

For the harder scenario, we again observe the importance of

neighbor information: while the Dynamic method achieves

similar performance to Static during the early stages of the

contamination event and much better performance in the

later stages, the performance of Dynamic Alt. (which does

not use neighbor information) does not surpass Static until

the ninth hour. Finally, we note the substantial increase in

performance of the Independent method at hour 12, though

its overall performance is still low. This is an artifact of

Independent preferring to return 12-hour regions.

V. CONCLUSIONS

This work introduced the Dynamic Subset Scan for de-

tecting, tracking, and source-tracing dynamic patterns that

change the affected subset over time. This novel extension of

the well-known spatial and subset scan statistics is composed

of two main contributions. First is the incorporation of

temporal consistency constraints that may be enforced on

temporally adjacent, spatial subsets. These constraints are

a fruitful compromise between traditional spatial-temporal

scan statistics that do not allow the detected region to change

over time (Static) and the other extreme where temporal

information is ignored (Independent). The key insight to

enforcing temporal consistency constraints is recognizing

that the expectation-based binomial scoring function may be

written as an additive function over the data records. This

allows for additional terms (constraints) to be included in the

penalized log likelihood ratio while remaining efficient to

optimize. Critically, these temporal consistency constraints

were derived to allow temporal information to be shared

both forward and backward in time.

Our second novel contribution is the Additive Graph-

Scan algorithm, which allows the Dynamic Subset Scan

to enforce both soft temporal consistency constraints and
hard connectivity constraints while scaling to large, real

world networks. Additive GraphScan is a fast, heuristic

alternative to GraphScan. However, our results demonstrate

705

Figure 6. Source-tracing results for FPR = 0.1 and TPR = 0.9 sensors on the left and FPR = 0.2 and TPR = 0.8 sensors on the right. We measure
source-tracing ability by reporting the spatial overlap between the earliest detected spatial region and the original affected node(s).

an approximation ratio of over 99%, suggesting a very small

sacrifice for dramatic gains in speed and scalability.

The Dynamic Subset Scan was evaluated on data provided

through the “Battle of the Water Sensor Networks” [1].

Dynamic scan succeeded in detecting contamination events

sooner and tracking these events more accurately compared

to other competing methods. The gains were due to Dynamic

Scan’s constrained flexibility: competing methods either

failed to capture the dynamics of the spreading plume

(Static) or were susceptible to over-fitting from lack of

constraints (Independent). In scenarios with a weaker signal

to be detected, incorporating information from a node’s

neighbors in the Dynamic Scan proved worthwhile, lead-

ing to substantial gains in performance on the detection,

tracking, and source-tracing tasks.

In summary, relaxing constraints on spatial-temporal re-

gion shape must be done carefully. Strict temporal con-

straints work well when the affected subset of the data does

not change over time. However, removing them completely

in order to track dynamic patterns performs poorly as

shown by the Independent method results. Dynamic Subset

Scan with temporal consistency and connectivity constraints

provides a scalable solution for future work in dynamic

pattern detection in graph-based or sensor network data.

ACKNOWLEDGMENT

A special thanks to R. Ravi for providing insights on the

use of Steiner points. This work was partially supported by

NSF grants IIS-0916345, IIS-0911032, and IIS-0953330.

REFERENCES

[1] Avi Ostfeld et al. The battle of water sensor networks:
A design challenge for engineers and algorithms. Journal
of Water Resources Planning and Management, 134(6):556–
568, 2008.

[2] J. Berry, R. D. Carr, W. Hart, V. J. Leung, C. A. Phillips, and
J. P. Watson. Designing contamination warning systems for
municipal water networks using imperfect sensors. Journal
of Water Resources Planning and Management, 135(4):253–
263, 2009.

[3] J. Berry, L. Fleischer, W. Hart, and C. Phillips. Sensor
placement in municipal water networks. J. Water, 131:237–
243, 2003.

[4] T. Fawcett and F. Provost. Activity monitoring: noticing
interesting changes in behavior. In Proc. 5th Intl. Conf. on
Knowledge Discovery and Data Mining, pages 53–62, 1999.

[5] M. Gomez-Rodriguez, J. Leskovec, and A. Krause. Inferring
networks of diffusion and influence. In Proc. 16th ACM
SIGKDD Conf. on Knowledge Discovery and Data Mining,
pages 1019–1028, 2010.

[6] M. W. Koch and S. A. Mckenna. Distributed sensor fusion
in water quality event detection. Journal of Water Resources
Planning and Management, 137:10–19, 2011.

[7] A. Krause, J. Leskovec, C. Guestrin, J. VanBriesen, and
C. Faloutsos. Efficient sensor placement optimization for
securing large water distribution networks. Journal of Wa-
ter Resources Planning and Management, 134(6):516–526,
November 2008.

[8] M. Kulldorff. A spatial scan statistic. Communications in
Statistics: Theory and Methods, 26(6):1481–1496, 1997.

[9] S. Myers and J. Leskovec. On the convexity of latent
social network inference. In Advances in Neural Information
Processing Systems 23, pages 1741–1749. 2010.

[10] D. B. Neill. Expectation-based scan statistics for monitoring
spatial time series data. International Journal of Forecasting,
25:498–517, 2009.

[11] D. B. Neill. Fast subset scan for spatial pattern detection.
Journal of the Royal Statistical Society (Series B: Statistical
Methodology), 74(2):337–360, 2012.

[12] D. B. Neill, A. W. Moore, M. R. Sabhnani, and K. Daniel.
Detection of emerging space-time clusters. In Proc. 11th ACM
SIGKDD Conf. on Knowledge Discovery and Data Mining,
2005.

[13] S. Speakman and D. B. Neill. Fast graph scan for scalable de-
tection of arbitrary connected clusters. In Proc. International
Society for Disease Surveillance Annual Conf, 2010.

[14] R. Viswanathan and P. K. Varshney. Distributed detection
with multiple sensors: Part I Fundamentals. Proceedings of
the IEEE, pages 54–63, 1997.

706

