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Abstract—We present Generalized Fast Subset Sums (GFSS),
a new Bayesian framework for scalable and accurate detection
of irregularly shaped spatial clusters using multiple data
streams. GFSS extends the previously proposed Multivariate
Bayesian Scan Statistic (MBSS) and Fast Subset Sums (FSS)
approaches for detection of emerging events. The detection
power of MBSS is primarily limited by computational con-
siderations, which limit it to searching over circular spatial
regions. GFSS enables more accurate and timely detection
by defining a hierarchical prior over all subsets of the 𝑁
locations, first selecting a local neighborhood consisting of a
center location and its neighbors, and introducing a sparsity
parameter 𝑝 to describe how likely each location in the
neighborhood is to be affected. This approach allows us to
consider all possible subsets of locations (including irregularly-
shaped regions) but also puts higher weight on more compact
regions. We demonstrate that MBSS and FSS are both special
cases of this general framework (assuming 𝑝 = 1 and 𝑝 = 0.5
respectively), but substantially higher detection power can be
achieved by choosing an appropriate value of 𝑝. Thus we
show that the distribution of the sparsity parameter 𝑝 can be
accurately learned from a small number of labeled events. Our
evaluation results (on synthetic disease outbreaks injected into
real-world hospital data) show that the GFSS method with
learned sparsity parameter has higher detection power and
spatial accuracy than MBSS and FSS, particularly when the
affected region is irregular or elongated. We also show that
the learned models can be used for event characterization,
accurately distinguishing between two otherwise identical event
types based on the sparsity of the affected spatial region.
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I. INTRODUCTION

Event detection from multiple data streams is a ubiquitous
problem with applications to public health (early detection
of disease outbreaks), law enforcement (detecting emerging
hot-spots of crime), and many other domains. In the event
detection problem, we are given multivariate spatial time
series data monitored at a set of spatial locations, with the
essential goals of a) timely detection of emerging events
(while maintaining a low false positive rate), b) correctly
pinpointing the affected spatial areas, and c) accurately char-
acterizing the event (e.g. distinguishing between multiple
event types). Many previous event detection methods have
been proposed based on the spatial scan statistic [4]: these
methods search over a large number of spatial regions,
identifying potential clusters which maximize a likelihood

ratio statistic, and testing for statistical significance. While
Kulldorff’s original approach [4] searched over circular
clusters for a single data stream, recent extensions of spatial
scan can detect irregularly shaped clusters ([10], [3]) and
integrate information from multiple streams [5].

Neill and Cooper [8] proposed the Multivariate Bayesian
Scan Statistic (MBSS), and demonstrated several advan-
tages of the Bayesian approach over frequentist spatial scan
methods: MBSS is computationally efficient, can accurately
differentiate between multiple event types, and its results
(the posterior probability distribution of each event type)
can be easily visualized and used for decision-making.
However, MBSS is limited by computational considerations
which only allow circular spatial regions to be searched.
The recently proposed Fast Subset Sums (FSS) method [7]
is an extension of MBSS which introduces a hierarchical
prior distribution over regions, assigning non-zero prior
probability to each of the 2𝑁 subsets of locations. FSS
can compute the total posterior probability of an event and
its spatial distribution by efficiently computing the sum of
the exponentially many region posterior probabilities, thus
enabling detection of irregularly-shaped clusters.

Here we propose a Generalized Fast Subset Sums (GFSS)
framework which improves the timeliness and accuracy of
event detection, especially for irregularly shaped clusters.
A new parameter 𝑝, representing the sparsity of the affected
region, is introduced into the framework. This parameter can
be viewed as the expected proportion of locations affected
in the local neighborhood consisting of a center location and
its nearest neighbors. Two specific values of 𝑝, 𝑝 = 1 and
𝑝 = 0.5, reduce to the previously proposed MBSS and FSS
methods respectively, but detection performance can often be
improved by considering a range of possible 𝑝 values from
0 to 1. We show that the distribution of the 𝑝 parameter
can be accurately learned from labeled training data, and
that the resulting learned distribution can be incorporated
into the GFSS detection framework, resulting in substantially
improved detection power and spatial accuracy.

A. Multivariate Bayesian Scan Statistics

The MBSS methodology aims at detecting emerging
events (such as disease outbreaks), identifying the type
of event and pinpointing the affected locations. MBSS
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compares a set of alternative hypotheses 𝐻1(𝑆,𝐸) with
the null hypothesis 𝐻0, where each hypothesis 𝐻1(𝑆,𝐸)
represents the occurrence of some event type 𝐸 in some
subset of locations 𝑆, and the null hypothesis 𝐻0 assumes
that no events have occurred. These hypotheses are mutually
exclusive. Therefore, according to Bayes’ Theorem, the
posterior probability of each hypothesis can be expressed
as:

Pr(𝐻1(𝑆,𝐸) ∣𝐷) =
Pr(𝐷 ∣𝐻1(𝑆,𝐸)) Pr(𝐻1(𝑆,𝐸))

Pr(𝐷)

𝑃𝑟(𝐻0 ∣𝐷) =
Pr(𝐷 ∣𝐻0) Pr(𝐻0)

Pr(𝐷)

In this expression, 𝐷 is the observed dataset, and its to-
tal probability Pr(𝐷) is equal to Pr(𝐷 ∣ 𝐻0) Pr(𝐻0) +∑

𝑆,𝐸 Pr(𝐷 ∣𝐻1(𝑆,𝐸)) Pr(𝐻1(𝑆,𝐸)). MBSS assumes that
the prior Pr(𝐻1(𝑆,𝐸)) is uniformly distributed over all
event types and all possible circular spatial regions 𝑆. Only
circular regions are considered because this simplification
reduces the computation time from exponential to quadratic
in 𝑁 ; however, this assumption reduces the power of MBSS
to detect non-circular clusters, especially if the affected
region is highly elongated or irregular.

The dataset 𝐷 in the MBSS framework consists of multi-
ple data streams 𝐷𝑚, for 𝑚 = 1 . . .𝑀 , and each stream
contains spatial time series data collected from a set of
locations 𝑠𝑖, for 𝑖 = 1 . . . 𝑁 . For each location 𝑠𝑖 and data
stream 𝐷𝑚, we have a time series of observed counts 𝑐𝑡𝑖,𝑚
and the corresponding expected counts (or baselines) 𝑏𝑡𝑖,𝑚,
where the baselines are estimated from time series analysis
of the historical data for the given location and data stream.
The subscript 𝑡 = 0 represents the current time step, and
𝑡 = 1 . . . 𝑇 represent from 1 to 𝑇 time steps ago respectively.
For instance, a given count 𝑐𝑡𝑖,𝑚 may represent the total
number of Emergency Department visits for fever symptoms
for a given zip code on a given day, and the corresponding
baseline 𝑏𝑡𝑖,𝑚 would represent the expected number of fever
cases for that zip code on that day ([8], [7]).

Besides the prior Pr(𝐻1(𝑆,𝐸)), another important quan-
tity to consider is the likelihood function Pr(𝐷 ∣𝐻1(𝑆,𝐸)),
as shown in Figure 1. MBSS assumes that the observed
count 𝑐𝑡𝑖,𝑚 is modeled using the Poisson distribution: 𝑐𝑡𝑖,𝑚 ∼
Poisson(𝑞𝑡𝑖,𝑚𝑏

𝑡
𝑖,𝑚), where 𝑞𝑡𝑖,𝑚 is the relative risk, or ex-

pected ratio of count to baseline. Further, the relative risk
is modeled as 𝑞𝑡𝑖,𝑚 ∼ Gamma(𝛼𝑚, 𝛽𝑚) under the null
hypothesis, and as 𝑞𝑡𝑖,𝑚 ∼ Gamma(𝑥𝑡𝑖,𝑚𝛼𝑚, 𝛽𝑚) under the
alternative hypothesis, where 𝛼𝑚 and 𝛽𝑚 are parameter
priors calculated from historical data, and 𝑥𝑡𝑖,𝑚 is the impact
of the event for the given data stream 𝐷𝑚, location 𝑠𝑖, and
time step 𝑡. The distribution of 𝑥𝑡𝑖,𝑚 is conditioned on the
affected region 𝑆, the event type 𝐸, the temporal window
𝑊 , and the severity parameter 𝜃, which is assumed to be
drawn from a discrete uniform distribution Θ. The temporal

Figure 1. The structure of the Multivariate Bayesian Scan Statistic
framework, from Neill and Cooper [8]. GFSS replaces the edge from 𝐸 to
𝑆 with the structure shown in Figure 2.

window 𝑊 is drawn uniformly at random between 1 and
𝑊𝑚𝑎𝑥, the maximum temporal window size.

The total likelihood of the data given the alternative hy-
pothesis 𝐻1(𝑆,𝐸) can be expressed as: Pr(𝐷 ∣𝐻1(𝑆,𝐸)) =

1
𝑊𝑚𝑎𝑥∣Θ∣

∑
𝜃∈Θ

∑
𝑊∈1...𝑊𝑚𝑎𝑥

Pr(𝐷 ∣𝐻1(𝑆,𝐸), 𝜃,𝑊 ). The
event type 𝐸 and event severity 𝜃 define the effect 𝑥𝑚
on each data stream 𝐷𝑚. Conditioned on 𝑊 , 𝜃, and 𝐸,
the likelihood ratio for each location 𝑠𝑖 can be computed

as 𝐿𝑅𝑖 =
∏

𝑚=1...𝑀

∏
𝑡=0...𝑊−1

Pr(𝑐𝑡𝑖,𝑚 ∣ 𝑏𝑡𝑖,𝑚,𝑥𝑚𝛼𝑚,𝛽𝑚)

Pr(𝑐𝑡
𝑖,𝑚

∣ 𝑏𝑡
𝑖,𝑚

,𝛼𝑚,𝛽𝑚)
,

as described in [8]. The likelihood ratio for each spatial
region 𝑆, again conditioned on 𝑊 , 𝜃, and 𝐸, is obtained
by multiplying the likelihood ratios of all locations 𝑠𝑖 ∈ 𝑆.
We then marginalize over these parameters to obtain the
total likelihood of region 𝑆, and combine the prior with
the likelihood using Bayes’ Theorem to obtain the posterior
probability of each event type 𝐸 in each region 𝑆.

II. GENERALIZED FAST SUBSET SUMS

As discussed in the previous section, the MBSS method
is primarily restricted by its exhaustive computation over
spatial regions 𝑆, which limits the search space to a small
fraction of the 2𝑁 possible subsets of locations. More pre-
cisely, all non-circular regions are assumed to have zero prior
probability, thus reducing the method’s computation time but
also its detection power for irregular clusters. However, two
important insights allow us to circumvent this limitation:
first, the total posterior probability of an event type 𝐸 is the
sum of the region probabilities Pr(𝐻1(𝑆,𝐸) ∣ 𝐷) over all
spatial regions 𝑆, and second, the posterior probability that
each spatial location 𝑠𝑖 has been affected by event type 𝐸 is
the sum of the probabilities Pr(𝐻1(𝑆,𝐸)∣𝐷) over all spatial
regions 𝑆 which contain 𝑠𝑖. Thus we can efficiently search
over all subsets 𝑆, including irregularly shaped regions, by
defining a prior distribution Pr(𝐻1(𝑆,𝐸)) which allows
these sums to be efficiently computed without computing
each of the individual region probabilities.

For each event type 𝐸, we define a non-uniform, hierar-
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Figure 2. The structure of the Generalized Fast Subset Sums framework.

chical prior distribution over regions Pr(𝐻1(𝑆,𝐸) ∣𝐸) such
that all 2𝑁 subsets have non-zero prior probability, but more
compact regions have a larger prior. Our hierarchical prior
consists of four steps:

1) Choose the center location 𝑠𝑐 from {𝑠1 . . . 𝑠𝑁}, given
a multinomial distribution Pr(𝑠𝑐 ∣ 𝐸).

2) Choose the neighborhood size 𝑘 from {1 . . .𝐾}, given
a multinomial distribution Pr(𝑘 ∣ 𝐸).

3) Define the local neighborhood 𝑆𝑐𝑘 to consist of 𝑠𝑐 and
its 𝑘 − 1 nearest neighbors, based on the Euclidean
distance between the zip code centroids.

4) For each spatial location 𝑠𝑖 ∈ 𝑆𝑐𝑘, include 𝑠𝑖 in 𝑆
with probability 𝑝, for a fixed constant 0 < 𝑝 ≤ 1.

The additional structure of GFSS is shown in Figure 2,
replacing the direct edge between the event type 𝐸 and
affected region 𝑆 in Figure 1. Here we assume uniform
distributions over the center 𝑠𝑐 and neighborhood size 𝑘,
but future work will learn these distributions from data. For
a given local neighborhood 𝑆𝑐𝑘, we independently choose
whether to include or exclude each location 𝑠𝑖 ∈ 𝑆𝑐𝑘 in the
affected region 𝑆. Each location is included with probability
𝑝 or excluded with probability 1− 𝑝, where 𝑝 is a constant
(0 < 𝑝 ≤ 1) which we term the sparsity parameter.
We note that the assumption of conditional independence
of locations, given the neighborhood 𝑆𝑐𝑘, is necessary
for efficient computation, as discussed below. Dependence
between nearby locations is introduced by the neighborhood
structure, since locations which are closer together are more
frequently either both included or both excluded in a given
local neighborhood.

The sparsity parameter 𝑝 can also be viewed as the
expected proportion of locations affected within a given (cir-
cular) local neighborhood. Hence, the previously proposed
MBSS method (searching over circular regions) corresponds
to the special case of 𝑝 = 1. Additionally, the previously
proposed FSS method assumes a similar hierarchical prior
but without including the sparsity parameter 𝑝. Instead, FSS
assumes that the affected subset of locations 𝑆 is drawn
uniformly at random from the neighborhood 𝑆𝑐𝑘, i.e. all
2𝑘 subsets of 𝑆𝑐𝑘 are equally likely. This is equivalent

to independently including each location with probability
0.5, and hence FSS is also a special case of GFSS with
𝑝 = 0.5. We demonstrate below that the additional flexibility
provided by including the sparsity parameter in our GFSS
framework can substantially improve the timeliness and
accuracy of event detection: higher values of 𝑝 result in
improved detection of compact clusters, while lower values
of 𝑝 enhance detection of elongated or irregular clusters.

This hierarchical prior, and particularly the assumption
that each location is drawn independently given the neigh-
borhood, enables us to calculate the posterior probabilities
much more efficiently. For a given center location 𝑠𝑐 and
neighborhood size 𝑘, and conditioning on the event type 𝐸,
event severity 𝜃, and temporal window 𝑊 , we can compute
the total posterior probability of the 2𝑘 spatial regions
𝑆 ⊆ 𝑆𝑐𝑘 in 𝑂(𝑘) time. Since we consider 𝑂(𝑁) center
locations and 𝑂(𝐾) neighborhood sizes, this enables us to
compute the total posterior probability in time 𝑂(𝑁𝐾2).

To do so, we first compute the average likeli-
hood ratio over all 2𝑘 subsets of 𝑆𝑐𝑘. We know
that

∑
𝑆⊆𝑆𝑐𝑘

Pr(𝑆 ∣ 𝐷) ∝ ∑
𝑆⊆𝑆𝑐𝑘

Pr(𝑆)
∏

𝑠𝑖∈𝑆 𝐿𝑅𝑖,
where Pr(𝑆) = 𝑝∣𝑆∣(1 − 𝑝)(𝑘−∣𝑆∣) is the prior prob-
ability of region 𝑆 and 𝐿𝑅𝑖 is the likelihood ratio
of location 𝑠𝑖. Then

∑
𝑆⊆𝑆𝑐𝑘

Pr(𝑆)
∏

𝑠𝑖∈𝑆 𝐿𝑅𝑖 = (1 −
𝑝)𝑘

∑
𝑆⊆𝑆𝑐𝑘

∏
𝑠𝑖∈𝑆

(
𝑝

1−𝑝

)
𝐿𝑅𝑖. Since we are summing

over all 2𝑘 subsets of 𝑆𝑐𝑘, we can write the sum of 2𝑘 prod-
ucts as a product of 𝑘 sums:

∑
𝑆⊆𝑆𝑐𝑘

∏
𝑠𝑖∈𝑆

(
𝑝

1−𝑝

)
𝐿𝑅𝑖 =

∏
𝑠𝑖∈𝑆𝑐𝑘

(
1 +

(
𝑝

1−𝑝

)
𝐿𝑅𝑖

)
. Multiplying by (1 − 𝑝)𝑘, we

obtain the expression for the average likelihood ratio,∏
𝑠𝑖∈𝑆𝑐𝑘

((1− 𝑝) + 𝑝× 𝐿𝑅𝑖). Thus the posterior probabil-
ity of event 𝐸, conditioned on the temporal window 𝑊 ,
event severity 𝜃, center location 𝑠𝑐, and neighborhood size
𝑘, is proportional to the product of the smoothed likelihood
ratios 𝐿𝑅′𝑖 = (1− 𝑝) + 𝑝× 𝐿𝑅𝑖 for all locations 𝑠𝑖 ∈ 𝑆𝑐𝑘.
We can then compute the total posterior probability of event
𝐸 by marginalizing over all 𝑊 , 𝜃, 𝑠𝑐, and 𝑘.

The posterior probability that event 𝐸 affects each loca-
tion 𝑠𝑗 can be computed using a procedure very similar to
the above, but in this case we only consider the neighbor-
hoods 𝑆𝑐𝑘 that contain 𝑠𝑗 , and sum over the 2𝑘−1 subsets
𝑆 ⊆ 𝑆𝑐𝑘 with 𝑠𝑗 ∈ 𝑆. Conditioning on the temporal window
𝑊 , event severity 𝜃, center location 𝑠𝑐, and neighborhood
size 𝑘, we write the sum of 2𝑘−1 products as the product
of 𝑘 − 1 sums, obtaining an average likelihood ratio of
(𝑝𝐿𝑅𝑗)

∏
𝑠𝑖∈𝑆𝑐𝑘−{𝑠𝑗} ((1− 𝑝) + 𝑝× 𝐿𝑅𝑖). Again, we can

compute the total posterior probability of event 𝐸 in spatial
regions containing 𝑠𝑗 by marginalizing over all 𝑊 , 𝜃, 𝑠𝑐,
and 𝑘 such that 𝑠𝑗 is contained in 𝑆𝑐𝑘.

A. Learning the Sparsity Parameter

Our detection results, shown below, demonstrate that op-
timizing the sparsity parameter 𝑝 can substantially improve
detection power. However, since the value of 𝑝 must be
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supplied as a parameter to the GFSS detection framework,
we must consider how an appropriate value can be chosen.
Here we propose to learn the distribution of the sparsity
parameter from labeled data to improve the timeliness and
accuracy of event detection. The assumption of labeled data
means that we are given the affected subset of locations
𝑆 for each training example; however, we are not given
the values of the three latent variables (center location
𝑠𝑐, neighborhood size 𝑘, and sparsity 𝑝). Let 𝑆1 . . . 𝑆𝐽

represent a set of 𝐽 labeled training examples. For each
training example 𝑆𝑗 , we can calculate the likelihood of the
affected region given the sparsity parameter 𝑝 by marginal-
izing over the center location 𝑠𝑐 and neighborhood size
𝑘: Pr(𝑆𝑗 ∣ 𝑝) =

∑
𝑠𝑐

∑
𝑘 Pr(𝑆𝑗 ∣ 𝑝, 𝑠𝑐, 𝑘) Pr(𝑠𝑐) Pr(𝑘).

Then the conditional likelihood Pr(𝑆𝑗 ∣ 𝑝, 𝑠𝑐, 𝑘) can be
further expressed as 𝑝∣𝑆𝑗 ∣(1 − 𝑝)𝑘−∣𝑆𝑗 ∣ if all of the loca-
tions in 𝑆𝑗 are contained in the local neighborhood 𝑆𝑐𝑘,
and Pr(𝑆𝑗 ∣ 𝑝, 𝑠𝑐, 𝑘) = 0 otherwise. Hence we can write

Pr(𝑆𝑗 ∣ 𝑝) =
(

𝑝
1−𝑝

)∣𝑆𝑗 ∣∑
𝑠𝑐
Pr(𝑠𝑐)

∑
𝑘=𝑘𝑐...𝐾

Pr(𝑘)(1 −
𝑝)𝑘, where 𝑘𝑐 is the smallest neighborhood size such that
𝑆𝑐𝑘 contains all locations in 𝑆𝑗 .

For simplicity, we assume a discrete distribution for 𝑝,
where each training example 𝑆𝑗 has sparsity parameter
𝑝𝑗 ∈ 𝑃 . In our experiments, we use ten components:
𝑃 = {0.1, 0.2, . . . , 1.0}. Assuming that each value 𝑝𝑗 is
drawn independently from a discrete distribution 𝜃, we
compute the posterior distribution of 𝜃 given 𝑆1 . . . 𝑆𝑗 ,
representing the probability that 𝑝 will take on each value in
𝑃 . Additionally, we assume a Dirichlet prior on 𝜃. Let 𝑥𝑘
denote the 𝑘th component of 𝑃 , and 𝜃𝑘 denote the posterior
probability that 𝑝 will take on value 𝑥𝑘. If the value of 𝑝𝑗
for each training example 𝑆𝑗 was observed, we could easily
obtain the resulting posterior distribution of 𝜃, by computing

𝜃𝑘 =
1

∣𝑃 ∣+
∑

𝑗=1...𝐽
1{𝑝𝑗=𝑥𝑘}

1+𝐽 for each 𝑥𝑘 ∈ 𝑃 . However,
since the value of 𝑝𝑗 for each training example 𝑆𝑗 is not
observed, we must first compute the posterior probabilities
Pr(𝑝𝑗 = 𝑥𝑘 ∣ 𝑆𝑗) =

Pr(𝑆𝑗 ∣ 𝑝=𝑥𝑘)∑
𝑥𝑘∈𝑃

Pr(𝑆𝑗 ∣ 𝑝=𝑥𝑘)
for each value

𝑥𝑘 ∈ 𝑃 and each training example 𝑆𝑗 . We then compute

𝜃𝑘 =
1

∣𝑃 ∣+
∑

𝑗=1...𝐽
Pr(𝑝𝑗=𝑥𝑘 ∣ 𝑆𝑗)

1+𝐽 for each 𝑥𝑘 ∈ 𝑃 .

B. Related Work

The present study proposes the Generalized Fast Subset
Sums (GFSS) framework, which generalizes the previously
proposed Multivariate Bayesian Scan Statistic [8] and Fast
Subset Sums [7] methods for multivariate Bayesian event
detection. The Bayesian spatial scan framework is a variant
of the traditional frequentist, hypothesis test-based spatial
scan methods [4]. Two recently proposed frequentist spatial
scan methods, Kulldorff’s multivariate scan [5] and the
nonparametric scan statistic [9], also allow integration of
multiple data streams for detection. However, unlike the
Bayesian spatial scan approaches, these methods cannot

differentiate between multiple event types. The recently
proposed “linear-time subset scanning” approach enables an
efficient search over the 2𝑁 subsets of locations while only
evaluating 𝑂(𝑁) subsets. However, the LTSS method simply
finds the most anomalous (highest scoring) subset, and
cannot be used to compute the total posterior probability of
an event or its posterior distribution in space and time, which
require summing over all subsets of locations. Previously,
learning approaches to improve detection power by using
non-uniform priors on each search region were explored in
([8], [6]). However, these methods are still constrained by the
computational limitations inherent in the MBSS framework,
preventing them from being used to learn priors over all
subsets of the data rather than just circular regions. Finally,
several other Bayesian event detection methods have been
proposed, such as WSARE [11] and PANDA ([1], [2]). Un-
like the present work, these purely temporal event detection
methods do not take spatial information into account.

III. EVALUATION

In this section, we evaluate the learning performance, as
well as compare the detection power and spatial accuracy
of the GFSS method with the MBSS and FSS approaches.
Our experiments focus on detection of simulated disease out-
breaks injected into real-world hospital Emergency Depart-
ment (ED) data. The original dataset contains de-identified
ED visit records collected from ten hospitals in Allegheny
County, Pennsylvania, from January 1, 2004 to December
31, 2005. The records have been classified into various data
streams according to the patient’s chief complaint: for this
study we focused on two data streams, patients with cough
symptoms and nausea symptoms respectively. For each data
stream, we have the count of ED visits of that type on each
day for each of the 97 Allegheny County zip codes.

For each of the experiments described below, simulated
outbreaks were generated by first choosing a set of affected
zip codes, then injecting a number of simulated disease cases
that grows linearly over the duration of the outbreak. Each
outbreak was assumed to be 10 days in duration. For each
affected zip code 𝑠𝑖 and data stream 𝐷𝑚, and for each day
of the outbreak 𝑡 = 1 . . . 10, 𝛿𝑡𝑖,𝑚 ∼ Poisson(𝑡 × 𝑤𝑖,𝑚)
additional cases are injected, incrementing the value of 𝑐𝑡𝑖,𝑚.
Here we assume that each zip code’s weight is proportional

to its total count for the entire dataset: 𝑤𝑖,𝑚 =

∑
𝑡
𝑐𝑡𝑖,𝑚∑

𝑖

∑
𝑡
𝑐𝑡
𝑖,𝑚

.

To evaluate detection power, we measured average time
to detection at a fixed false positive rate of 1/month. To
do so, for a given method and a given set of simulated
outbreaks, we first compute the total posterior probability of
an outbreak, Pr(𝐻1 ∣𝐷) =

∑
𝑆,𝐸 Pr(𝐻1(𝑆,𝐸)∣𝐷), for each

day of the original dataset with no outbreaks injected. Then
for each simulated outbreak, we compute Pr(𝐻1∣𝐷) for each
outbreak day. For a given false positive rate 𝑟, the detection
time 𝑑 for a given outbreak is computed as the first outbreak
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Figure 3. The average time to detection at 1 false positive/month for GFSS
variants with different values of the sparsity parameter 𝑝, for compact and
elongated outbreak regions.

Figure 4. The average spatial accuracy (overlap coefficient) for GFSS
variants with different values of the sparsity parameter 𝑝, for compact and
elongated outbreak regions.

day (𝑡 = 1 . . . 10) with posterior outbreak probability higher
than the 100(1− 𝑟) percentile of the posterior probabilities
for the original dataset. For a fixed false positive rate of
1/month, this corresponds to the 96.7th percentile. If no day
of the outbreak has probability higher than this threshold,
the method has failed to detect that outbreak, and we set
𝑑 = 10. To evaluate spatial accuracy, we computed the
average overlap coefficient between the true and detected
clusters at day 7 of the outbreak. Given the set of locations
𝑆∗ identified by the detection method (all 𝑠𝑖 with posterior
probabilities greater than half the total posterior probability
of an outbreak) and the true set of affected locations 𝑆𝑡𝑟𝑢𝑒,
the overlap coefficient is defined as ∣𝑆∗∩𝑆𝑡𝑟𝑢𝑒∣

∣𝑆∗∪𝑆𝑡𝑟𝑢𝑒∣ .

A. Preliminary Results

We first performed a simple evaluation of ten variants
of the GFSS method with fixed values of the sparsity
parameter 𝑝 = 0.1, 0.2, . . . , 1.0. As noted above, 𝑝 = 0.5
and 𝑝 = 1.0 correspond to the previously proposed FSS
and MBSS methods respectively. We compared the detection
power and spatial accuracy of these ten methods for two
different outbreak types, one affecting a compact spatial
region and one affecting an elongated region. As can be
seen from Figures 3 and 4, substantial differences in the
timeliness and accuracy of detection were observed with
varying 𝑝: in particular, higher values of 𝑝 tended to result in
improved detection performance for more compact clusters,
and lower values of 𝑝 enhanced detection performance for

more elongated clusters. For compact clusters, GFSS with
𝑝 = 0.5 achieved the most timely detection, while 𝑝 = 0.7
had slightly higher spatial accuracy. For elongated clusters,
however, GFSS with 𝑝 = 0.2 improved the timeliness of
detection by nearly one day, and had a 10% higher overlap
coefficient, than 𝑝 = 0.5. These preliminary results demon-
strate the importance of choosing an appropriate value for
𝑝; the experiments below demonstrate that the distribution
of 𝑝 can be learned accurately from labeled training data.

B. Outbreak Simulations for Learning Results

We now evaluate the detection performance of the learned
GFSS model, as compared to the previously proposed MBSS
and FSS methods, and also as compared to the GFSS
approach assuming a uniform prior distribution of 𝑝. For
these experiments, simulated outbreaks were generated using
the same hierarchical generative model as assumed in the
GFSS framework: given a value of the sparsity parameter
𝑝, the set of zip codes was selected by first choosing the
center location and neighborhood size uniformly at random,
and then independently choosing whether to include (with
probability 𝑝) or exclude (with probability 1− 𝑝) each loca-
tion in that local neighborhood. We considered six different
outbreak types: outbreaks generated using five different
values of the sparsity parameter 𝑝 (𝑝 = 0.2, 0.4, . . . , 1.0),
and a sixth outbreak type which consisted of an equal
mixture of 𝑝 = 0.2 and 𝑝 = 0.8. For each combination of the
value of sparsity parameter 𝑝 and data stream, 100 outbreaks
were injected to form a set of training data and another 100
outbreaks for forming the testing data. For each of the two
data streams, this gives us a total of six datasets for training
and another six corresponding datasets for testing, with each
pair of datasets assuming a different value or mixture of the
sparsity parameter 𝑝.

C. Learning Performance

In the present study, we assume that the value of 𝑝 is
drawn from a discrete distribution with ten components from
0.1 to 1.0, and thus we wish to learn the probability of
each of the ten possible values of 𝑝 from the training data
(100 simulated injects for a given outbreak type). For each
of the 12 training datasets (six for each data stream), the
posterior distribution of the sparsity parameter 𝑝 was learned
and shown in Figures 5 and 6. For each of the first five
experiments (𝑝 = 0.2, 0.4, . . . , 1.0), we observe that the
learned distribution of 𝑝 correctly peaks at the true value of
𝑝 for that set of simulated injects, for both cough and nausea
cases. For the last two experiments, with half of the training
examples assuming 𝑝 = 0.2 and half assuming 𝑝 = 0.8, we
observe that the learned distribution is again able to recover
the true bimodal distribution of 𝑝.

D. Detection Power and Spatial Accuracy Results

In this section, we compare the detection power and
spatial accuracy of four different methods: (1) the previ-
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Figure 5. True value and learned distribution of sparsity parameter p,
for six different simulated outbreak types injected into cough data from
Allegheny County, PA.

Figure 6. True value and learned distribution of sparsity parameter p,
for six different simulated outbreak types injected into nausea data from
Allegheny County, PA.

ously proposed MBSS method (special case of GFSS with
𝑝 = 1.0), (2) the previously proposed FSS method (special
case of GFSS with 𝑝 = 0.5), (3) GFSS assuming a uniform
distribution of sparsity parameter 𝑝 (each value of 𝑝 from
𝑝 = 0.1 to 𝑝 = 1.0 has an equal probability of 0.1), and
(4) GFSS with a distribution of 𝑝 learned from 100 labeled
training examples.

The comparison of detection times for each of the two
data streams, for simulated injects with 𝑝 = 0.2, 0.4, . . . , 1.0,
is shown in Figure 7. The average detection time of each
method, assuming a fixed false positive rate of 1 fp/month,
is displayed on the graphs. When the value of 𝑝 is small,
corresponding to an elongated or irregular outbreak region,
GFSS with learned 𝑝 is able to detect the outbreaks sub-
stantially earlier than the other methods. The FSS method
(equivalent to putting of all of the probability mass at
𝑝 = 0.5) performs well for values of 𝑝 near 0.5, and the
MBSS method (equivalent to putting all of the probability
mass at 𝑝 = 1.0) performs well for values of 𝑝 near 1.0, as
expected, but both methods lose detection power when the
assumed value of 𝑝 is incorrect.

Next we evaluated the spatial accuracy of each method
by computing the average overlap coefficient between the

Figure 7. The detection time of four competing methods, for five
different simulated outbreak types injected into cough and nausea data from
Allegheny County, PA.

Figure 8. The spatial accuracy (overlap coefficient) of four competing
methods, for five different simulated outbreak types injected into cough
and nausea data from Allegheny County, PA.

true and detected clusters at day 7 of the outbreak. The
comparison of overlap coefficients for each of the two data
streams, for simulated injects with 𝑝 = 0.2, 0.4, . . . , 1.0, is
shown in Figure 8. From these results, it can be observed that
the learned GFSS method achieves similar spatial accuracy
to the best of the other three methods for each value of 𝑝,
and achieves significantly higher spatial accuracy when the
outbreak region is elongated or irregular (i.e. for low values
of the sparsity parameter 𝑝).

E. Detection Ability for Mixture Outbreak Type

In this section, we examine the detection time and spatial
accuracy of these different methods for the mixed outbreak
type (half of outbreaks generated with 𝑝 = 0.2 and half of
outbreaks generated with 𝑝 = 0.8). We first consider a single
distribution of 𝑝 learned from the mixed outbreak type, as
compared to MBSS, FSS, and GFSS with a uniform distri-
bution of 𝑝. The last graphs of Figures 5 and 6 demonstrate
that the single model can accurately capture the bimodal
distribution of 𝑝. The results of detection time and spatial
accuracy for the mixed outbreaks by using four different
methods are listed in Table 1. The best results and those
not significantly different from the best results are shown in
bold. The GFSS with learned 𝑝 slightly outperforms FSS and
GFSS with uniform 𝑝 for detecting mixture outbreaks, with
all three methods outperforming MBSS by a large margin.

Next we assumed that the two values of 𝑝 in the mixed
outbreak type corresponded to two different outbreaks, and
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Table I
COMPARISON OF DETECTION TIME AND SPATIAL ACCURACY FOR THE

MIXED OUTBREAK TYPE

Data Evaluation MBSS FSS GFSS- GFSS-
uniform p learned p

Cough Days to detect 6.16 5.36 5.51 5.51
(1 fp/month)

Cough Spatial overlap 0.478 0.586 0.641 0.641
coefficient

Nausea Days to detect 4.00 3.67 3.59 3.61
(1 fp/month)

Nausea Spatial overlap 0.517 0.623 0.688 0.694
coefficient

Figure 9. True value and learned distribution of the sparsity parameter
𝑝 for the mixed outbreak type (equal mixture of 𝑝 = 0.2 and 𝑝 = 0.8)
assuming two different outbreak models

evaluated the ability of the GFSS framework to distinguish
between these two outbreak types. Figure 9 is the result of
learning the mixed type of outbreaks by using two GFSS
models. We note that each model can capture each outbreak
type quite well for both data streams. Additionally, using
two models to learn the mixed outbreak type can also
help us improve the ability to discriminate between the
two different outbreak types. Figure 10 shows the average
posterior conditional probability of the correct outbreak
type, Pr(𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑡𝑦𝑝𝑒 ∣𝐷𝑎𝑡𝑎)/(Pr(𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑡𝑦𝑝𝑒 ∣𝐷𝑎𝑡𝑎) +
Pr(𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑡𝑦𝑝𝑒 ∣ 𝐷𝑎𝑡𝑎)), as a function of the outbreak
day. As we can see, near the start of the outbreak, the
posterior probability of an outbreak is divided nearly 50/50
between the correct and incorrect outbreak type, but by the
end of the outbreak, posterior conditional probability of the
correct outbreak type has risen to 76% for a cough outbreak
or 79% for a nausea outbreak.

Finally, we note that, in addition to learning the dis-
tribution of the sparsity parameter, we can also learn the
distribution of each outbreak type’s relative effects on the
two data streams from the same labeled training data, as
in [8]. We considered two outbreak types which had both
different values of 𝑝 for the injected outbreaks (𝑝 = 0.2
and 𝑝 = 0.8, as above) and also different relative effects on
the two data streams: one outbreak type affected the cough
stream twice as much as the nausea stream, and one type
affected nausea twice as much as cough. As can be seen from
Figure 11, either learning the sparsity parameter 𝑝 or learn-
ing the relative effects of the outbreak on the two labeled

Figure 10. Posterior probability of the correct outbreak type as a function
of day of outbreak, for cough and nausea data.

Figure 11. Posterior probability of the correct outbreak type as a function
of day of outbreak, assuming two outbreak models and monitoring two data
streams.

data streams enabled accurate differentiation of the two out-
break types, with average posterior conditional probability of
the correct outbreak type increasing to approximately 85%
over the course of the outbreak. However, simultaneously
learning both the sparsity and the effects enabled even higher
accuracy, with average posterior probability of the correct
outbreak type increasing to approximately 95%.

F. Robustness of the Learned GFSS Model

We performed three sets of follow-up experiments to
evaluate the robustness of the learned Generalized Fast
Subset Sums model to variation in a) the number of training
examples, b) the number of discrete components used to
learn the distribution of the sparsity parameter 𝑝, and c) the
method used to generate simulated disease outbreaks.

First, while the experiments above assumed 100 training
examples, we also evaluated the effects of using a smaller
or larger training dataset, re-running the experiments using
25, 50, and 200 outbreaks as training data. The learned
distribution of the sparsity parameter 𝑝 in each case was very
similar, and there were no significant differences in detection
performance. Hence we conclude that the distribution of 𝑝
can be learned accurately, and used to enhance the timeliness
and accuracy of event detection, even when learning from
only 25 labeled training examples.

Second, while the experiments above assumed that the
sparsity parameter 𝑝 for each training example was drawn
from a discrete distribution 𝑃 = {0.1, 0.2, . . . , 1.0} with
ten components, we also evaluated the effects of using a
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Figure 12. The average time to detection at 1 false positive/month, with
95% confidence intervals, of four competing methods, for simulated disease
outbreaks generated based on spatial spread.

Figure 13. The average spatial accuracy (overlap coefficient), with 95%
confidence intervals, of four competing methods, for simulated disease
outbreaks generated based on spatial spread.

larger number of components, using the 100-component
distribution 𝑃 = {0.01, 0.02, . . . , 1.0}. The learned distri-
bution again converged around the true value of 𝑝 for each
experiment. However, there were no significant differences
in detection power or spatial accuracy, and computation
time for the 100-component distribution was approximately
ten times as long as the 10-component distribution. These
results suggest that our original choice of ten components
was sufficient for learning the sparsity parameter 𝑝.

Third, while the experiments above assumed a correctly
specified generative model for the simulated injects (i.e. each
inject was generated using the hierarchical prior distribution
assumed by the GFSS model), we also tested the robust-
ness of GFSS to model misspecification, by evaluating the
performance of the learned GFSS model (as compared to
the uniform GFSS model, MBSS, and FSS) on a separate
set of 100 training and 100 test outbreaks which were
not generated using the GFSS model. Instead, these injects
assume a spatial model of disease spread: the outbreak starts
at a randomly selected zip code, and on each outbreak day
it affects that zip code and its 𝑘−1 nearest neighbors, based
on Euclidean distance between the affected zip codes. The
number of zip codes affected, and the expected number of
injected cases, both grow linearly over the course of the
outbreak, with zip codes near the center of the outbreak
receiving a proportionately greater number of cases.

The detection time and spatial accuracy results for this set

of experiments are shown in Figures 12 and 13 respectively.
We observe that performance of the GFSS method with
learned distribution of 𝑝 is not significantly different from
the best performing method in terms of detection time or
spatial accuracy, suggesting that a useful distribution for 𝑝
can still be learned even when the model is misspecified.

IV. CONCLUSIONS AND FUTURE WORK

The Generalized Fast Subset Sums (GFSS) framework is
an generalization of the previously proposed Multivariate
Bayesian Scan Statistic (MBSS) and Fast Subset Sums (FSS)
methods, and includes both MBSS and FSS as special
cases. A novel hierarchical prior over the 2𝑁 subsets of
the data is proposed, parameterized by the center location
𝑠𝑐, neighborhood size 𝑘, and sparsity 𝑝. The new sparsity
parameter 𝑝 in the GFSS framework describes the expected
proportion of locations affected within a given circular
neighborhood, and thus can be varied to emphasize detection
of more compact or more dispersed clusters. We demonstrate
that the posterior distribution of the sparsity parameter can
be learned accurately based on labeled training data, even
when the size of the training sample is small. With the
learned sparsity parameter, the GFSS method has higher
detection power and higher spatial accuracy than the pre-
viously proposed FSS and MBSS methods, especially for
elongated or irregular outbreaks. Additionally, learning two
different models for outbreak types which have different
sparsities (but are otherwise identical) allows us to precisely
distinguish between the two outbreak types. Finally, we
demonstrate that the GFSS method with learned distribution
of 𝑝 also performs very well even for outbreaks which are
not generated using the GFSS framework.

In future work, we will extend the GFSS framework by
also learning the distributions of the center location 𝑠𝑐 and
the neighborhood size 𝑘 from labeled training data. We will
also consider the case of partially labeled data, when only
a subset of the affected locations is identified. Finally, we
will examine the effects of allowing the probability that a
location is affected given the neighborhood to vary spatially
rather than assuming that 𝑝 is constant. For example, each
location 𝑠𝑖 could be affected with a probability 𝑝𝑖 that
decreases with its distance from the center location 𝑠𝑐. If
the value of 𝑝𝑖 is only dependent on the location 𝑠𝑖 and
local neighborhood 𝑆𝑐𝑘 under consideration, then efficient
computation of posterior probabilities is still possible in this
more general setting.
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