
Research and Educational Activities 

The four main research thrusts of this award are: 

1. Incorporation of incremental model learning into event detection, creating an integrated framework 

for learning and detection which allows continuous discovery and learning of new event models from 

user feedback, and enabling continual improvement in detection performance. 

2. New methodological contributions for fast subset scanning which allow event detection methods to 

scale up to large and high-dimensional data without sacrificing accuracy. 

3. End-to-end methods that augment the automatic detection of events by providing methodological 

tools for event characterization, explanation, visualization, investigation, and response. 

4. New methods which incorporate data from emerging, transformative technologies and address the 

fundamental scalability challenges. 

These research thrusts are integrated with a multi-pronged educational and curriculum development 

program, the Machine Learning and Policy (MLP) initiative, which focuses on incorporating machine 

learning into public policy research and education.  Our progress toward achieving the goals of each 

research thrust, as well as our educational activities and results, are discussed in detail below. 

Task 1: Incorporating Learning into Event Detection 

Our first research thrust focuses on improving the timeliness, accuracy, and utility of event detection 

through the incorporation of incremental model learning. Current state-of-the-art detection systems 

combine spatio-temporal information from multiple data streams to detect emerging events.  However, 

these methods rely on fixed, pre-specified models, and cannot improve performance over time. This 

creates a practical problem when they detect many patterns which are anomalous but irrelevant to the 

user, greatly diminishing the utility of the system. For example, even state-of-the-art disease 

surveillance systems produce a huge number of false positives due to non-outbreak causes, ranging 

from inclement weather to tourism to promotional sales. Worse yet, even if the user manages to find a 

relevant pattern (or wishes to rule out some irrelevant pattern type), he is unable to convey this 

knowledge to the system. These challenges suggest the need for detection methods which can discover 

new event types, and improve existing models, by learning from data or user interaction. Incorporation 

of learning into the event detection process will achieve three main benefits: more timely and accurate 

detection of events, ability to model and distinguish between different event types requiring different 

responses, and dramatically reducing false positives by learning the relevance of each event type and 

reporting only the most relevant detected patterns. 

The past three years’ work on Task 1 has primarily focused on three areas: incorporating learning into 

our Bayesian framework (“Fast Subset Sums”) for scalable event detection and visualization, learning an 

underlying graph structure from observations, and incorporating multiple known models into the Fast 

Generalized Subset Scan framework for anomalous pattern detection.  Our work on learning for Fast 

Subset Sums is described under Task 3b (scalable event detection and visualization) below, but can also 



be considered part of Task 1a (learning complex models).  As discussed below, in our Bayesian event 

detection framework, we can learn multiple event models which differ in their spatial extent, density or 

sparsity, and their relative effects on the different monitored data streams, and use these models to 

more accurately detect and characterize emerging events.  Second, we have investigated how the use of 

graph-based event detection methods (typically used to detect the most anomalous connected 

subgraph for a known graph structure) can also be used to learn the underlying graph structure.  This is 

discussed under Task 1a (learning complex models) below.  Finally, we have begun to consider cases 

where the user does not have sufficient time and resources to examine the entirety of the monitored 

data, but can respond to only a limited number of potential events identified by the system. In this case, 

the system must rapidly focus the user’s attention on the most relevant patterns, as well as modeling 

the different event types and the relevance of each event type to the user.  One key component is to 

detect anomalous patterns which do not fit any of the multiple known models, as discussed under Task 

1d (learning new event models) below.  These anomalies can then be presented to the user, and may be 

labeled as examples of a new event type which can then be modeled (e.g. learning a Bayesian network 

from the labeled data). 

Task 1a: Learning complex models 

We propose to learn more complex model specifications and incorporate these models into the 

detection process.  In addition to incorporating model learning into our Generalized Fast Subset Sums 

framework (described as part of Task 3b below), a second main focus has been learning the underlying 

graph structure for events that spread along a graph or network.  While graph-based event detection 

algorithms (such as our GraphScan approach described below) typically assume a known graph 

structure, we have developed a new, general framework for learning an unknown graph structure from 

data, and demonstrated that the graph learning framework enables more timely and more accurate 

event detection (Somanchi and Neill, 2013, submitted for publication). 

Processes such as disease propagation or information diffusion often spread over some latent network 

structure (e.g. social networks or person-to-person contacts) which must be learned from our 

observations of the nodes in the network.  For example, in disease surveillance, we might observe the 

time series of case counts for each of a set of spatial locations, but not know which locations are likely to 

spread disease to which other locations (via spatial adjacency, travel patterns, common food or water 

sources, etc.).  Thus we attempt to reconstruct the underlying network along which a disease outbreak 

or other event might spread, and use the learned network to improve the timeliness and accuracy of 

event detection.  However, in many cases labeled data may not be available: for example, public health 

officials might be aware that an outbreak has occurred, but may not have detailed information about 

which areas were affected and when. Hence we focus on learning graph structure from unlabeled data, 

given only a time series of observed counts (such as hospital visits or medication sales) at each node. 

Our solution is to compare the most anomalous subsets detected with and without the graph 

constraints: we score each of a set of potential graph structures G1…GM for each training example D1…DJ, 

finding the most anomalous (highest scoring) connected subset and its score using an efficient graph-

based event detection algorithm (our GraphScan algorithm, or the fast but approximate ULS approach) 



for each combination of graph structure and dataset.  These scores are normalized by dividing by the 

score of the most anomalous unconstrained subset for that training example, which can be efficiently 

computed using LTSS, and the normalized scores for a potential graph structure Gm are averaged over all 

of the J training examples. The idea is that, if the given graph structure is close to the true underlying 

graph structure, then the maximum constrained score will be close to the maximum unconstrained 

score for many of the training examples, while if the graph structure is missing essential connections, 

then the maximum constrained score given that graph structure will be much lower than the maximum 

unconstrained score for many examples.  However, any graph with a very large number of edges will 

also score very close to the maximum unconstrained score, and thus we compare the score of the given 

graph structure to the distribution of scores of random graphs with the same number of edges, and 

choose the graph structure with the most statistically significant score given this score distribution.   

Within our general framework for graph structure learning, we compared five approaches which 

differed both in the underlying detection method (BestSubgraph) and the method used to choose the 

next edge for removal (BestEdge), incorporated into a provably efficient greedy search procedure. We 

demonstrated both theoretically and empirically that our framework requires fewer calls to 

BestSubgraph than a naive greedy approach.  We also evaluated the scalability, detection power, and 

accuracy of these approaches on various types of simulated disease outbreaks, including outbreaks 

which spread according to spatial adjacency, adjacency plus simulated travel patterns, and random 

graphs (Erdos-Renyi and preferential attachment), as discussed in the “Results and Findings” section. 

This work was presented at the 2011 International Society for Disease Surveillance Annual Conference 

(abstract published in the Emerging Health Threats Journal) and the 2012 INFORMS Annual Conference.  

A related book chapter will be published in the Encyclopedia of Social Network Analysis and Mining 

(Springer, 2013, in press). The full paper is currently under revision for re-submission to a computational 

statistics journal.  We are currently working to scale up the approach to much larger graphs, e.g. for use 

in analysis of massive social networks.  Our ongoing work also focuses on extending the graph structure 

learning framework in several directions, including learning graph structures with directed rather than 

undirected edges, learning graphs with weighted edges, and learning dynamic graphs where the edge 

structure can change over time. 

Task 1d: Learning new event models 

In recent work, we have developed several “model-based” methods for detection of previously known 

and modeled patterns (the multivariate Bayesian scan statistic, fast subset sums, and generalized fast 

subset sums methods), as well as numerous “anomaly-based” methods for detection of previously 

unknown pattern types (e.g. the fast generalized subset scan and other fast subset scan methods).  One 

important goal of our ongoing work is to integrate detection of known and unknown patterns, reporting 

to the user both a) patterns corresponding to known and relevant pattern types, and b) patterns which 

are sufficiently anomalous to be potential examples of a new and previously unknown pattern type.  By 

incorporating user feedback on both known and previously unknown patterns, the set of known 

patterns and the accuracy of the models will continue to grow over time. 



Currently, we are working to extend both the fast generalized subset scan (FGSS) and generalized fast 

subset sums (GFSS) methods to the “known and unknown patterns” case.  The idea is that FGSS can be 

used to detect anomalous patterns not matching the expected data distribution (modeled by a Bayesian 

network learned from training data), while GFSS can be used to distinguish between multiple known and 

modeled patterns.  To integrate the two methods, our first step is to extend FGSS to multiple known 

model types, each modeled by a Bayesian network, thus identifying novel anomalous patterns that do 

not fit any of these models.  Our current approach (McFowland and Neill, 2013, in preparation) iterates 

between three optimization steps: choosing a “best fit” model for each record given the current set of 

attributes; choosing the most anomalous subset of records given the current subset of attributes and 

the “best fit” models; and choosing the most anomalous subset of attributes given the current subset of 

records and the “best fit” models.  We then detect subsets of records and attributes that are unlikely 

given each known pattern model as well as the null model, thus enabling FGSS to discover previously 

unknown pattern types given the current set of known patterns.   

We compare this “Fast Generalized Subset Scan with Multiple Models” (FGSS-MM) approach to a 

simpler extension of FGSS, which we term FGSS-Mixture (FGSS-MIX).  FGSS-MIX simply replaces the null 

model with a mixture model, representing the background data distribution and other known data 

patterns. The optimization procedure for FGSS-MIX then follows the same procedure as FGSS: iterate 

between choosing the most anomalous subset of records for the given set of attributes and vice-versa.  

As described in the “Results and Findings” section below, we evaluate these two extensions of FGSS on 

two application domains, network intrusion detection and masquerade detection (i.e., rapidly 

identifying individuals using a computer system who have legitimate credentials but are not who they 

claim to be and are likely involved in harmful activities, based on their observed actions).  The first draft 

of our “FGSS with multiple known models” paper is complete; we are currently extending the evaluation 

results, and plan to submit this work to ICDM 2013 this summer. 

Task 2: Fast Subset Scanning for Scalable Event Detection 

In the subset scan framework, our primary goal is to find the subsets of the data which are most 

anomalous (or that best match some known and relevant pattern) by maximizing the score function F(S). 

Since an exhaustive search over subsets is computationally infeasible, typical spatial scan methods 

either restrict the search space, e.g. by searching over circular or rectangular regions, or perform a 

heuristic search. The former approach has low detection power for regions outside the search space 

(e.g. elongated or irregular clusters), while the latter does not guarantee that an optimal or near-optimal 

region will be found.  However, we have discovered that many pattern detection methods satisfy a 

property (linear-time subset scanning, or LTSS) which allows efficient optimization over all subsets of 

the data: the highest-scoring (most anomalous or most relevant) of all the exponentially many subsets 

of the data can be found in linear time, by sorting the data records according to some function and 

searching only over regions containing the k highest-scoring records (letting k vary from 1 to the total 

number of records N).  This approach enables us to optimize F(S) by evaluating only N of the 2N possible 

subsets.  We are in the process of investigating many ways in which LTSS will enable efficient event 

detection, removing some of the computational barriers faced by subset scanning methods.  



Our first paper on linear-time subset scanning (Neill, 2012) has recently been published in the Journal of 

the Royal Statistical Society Part B (Statistical Methodology), the #1 statistics journal as ranked by 

impact factor.  This paper included theoretical results on LTSS, the univariate fast subset scan 

framework, and incorporation of hard constraints on spatial proximity, as discussed in last year’s report.  

This year’s work on Task 2 focused on six main areas: extension of fast subset scanning to general 

datasets through continued development of the Fast Generalized Subset Scan (FGSS) algorithm (Task 

2a), incorporating soft constraints on spatial proximity (Task 2b), extending the fast subset scan 

framework to multivariate and tensor datasets (Task 2b), incorporating connectivity constraints through 

continued development of the GraphScan algorithm (Task 2c), detecting events in heterogeneous 

graphs derived from social media such as Twitter (Task 2c), and incorporating temporal consistency 

constraints (discussed as part of Task 3c, automated event detection and tracking, below).   

Task 2a: Extend LTSS to general multivariate datasets 

In McFowland, Speakman, and Neill (2013), we present Fast Generalized Subset Scan (FGSS), an 

extension of the LTSS approach which enables efficient pattern detection in general multivariate 

datasets.  In this case, we do not have space-time data, but instead have an arbitrary set of attributes 

measured for each of a large set of data records.  In this problem setting, our goal is to detect self-

similar subsets of data records for which some subset of attributes are anomalous.  Our approach 

consists of four steps: 1) efficiently learning a Bayesian network which represents the assumed null 

distribution of the data; 2) computing the conditional probability of each attribute value in the dataset 

given the Bayes Net, conditioned on the other attribute values for that record; 3) computing an 

empirical p-value range corresponding to each attribute value by ranking the conditional probabilities, 

where under the null hypothesis we expect empirical p-values to be uniformly distributed on [0,1]; and 

4) using a nonparametric scan statistic to find subsets of records and attributes with an unexpectedly 

large number of low (significant) empirical p-values.  The final step is computationally expensive 

(exponential in the numbers of records and attributes for a naïve search), but LTSS can be used to speed 

up this search, converging to a local maximum of the score function and ensuring that each iteration 

step is linear (not exponential) in the number of records or attributes.   

The FGSS framework has been evaluated on several application domains, including early detection of 

simulated anthrax bio-attacks, discovery of patterns of illicit container shipments for customs 

monitoring, and network intrusion detection, demonstrating improved detection accuracy, efficient 

runtime, and ability to correctly characterize the affected subset of attributes in all three domains.  

Results of these evaluations are presented below.     

In the past year, our first paper on FGSS (McFowland, Speakman, and Neill, 2013) has been accepted for 

publication in the Journal of Machine Learning Research.  We also have presented talks on FGSS at the 

International Workshop on Applied Probability (IWAP 2012) and the 2011 INFORMS Annual Conference.   

We have also extended the FGSS approach to the case of mixed real- and categorical-valued datasets, 

augmenting the Bayesian network with a regression tree for each real-valued attribute.  Then the 

probability density corresponding to each attribute value (conditioned on the other attribute values for 



that data record) is computed by performing kernel density estimation using only the appropriate leaf of 

the regression tree.  We can then compute the empirical p-values for that attribute by computing and 

ranking the kernel density estimates corresponding to each attribute value, and perform the fast LTSS-

enabled nonparametric scan as before.  We are also investigating an alternative model which uses a 

dependency network instead of a Bayesian network to model the distribution of the data when no 

events are occurring; this avoids the computationally expensive Bayes Net structure learning step, and 

enables the algorithm to scale to datasets with hundreds or thousands of attributes, making it usable for 

our work on discovering anomalous patterns of patient care discussed below.  Additional improvements 

may be achieved by directly using the learned Bayes Net or dependency network, rather than the entire 

training dataset, to compute the empirical p-values.  Finally, we are currently working to extend FGSS to 

multiple known model types, as discussed in Task 1d above. 

Task 2b: Extend LTSS to constrained subset scans 

Since LTSS only guarantees a solution to the unconstrained (all-subsets) optimization problem, the 

biggest challenge is to incorporate constraints such as spatial proximity, graph connectedness, or 

temporal consistency to ensure that relevant and useful subsets are detected.  In recent work, we have 

developed a number of novel and powerful methods for constrained optimization, using the 

unconstrained LTSS method as a building block.  In this section we focus entirely on the incorporation of 

spatial proximity constraints; fast graph scanning is discussed in Task 2c below, and our extensions to 

detection and tracking of dynamic events (by incorporating temporal consistency constraints) are 

discussed in Task 3c below. 

In Neill (2012), in addition to presenting the basic theoretical framework for LTSS described above, we 

focus on the application of LTSS to univariate spatial data, and consider how spatial proximity 

constraints can be incorporated.  We often want to use spatial information to constrain our search by 

penalizing or excluding unlikely subsets (e.g. spatially dispersed or highly irregular regions). Thus we 

propose “fast localized scan” approaches which incorporate spatial proximity constraints into the LTSS 

framework. For example, we can constrain our search to regions consisting of a center location and 

some subset of its k-nearest neighbors, using LTSS to reduce the complexity from exponential to linear 

in k.  These efficient, spatially-constrained LTSS searches allow us to perform spatial detection tasks in 

milliseconds that would require years for exhaustive search, and substantially improve detection power 

and spatial accuracy as compared to the traditional spatial scan approach (searching over circular 

regions). 

In the past two years, we have developed a new framework which allows us to incorporate “soft” 

constraints on spatial proximity, rewarding compact regions and penalizing sparse regions, and thus 

enabling efficient and accurate detection of irregularly-shaped spatial clusters (Speakman, McFowland, 

Somanchi, and Neill, 2012).  Our previous fast subset scan approach can incorporate proximity 

constraints using a fixed neighborhood size k; however, each of the 2k subsets are considered equally 

likely, and thus the fast localized scan does not take into account the spatial attributes of a subset.  Thus 

we extended the fast localized scan by giving preference to spatially compact clusters while still 

considering all subsets within a given neighborhood.  For a given local neighborhood with center 



location sc and size k, we place a bonus or penalty Δi = h(1 - 2di/r) on each location si, where di is that 

location's distance from the center, r is the neighborhood radius, and h is a constant representing the 

strength of the compactness constraint. Each Δi can be interpreted as the prior log-odds that si will be 

affected, and thus the center location is eh times as likely as its (k-1)th nearest neighbor.  

In work presented at the 2011 International Society for Disease Surveillance Annual conference 

(abstract published in the Emerging Health Threats Journal), we first demonstrated that this approach 

can efficiently and accurately detect irregularly-shaped outbreaks.  This work was also presented at the 

International Workshop on Applied Probability in June 2012, and will be presented at the 6th 

International Conference on Computational and Methodological Statistics in December 2013.  Our full 

paper is under revision, and will be re-submitted to the top-tier data mining conference ICDM 2013 this 

summer. 

Task 2b, continued: Extension of LTSS to multivariate and tensor datasets 

While Neill (2012) focuses on univariate event detection (in which we monitor a single spatio-temporal 

data stream), linear-time subset scanning can also be extended to multivariate event detection, in which 

we integrate information from multiple spatio-temporal data streams.  In Neill, McFowland, and Zheng 

(2013), we demonstrate how LTSS can be used to speed up two different multivariate scan statistic 

methods, Subset Aggregation (an extension of the method proposed by Burkom et al., 2005) and the 

multivariate spatial scan proposed by Kulldorff et al. (2007).  This work was recently published in the 

journal, Statistics in Medicine, and was presented as part of our invited talk on multivariate surveillance 

at the 2011 Joint Statistical Meetings. 

The key insight behind this paper is that LTSS can either be used to efficiently optimize a score function 

over subsets of attributes (e.g. monitored data streams) for a given subset of data records (e.g. 

monitored spatial locations), or to optimize over records for a given subset of attributes.  Thus we can 

iterate between optimizing over records and attributes until the algorithm converges to a (local) 

maximum of the score function over all subsets of records and attributes, and use multiple randomized 

restarts to approach the global maximum.  The above discussion assumes one particular formulation of 

the multivariate scan statistic, in which we add counts across the monitored subset of data streams.  An 

alternative formulation by Kulldorff et al. (2007) proposes adding log-likelihood ratios across streams 

(e.g., assuming that the data streams are conditionally independent).  We demonstrate that the 

Kulldorff multivariate scan can also be made efficient using LTSS, by iterating between two steps: 

optimizing over subsets of records (for given values of the multiplicative effect of the event on each data 

stream), and re-calculating the maximum likelihood values of the event’s effects for the given subset of 

records.  We then evaluated the detection performance of both variants of the multivariate spatial scan 

for synthetic and real-world disease surveillance datasets, demonstrating that our LTSS-based approach 

significantly improved detection power and spatial accuracy for both methods, while maintaining 

efficient and scalable computation.  Results for this paper were described in previous annual reports, 

and are also available in the published paper (Neill, McFowland, and Zheng, 2013). 



We have recently extended the multivariate LTSS approach from matrix data (records x attributes) to 

multi-dimensional tensor data with an arbitrary number of modes (Neill and Kumar, 2013).  Our 

previous work allows efficient optimization over subsets of records and attributes, which can be thought 

of as the rows and columns of a matrix; the current work allows joint optimization over subsets of each 

mode of a tensor with three or more modes.  Our approach is a natural generalization of our 

multivariate fast subset scan algorithm: we randomly initialize the algorithm, then iteratively optimize 

over subsets of each tensor mode given the other modes.  Each such conditional optimization can be 

performed efficiently using the LTSS property; the iterative process converges to a local maximum of the 

score function, and then multiple randomized restarts can be used to approach the global maximum.   

In recent work presented at the 2012 International Society for Disease Surveillance Annual Conference 

(abstract published in the Online Journal of Public Health Informatics, 2013), we applied this technique 

to the disease surveillance domain, using multivariate case data from individuals in a population.  In this 

setting, we have not only multivariate spatio-temporal count information (the number of cases for each 

location, time step, and data stream), but also additional categorical attributes for each affected 

individual (such as age group and gender).  Each such attribute is represented by a tensor mode, and 

location and data stream are represented by two additional modes.  Our Multi-Dimensional Subset Scan 

(MD-Scan) approach identifies not only the affected spatial locations and data streams, but also the 

characteristics of the affected subpopulation, as represented by a subset of values for each monitored 

attribute (e.g. “males under 30 who use intravenous drugs”).  We demonstrate that this approach 

enables accurate and timely detection of emerging events, while maintaining computational tractability 

for massive datasets, as discussed in the “Results and Findings” section below. 

Our ongoing work involves applying MD-Scan to many other application domains, including detection of 

anomalous patterns of care in a hospital setting.  One challenge in non-spatiotemporal domains is 

estimating the expected count corresponding to each combination of attributes in the tensor; our 

ongoing work learns the structure and parameters of a Bayesian network from the case data and uses 

the learned model to predict counts. We believe that the ability of MD-Scan to accurately characterize 

the areas and subpopulations affected by an event will have important applications in other areas, such 

as disaster and crisis response, where it is essential for an intervention to be both rapid and precisely 

targeted.  We are also working with the Chicago Department of Public Health to obtain data about the 

prevalence of sexually transmitted illnesses, risk factors, treatments, and preventive measures, in order 

to detect emerging patterns of STIs which may differentially affect a particular subpopulation or a 

particular neighborhood. 

Task 2c: Fast graph scanning 

Another extension of linear-time subset scanning focuses on graph and network data, where we 

monitor one or more data streams at each node of the graph, and wish to detect the most anomalous 

subset of nodes subject to the graph connectivity constraints (i.e. the given subset of nodes must form a 

connected subgraph of the original graph).  If the score function satisfies LTSS, we can prove the 

following rule: “If subset Sin is included in the highest-scoring connected subset S, and removing Sin 

would not disconnect S, then no connected subset Sout adjacent to S can have higher priority than Sin.”  



This rule was incorporated into a depth-first search procedure which enables us to rule out many 

subsets which are provably suboptimal, reducing the search space and resulting in huge speed 

improvements.  Additional speed improvements can be obtained by branch and bounding, applying the 

unconstrained LTSS property to quickly compute an upper bound on scores and ruling out provably 

suboptimal subgraphs.  Although the detected subgraphs are similar to the previously proposed 

FlexScan algorithm (Tango and Takahashi, 2005), GraphScan is able to scale to much larger graphs 

consisting of several hundred nodes, with a 450,000-fold increase in speed compared to FlexScan for 

neighborhoods of size k = 30.   

GraphScan can be used for spatial data (searching for the most anomalous connected cluster of zip 

codes, with edges defined by spatial adjacency, travel patterns, etc.), and can also be used for non-

spatial data with an underlying graph structure (including cell phone call graphs, social networks, and 

the Enron e-mail dataset).  We believe that this approach will be particularly useful for our future work 

on detecting and preventing hospital-acquired illness, monitoring the spread of nosocomial infections 

between hospitals and between rooms within a hospital based on the movement of patients and 

hospital staff.   

Our GraphScan algorithm was recently presented at the Quality and Productivity Research Conference 

(QPRC 2012), and a related book chapter will be published in the Encyclopedia of Social Network 

Analysis and Mining (Springer, 2013, in press). Finally, the full paper is currently under review for the 

Journal of Computational and Graphical Statistics.  The GraphScan optimization step was also embedded 

into our multidimensional subset scan approach described in Task 2b above, thus allowing us to place a 

connectivity constraint (assuming a pre-specified graph structure) on our search over subsets for any or 

all modes of the tensor.  GraphScan has also been extended to incorporate temporal consistency 

constraints, as described in Task 3c below, and to learn the underlying graph structure, as described in 

Task 1a above. 

Task 2c, continued: Event detection in heterogeneous social media graphs 

Event detection in social media is an important but challenging problem, with applications to conflict 

prediction, outbreak detection, and many others.  Most existing approaches are based on burst 

detection, topic modeling, or clustering techniques, which cannot naturally model the implicit 

heterogeneous network structure in social media. As a result, only limited information, such as terms 

and geographic locations, can be used.  We have recently developed a novel, non-parametric scan 

statistic approach that considers the entire heterogeneous network for event detection: we first model 

the network as a “sensor” network, in which each node (including Twitter users, keywords, locations, 

hashtags, tweets, etc.) senses its “neighborhood environment” and reports an empirical p-value 

measuring its current level of anomalousness for each time interval (e.g., hour or day).  Then, we 

efficiently maximize a nonparametric scan statistic over connected subgraphs (using a very fast, but 

approximate, variant of our GraphScan approach) to identify the most anomalous network clusters.  

Finally, the event represented by each cluster is summarized with information such as type of event, 

geographical locations, time, and participants.  This work (Chen and Neill, 2013) is in progress and will be 

submitted to the top-tier data mining conference ICDM 2013 this summer. 



Task 3: End-to-End Methods for Event Surveillance 

While most current surveillance systems focus on the problem of early detection of events, detection 

alone is not sufficient to enable a timely and effective response by the system’s users. Successful event 

surveillance requires careful consideration of every step in the end-to-end process of data collection, 

automated detection and characterization, and user investigation and response. Our proposed work will 

augment event detection methods with novel methodological contributions and deployable tools which 

public health, law enforcement, and health care organizations can use to understand, visualize, 

investigate, and respond to emerging events.  The past three years’ work on Task 3 has focused on the 

development of Generalized Fast Subset Sums, our Bayesian framework for scalable event detection and 

visualization (Task 3b), and the incorporation of temporal consistency constraints to enable detection 

and tracking of events that change dynamically over time (Task 3c). 

Task 3b: Scalable event detection and visualization 

The multivariate Bayesian scan statistic (MBSS) is a powerful detection method which can integrate 

information from multiple data streams and can model and distinguish between multiple event types 

(Neill and Cooper, 2010).  The output of the MBSS method can be easily visualized by computing the 

posterior probabilities that each event type Ek has affected each spatial location si, summing the 

posterior probabilities for all regions S containing si.  Unlike standard spatial scan visualizations, which 

do not compute probabilities but instead show the most likely cluster, this method is able to quantify 

the system’s uncertainty about the spatial extent and type of events.  However, our LTSS method cannot 

be used to efficiently generate this visualization, since we need to sum over probabilities rather than 

just finding the highest-scoring region. 

Thus we developed an efficient Fast Subset Sums (FSS) method which computes the summed posterior 

probability over all subsets containing location si, without computing the posterior probability of each 

individual subset.  This work extends the MBSS framework to enable detection and visualization of 

irregularly-shaped clusters in multivariate data, by defining a hierarchical prior over all subsets of 

locations. While a naive search over the exponentially many subsets would be computationally 

infeasible, we demonstrate that the total posterior probability that each location has been affected can 

be efficiently computed, enabling rapid detection and visualization of irregular clusters. We compared 

the run time and detection power of this “fast subset sums” method to our original MBSS approach 

(assuming a uniform prior over circular regions) on semi-synthetic outbreaks injected into real-world 

Emergency Department data from Allegheny County, PA.  Our results (presented in previous annual 

reports) demonstrated substantial improvements in spatial accuracy and timeliness of detection, while 

maintaining the scalability and fast run time of the original MBSS method.  The full paper was published 

in the journal Statistics in Medicine (2011). 

We have recently developed a generalization of the fast subset sums method which allows the sparsity 

of the detected region to be controlled (Shao, Liu, and Neill, 2011).  More precisely, we propose a 

hierarchical probabilistic model with three steps: first, choosing the center location sc from a 

multinomial distribution; second, choosing the neighborhood size k from a multinomial distribution; and 



third, independently choosing whether to include (with probability p) or exclude (with probability 1-p) 

each location in the k-neighborhood of the center.  We demonstrate that our previously proposed MBSS 

and FSS methods correspond to special cases of this Generalized Fast Subset Sums (GFSS) method, with 

p = 1 and p = 0.5 respectively, and show that appropriate choice of the sparsity parameter p enables 

much faster detection and higher spatial accuracy than either MBSS or FSS.  Moreover, we demonstrate 

that the distribution of the sparsity parameter can be accurately learned from a small amount of labeled 

training data, and that the resulting GFSS method with learned p distribution outperforms MBSS, FSS, 

and GFSS with a uniform p distribution.  We also show that two otherwise identical event types with 

different sparsities can be reliably distinguished by learning each event’s p distribution, and that 

learning both an event’s sparsity distribution and its relative effects on different data streams leads to 

more timely detection and better characterization than learning either parameter on its own.  These 

results were presented in a previous annual report, and the full paper was published in the proceedings 

of the top data mining conference, the IEEE International Conference on Data Mining (ICDM), in 2011. 

Most recently, we have developed a new expectation-maximization (EM)-based method which enables 

simultaneous learning of the distributions for the sparsity parameter, neighborhood size, and center 

location.  Our preliminary experiments suggest that this approach can accurately and efficiently learn 

these distributions, dramatically improving detection power; we plan to follow up with a more detailed 

set of experiments for possible submission to ICDM 2013.  We are also working on extensions of the EM-

based learning approach to partially labeled data, where only a small subset of the affected locations is 

provided. 

Task 3c: Automated event investigation and tracking 

Once a potentially relevant event is detected by a surveillance system, the user must often perform a 

detailed investigation in order to understand its source, extent, and potential impact, enabling an 

appropriate and effective response. We propose novel methods to assist public health users in two 

distinct types of post-detection investigation: contact tracing (identification of individuals who may have 

been exposed to a contagious disease by contact with an infected person), and back-tracing of food-

borne outbreaks (identifying the source of contamination by investigating links back from affected 

consumers to distributors, suppliers, and producers). These problems are graph-based in nature, and 

thus we can use our GraphScan method to efficiently find the most anomalous connected subset of 

nodes. However, we must also take the problem’s temporal constraints into account, e.g. a person 

cannot infect others until some time period after they have been infected.  Thus we have extended fast 

graph scanning to the dynamic case, allowing the affected subset of data records to change over time.  

In recent work (Speakman and Neill, 2013, in preparation), we have developed a novel method for 

incorporating soft constraints into our linear-time subset scanning framework.  Unlike many of the LTSS 

approaches describe above, we do not restrict the search space, but instead consider all subsets of the 

data while rewarding subsets that are more likely or penalizing subsets that are less likely to be affected.  

Incorporating soft constraints into the LTSS framework is challenging because, for an arbitrary score 

function F(S) that satisfies the linear-time subset scanning property, a penalized version of that function 

is not guaranteed to satisfy LTSS.   



However, we have shown that this problem can be circumvented by conditioning on the event’s severity 

(or relative risk), denoted as q.  For a given value of q, and assuming any expectation-based scan statistic 

in the separable exponential family, we have shown that the score function F(S | q) can be written as an 

additive function, F(S | q) = ∑ si ∈ S Gq(si).  For such functions satisfying the additive LTSS property, we can 

write the penalized form Fpen(S | q) = ∑ si ∈ S (Gq(si) + Δi) =  ∑ si ∈ S Hq(si), where Hq(si) is the total 

contribution of location si to the penalized scan statistic for the given value of q.  Thus, for a given 

severity value q, we can easily maximize Fpen(S | q) over all subsets of the data, by choosing all and only 

those locations with positive values of Hq(si).  Connectivity constraints can also be incorporated into this 

framework: this becomes an NP-hard problem (minimum Steiner tree), but is still feasible for graphs 

with several hundred nodes.  For the unconstrained case, we have recently shown that only a small 

(linear) number of distinct q values must be considered, thus enabling a polynomial-time, exact solution 

which is nearly as fast as the unconstrained LTSS algorithm (running in 40-50 ms per day of data for our 

experiments on Allegheny County Emergency Department data).  Connectivity constraints can also be 

incorporated into this framework: this becomes an NP-hard problem (related to the minimum Steiner 

tree problem), but is still feasible for graphs with several hundred nodes, and we have recently 

developed a fast approximate algorithm which can scale to 10,000 nodes or more. 

By applying the additive LTSS property, we can enforce soft constraints on temporal consistency by 

considering the patterns detected at adjacent time steps, and rewarding patterns that are not 

dramatically different between time steps t and t+1.  This allows us to extend our detection methods 

from detecting static patterns (which affect a fixed set of locations for some time duration) to dynamic 

patterns (which can grow or spread over time) while still maintaining efficient computation.  

Additionally, by using temporal consistency constraints to share information between multiple time 

steps, we can allow patterns to evolve smoothly over time while penalizing patterns which display 

unrealistic temporal trends (e.g. affecting the east side of the city on day 1, the west side on day 2, and 

back to the east side on day 3).   

A preliminary version of this approach, presented at the 2011 INFORMS Annual Conference, applies the 

temporal consistency constraints moving forward in time, rewarding locations which were present for 

each of the past two time steps and also the neighbors of these locations.  This algorithm was used to 

detect dynamic patterns in graph data with connectivity and temporal consistency constraints, applied 

to the detection of spreading contaminants in a water distribution network.  Our preliminary results 

(presented in a previous year’s annual report) show that incorporating simple size and temporal 

consistency constraints in a penalized, expectation-based binomial scoring function allows GraphScan to 

detect the contaminants earlier and to more accurately identify which nodes are affected as the 

contamination spreads through the network.    

Our current extensions of the algorithm, which have been presented at the 2012 International Society 

for Disease Surveillance Annual Conference (abstract published in the Online Journal of Public Health 

Informatics, 2013) and will be incorporated into a journal paper submission in the next few months, are 

threefold.  First, instead of only propagating our beliefs about the affected subset forward through time, 

we have developed an iterative approach which enables propagation of information both backward and 

forward in time; the detected subset for each time step is optimized given the detected subsets for the 



previous and next time steps.  Second, we have developed new methods for choosing the deltas 

(bonuses or penalties) for including each location on a given time step, based on a simple (log-linear) 

generative model of event propagation: log odds (affected on time step t) = b0 + b1 (affected on time 

step t-1) + b2 (proportion of neighbors affected on time step t-1).   Third, we incorporate a novel, 

approximate Steiner tree optimization into the inner loop of our algorithm (optimizing a given time step 

given the neighboring time steps), allowing the algorithm to scale to much larger graphs with tens of 

thousands of nodes.  Our ongoing evaluation results suggest dramatically improved detection 

performance for emerging dynamic events which may grow, shrink, or move over time, as well as 

improved scalability and efficiency. 

Task 4: Novel Data Sources for Event Surveillance 

The rapid growth and widespread adoption of new technologies such as electronic record systems, 

mobile phones, sensor networks, Internet search, and user-generated Web content, and the huge 

amount of data generated by these technologies, present limitless opportunities to apply event 

detection for the public good. Electronic health records and crime reports are the primary technologies 

facilitating our health and crime surveillance systems respectively; mobile phones have great potential 

as an enabling technology for health surveillance in the developing world; and Internet search queries 

have been used for early detection of influenza. These novel data sources could radically transform the 

field of event detection, but each also presents new methodological challenges, requiring us to “scale 

up” detection algorithms to huge numbers of data sources, data aggregations, sensor configurations, 

and data records respectively, as well as incorporating crowdsourced data from many human users.  The 

past three years’ work on Task 4 has primarily focused on Task 4a (prediction using leading indicator 

data) and Task 4c (incorporating rich text data), as described below.  Most recently, we have also 

worked on detecting anomalous patterns in massive, hierarchical data (for example, multi-resolution 

digital pathology images), as described in Task 4d below, and on mining Twitter data to detect local-level 

conflict events (using a novel non-parametric scan statistic for heterogeneous graphs, as described in 

Task 2c above, but also relevant to Task 4d). 

Task 4a: Prediction using leading indicator data (for law enforcement and urban analytics) 

While most of our previous work has focused on event detection, we have recently extended this work 

to event prediction, detecting emerging spatial clusters of various types of leading indicators and using 

the detected clusters to predict that an event is likely to occur in that geographic area.  For example, in 

the law enforcement domain, we have shown that detected clusters of certain minor crimes, or certain 

types of 911 calls,  significantly increase the likelihood that a violent crime cluster will emerge in that 

area.  In past work, we demonstrated that this approach can be used to accurately predict clusters of 

violent crime between 1 and 3 weeks in advance, by detecting clusters of less serious “leading indicator” 

crimes.  This early warning has the potential to enable police to reduce crime through reallocation of 

patrols and other targeted interventions, and has been incorporated into our CrimeScan software, which 

was in day-to-day operational use by the Chicago Police Department (CPD) from 2009-2011. 



In the past year, we have developed a new methodological approach and deployable software package, 

which we call CityScan.  CityScan builds on our previous CrimeScan approach, which detected clusters of 

leading indicators and used these to predict that violent crime will occur nearby, by learning a sparse 

logistic regression model to predict the probability that a violent crime cluster will occur, as a function of 

location, the presence of various types of leading indicator clusters nearby in space and time, and other 

covariates.  We are in the process of performing a comprehensive empirical evaluation of CityScan (and 

comparison to existing prediction methods in the literature) for both crime prediction and 311 call 

prediction tasks.  For the former evaluation, we are using crime offense report and 911 call data 

supplied by the CPD; for the latter, we will use either publicly available 311 call data from the City of 

Chicago Data Portal, or a dataset with a much larger variety of call types made available by our 

collaborators in the City of Chicago Mayor’s Office.  We anticipate that our results will be complete, and 

a journal paper submitted for publication, this summer or early fall.   

Additionally, we have successfully re-established our collaboration with the CPD (which was on hold for 

about a year due to a major personnel shake-up on their side), and after successful initial evaluations, 

they are in the process of rolling out CityScan for day-to-day operational use.  Moreover, in 

collaboration with Brett Goldstein (Chief Data Officer and IT Commissioner of the City of Chicago), we 

are working to extend our crime prediction work in order to predict many other quantities that are 

relevant to the city.  Our initial focus is on predicting emerging patterns of citizen needs (as measured by 

clusters of 311 calls for service, such as rodent removal, sanitation complaints, pot holes, graffiti 

cleanup, and abandoned buildings), and our preliminary results suggest that many types of 311 calls can 

be predicted accurately one week in advance, using other 311 call types as leading indicators.  Future 

uses of CityScan (and potentially, our other approaches for pattern detection and event prediction) for 

urban analytics include identifying trends in Twitter data related to the city’s public transportation, and 

check-ins on Foursquare, a location-based social network.   

Our future plans (supported by Commissioner Goldstein and the city leadership) are to have our 

software running in real time to detect relevant trends and patterns which will be directly used by city 

services.  We are very excited about this ongoing collaboration, which has the potential to make a 

significant, data-driven contribution to city management in practice.  We recently collaborated with the 

City of Chicago Mayor’s Office to submit a proposal to the Bloomberg Mayor’s Challenge.  Chicago was a 

runner-up in this competition, receiving $1M for “The Chicago SmartData Platform”, which proposes to 

“Partner with leaders in data and computer science to build the first open-source, predictive analytics 

platform… to harness the power of data to understand underlying trends and better direct limited 

resources.”  A major piece of this platform will be the City’s use of our CityScan software to predict 

emerging patterns of violent crime, citizen needs (as measured by 311 calls for service), and other 

patterns relevant to the city’s operations. 

One remaining challenge in the CityScan framework is to decide which of the many possible leading 

indicators are most relevant for predicting a given type of event.  Last year, we developed a novel 

method to identify spatially localized subsets of leading indicators for event prediction (Flaxman and 

Neill, 2012).  Given a spatially localized time series to be predicted (e.g. daily counts of violent crime for 

each census tract) and multiple potential predictors (e.g. daily counts of various types of calls for service 



for each tract), our approach maximizes the cross-correlation between the predictor variable and an 

aggregated subset of leading indicators across a range of time lags, all subsets of potential predictors, 

and all proximity-constrained subsets of locations.  This captures the fact that different subsets of 

leading indicators may be relevant in different areas of the city.  However, even for relatively small 

numbers of locations and leading indicators, optimization over all such subsets is computationally 

infeasible, and unfortunately the function we wish to optimize (Pearson correlation between the 

independent and dependent time series) does not satisfy our linear-time subset scanning property.  

Instead, we propose a novel “iterative average dot product” method, with the key insight that both 

spatial subset search and feature selection can be performed by approximating the correlation with a 

function that can be efficiently maximized over subsets of locations or streams. We then iterate 

between conditionally optimizing the approximate correlation over subsets of locations (for a given 

subset of streams) and optimizing over subsets of streams (for a given subset of locations), until 

convergence to a joint local optimum.  Our iterative procedure refines the quality of this approximation 

over time, approaching the true best correlation.  The approach was tested on 311 service calls from 

Chicago, and compared both to ground truth (for small problem sizes) and existing feature selection 

methods (such as lasso regression).  Our method found near-optimal correlations while scaling to large 

numbers of locations and data streams, and demonstrated significant improvements in the correlation 

of detected subsets as compared to existing methods.  This work was presented at the International 

Symposium on Forecasting in June 2012, and at the CMU Workshop on Machine Learning and Social 

Sciences in October 2012.  The full paper is currently under revision, for re-submission to one of the top 

machine learning/data mining conferences. 

In the process of developing this work, however, we realized that cross-correlation is not necessarily the 

most relevant quantity to optimize for identification of leading indicators, since two event types could 

have high cross-correlation due to purely spatial and purely temporal correlations (e.g., the rates of fires 

and violent crimes both tend to be higher in neighborhoods with higher population density and in the 

summer, but seeing a fire at a given time and place is not necessarily predictive of future, nearby violent 

crime).  Thus we have recently developed new kernel-based tests for space-time interaction in spatio-

temporal point processes.  Space-time interaction can be thought of as residual space-time dependence, 

after controlling for purely spatial and purely temporal dependence: if two events are close in space, 

they are likely to be close in time.  We demonstrate that the recently proposed Hilbert-Schmidt 

Independence Criterion can be used to test whether the joint distribution of points in space and time 

P(S,T) is separable as the product of two distributions P(S)*P(T), the distributions of points in space and 

in time, respectively.  Unlike previously proposed space-time interaction tests such as Mantel (1967), 

this non-parametric approach can distinguish arbitrary, rather than just linear, dependencies.  We 

provide a new test for space-time interaction based on HSIC, draw connections to previous tests such as 

Mantel’s, and compare the power of our test to the current state of the art (Diggle’s test) on synthetic 

and real-world data, demonstrating both high power and robustness to parameter specifications.  To 

use this approach for identification of leading indicators, we extended the HSIC-based test to the 

bivariate case (where we have two separate types of points, such as thefts and homicides) and to only 

predict forward in time.  Finally, we used our directional, bivariate space-time interaction test to identify 

statistically significant leading indicators for shootings and homicides in Chicago, choosing a small set of 



21 out of the 271 different types of emergency calls to 911.  This work will be presented at the 2nd 

Spatial Statistics Conference this summer; we also hope to complete and submit the full paper to a top 

machine learning conference this summer. 

Task 4c: Incorporating rich text data 

Typical event detection systems aggregate data records into counts and then detect spatial areas with 

anomalous recent counts.  For example, in disease surveillance, we count the number of disease cases 

with each of a small set of general symptom categories (such as respiratory, gastrointestinal, and fever) 

in each zip code for each day.  This approach works reasonably well given limited data about each 

patient, but we believe that outbreak detection can be dramatically improved by incorporating rich text 

data from electronic health records, e.g. patient histories and chief complaints.  Typical disease 

surveillance systems have difficulty detecting new emerging infections with unknown symptom 

patterns, or other diseases that do not correspond to the existing symptom categories.   

Thus we have developed a new “semantic scan statistic” approach, which uses rich text data to detect 

previously unknown event types, forming and searching a huge number of aggregated count datasets on 

the fly (Liu and Neill, 2011; Murray, Liu, and Neill, in preparation).  Each count represents the number of 

records in a given spatial area and time interval which match some set of keywords; different keyword 

sets are used for each aggregation. Since the number of possible keywords is huge, our challenge is to 

find the most interesting aggregations and anomalous subsets without an exhaustive search.  Our 

approach uses topic models (created by Latent Dirichlet Allocation) to automatically discover possibly 

relevant subsets of keywords.  We then form a separate count dataset from the case data for each topic, 

and find the maximum region score over all of the topics considered.  Thus the semantic scan statistic 

provides information not only about whether an event has occurred and which space-time region has 

been affected, but also which set of keywords (topic) occurs with surprisingly high count in this region.   

Our approach assumes that there is a latent “topic” in each case report, and thus we can utilize widely 

used topic models to extract those “topics” from text and then apply existing spatial scan techniques to 

them. For example, we might have one patient with “abdominal pain and nausea” symptoms, and 

another patient who has exhibited “vomiting”, but both sets of symptoms might correspond to the same 

disease category (GI illness). Our first approach used topic models to extract some number of “static” 

topics from the entire training dataset, and additional “dynamic” topics learned from the current two 

weeks of test data, in order to capture both broad, typical syndrome categories and newly emerging 

trends in the recent data.  For each day of data, for each of the extracted topics, we formed a count 

dataset from the case data by computing the number of cases in each zip code for each day which are 

most likely to correspond to the given topic. We then apply our novel spatial scan methods to the 

resulting count data, and report the maximum value of the spatial scan statistic over all topics.   

Our preliminary results demonstrate that, for disease outbreaks with very specific sets of symptoms, or 

with novel combinations of symptoms that have not previously been seen in the data, the text-based 

analysis will enable earlier and more accurate detection than traditional count-based detection 

approaches.  Using a combination of “static” and “dynamic” topics does reasonably well for picking up 



patterns of symptoms corresponding to both typical and (simulated) newly emerging illnesses, but some 

detection power is lost because many of the dynamic topics do not capture sufficiently different 

syndrome groupings from those represented by the static topics.  Thus our most recent approach learns 

a set of “incremental” topics that represent those trends in the current data which are not well captured 

by the “static” topics, and we demonstrate that the resulting incremental Latent Dirichlet Allocation 

approach shows substantially improved detection power for newly emerging illnesses.   

Our preliminary work was presented at the 2011 International Society for Disease Surveillance Annual 

Conference (abstract published in the Emerging Health Threats Journal) and at the 2012 International 

Conference on Digital Disease Detection.  Most recently, we have developed a new, EM-based method 

for classifying cases into topics which improves detection performance as compared to the standard, 

Gibbs sampling-based method, and are performing an in-depth evaluation and comparison of the 

different variants of the method.  We anticipate submitting the full paper to the IEEE International 

Conference on Data Mining (ICDM 2013) this summer.   

We have also begun collaborating with the NC Detect group at North Carolina’s Department of Public 

Health, who are interested in detecting and characterizing small clusters of related cases (e.g., a cluster 

of patients coming into a single hospital Emergency during a short time frame) that do not fit existing 

syndrome groupings.  This could include clusters of signs or symptoms, clusters of place names (e.g. 

mentioning a specific restaurant), clusters of events (e.g. mentioning a specific fair, concert, etc.).  We 

are in the process of adapting semantic scan for this setting: the approach is very similar to our 

“incremental” method, but makes slightly different assumptions (in particular, that only one novel topic 

is emerging, and that topic may represent a substantial proportion of cases in the cluster of interest).  

Thus we perform a separate “incremental” topic modeling for each cluster under consideration, learning 

a single new topic (which was not well captured by the static topics) from the cases contained in that 

cluster.  We then classify which cases belong to that topic (thus refining the cluster membership), and 

score the refined cluster by comparing actual and expected counts.  We are in the process of 

implementing this variant of semantic scan and applying it to the NC Detect data. 

We are also working to further improve detection power by incorporating spatial information into the 

topic modeling step (rather than just into the subsequent spatial scan), and are performing an in-depth 

evaluation and comparison of the different variants of the method.  Future work will also apply the 

semantic scan method to informal, online data sources such as Twitter and evaluate the utility of such 

sources for disease surveillance. 

Task 4d: Incorporating society-scale data 

In addition to our work on mining Twitter data to detect civil unrest (described in Section 2c above), we 

are also working to develop event detection algorithms which can scale to datasets so large that even 

our linear-time subset scanning methods are computationally expensive or infeasible (Somanchi and 

Neill, 2013).  Such datasets require approximations based on sampling or data summarization.  We are 

currently working to combine LTSS with hierarchical sampling and search techniques, with the goal of 



scaling up our current pattern detection techniques to datasets consisting of billions or trillions of 

records, with provable guarantees on the optimality and/or accuracy of detection. 

As an initial step, we are working with UPMC pathologist Dr. Anil Parwani to develop and evaluate a 

novel Hierarchical Linear Time Subset Scanning (HLTSS) method for detecting regions of interest in 

massive, multi-scale digital pathology slides.  Such images typically consist of 10B pixels or more at the 

finest resolution, but are stored as multiple “layers” each representing a hierarchical aggregation of data 

from the previous layer (as a first-order approximation, each “pixel” at layer L can be thought of as 

averaging the red, green, and blue components from a 4x4 pixel square at layer L-1).  HLTSS exploits this 

hierarchical structure inherent in data produced through virtual microscopy in order to accurately and 

quickly identify regions of interest for pathologists to review.   

For hematoxylin and eosin (HE) stained slide images, a region is interesting when it contains a higher 

than expected concentration of violet pixels (hematoxylin dye, which stains nuclear material) as 

compared to pink pixels (eosin dye, which stains cytoplasmic material).  There are various applications 

where identifying this discoloration pattern is useful: identifying regions of inflammation in 

gastrointestinal tracts for Crohn’s disease; finding regions of inflammation (gastritis) in the stomach, 

which may be indicative of colonization by Helicobacter pylori; and diagnosis of prostatic intraepithelial 

neoplasia, which may lead to prostate cancer. 

The HLTSS method works by first performing a proximity-constrained fast subset scan at a relatively 

coarse level of the hierarchy, then iteratively refining the detected subset by “expanding” one of the 

coarse-level pixels in layer L to its component pixels at layer L-1 and re-running the fast subset scan.  

This fast procedure is then repeated to identify the top-k clusters, and a post-processing step is used to 

enforce connectivity of the resulting clusters and to merge clusters across the fixed partitions imposed 

by the hierarchical decomposition of the slide.  One additional complication is that the anomalousness 

of the cluster is determined by applying a likelihood ratio statistic in a linearly transformed (white, pink, 

violet) color space, in order to identify areas with a higher than expected proportion of violet color.  This 

procedure could be generalized to any choice of three RGB colors, representing background, 

uninteresting, and interesting pixels respectively, enabling use in many other applications involving 

event detection in massive multi-scale image data.  The full paper is in progress, and we hope to 

complete this work by late summer or early fall. 

Applications of Event Detection 

Our work has primarily focused on applications of event detection to three areas (disease surveillance, 

crime prediction, and detection of anomalous patterns of patient care), but has also been applied to a 

variety of other domains, including human rights, customs monitoring, network intrusion detection, and 

infrastructure monitoring.  Here we discuss new developments in our work in each of these domains. 

The disease surveillance domain has served as our primary testbed for the development of new event 

detection methods; we have obtained real public health data from a number of sources, and our work 

has been incorporated into multiple deployed biosurveillance systems.  The project PI, Daniel Neill, 

recently published an article on “New directions in artificial intelligence for public health surveillance” in 



IEEE Intelligent Systems. This article, based in part on the semantic scan statistic and fast subset scan 

methods described above, focused on the need for methods that can incorporate rich, unstructured text 

data and can scale to huge numbers of records and data streams.  In addition to continuing to work with 

our existing Allegheny County Emergency Department data as a testbed for development of new 

algorithms, and working with the ECADS/ASSET/Data Fusion project team to develop and deploy 

methods for monitoring of multiple public health data sources in Canada, we are currently working to 

acquire new data and establish broader collaborations with the Chicago Department of Public Health.  

As noted above, our first project will involve analysis of sexually transmitted illness data using our new 

multidimensional subset scan methods.  Data acquisition has been delayed due to legal/IRB challenges 

on the DPH’s side, but we are optimistic that these issues can be resolved in the near future.  Through 

the Data Fusion project, we have also received new data from the Ottawa Heart Institute which includes 

information on patient location and movements within the hospital, along with patient-level 

information about various hospital acquired illnesses (ventilator-acquired pneumonia, central line 

infections, Clostridium difficile, and MRSA).  We are currently building predictive models of disease 

transmission, and will soon be applying our multidimensional subset scan and GraphScan methods to 

detect and track illnesses in this setting.  Most interestingly, we hope to apply our graph learning 

methods to compare the graphs formed by varying mechanisms of disease transmission (direct person-

to-person, spatial spread, spread via common caregiver, and spread via shared equipment) for each of 

these diseases, with the hope of providing actionable information for prevention of the spread of 

hospital-acquired illness.  Finally, we are excited by our new collaboration with the NC Department of 

Public Health, which will give us the opportunity to develop, evaluate, and deploy our semantic scan 

methods for analysis of free-text Emergency Department chief complaint data.   

As discussed above, we are continuing to work with the City of Chicago (Mayor’s Office) and Chicago 

Police Department in order to predict geographic hot-spots of violent crime, to identify emerging 

clusters of citizen needs (as measured by 311 calls for service), to monitor various other relevant 

quantities in real time, and to continue developing the underlying state-of-the-art prediction methods.  

These projects were discussed as part of Task 4a, prediction using leading indicator data, above.  The 

latest version of our CityScan software is now being used operationally by the CPD (as was its 

predecessor, CrimeScan), and CityScan will also be deployed by the City of Chicago as part of its 

“Chicago SmartData Platform”, with funding provided by the Bloomberg Mayor’s Challenge. 

Additionally, with the recent addition of postdoctoral fellow Feng Chen to our Event and Pattern 

Detection Laboratory, we are embarking on a number of projects related to event detection for conflict 

prediction and human rights, with initial funding from the MacArthur Foundation.  Our first project, 

described in detail in Task 2c above, focuses on monitoring Twitter data for local-level conflict prediction 

in multiple Latin American countries.  We will also be submitting a concept paper (which proposes to use 

very similar techniques for early detection of patterns of human rights atrocities) to the “Tech Challenge 

for Atrocity Prevention” (http://thetechchallenge.org), a contest sponsored by Humanity United and 

USAID. 

For the next year, we are particularly excited about applying and extending our pattern detection 

approaches (including, but not limited to, the fast generalized subset scan and multidimensional subset 



scan methods described above) to discovering anomalous patterns of patient care.  We are working 

create a widely applicable methodological and implementation framework for using massive quantities 

of healthcare data (including electronic health records and health insurance claims data) to discover 

patterns of care with significant potential impacts on patient outcomes (e.g., mortality, length of stay, 

and readmissions) and healthcare costs.  The goal is to enhance the current practice of evidence-based 

medicine by supplying a systematic basis for the initial steps of pattern discovery and hypothesis 

generation: identifying currently widespread care practices that are potentially suboptimal, or 

alternative care practices with potential to improve health outcomes and reduce costs, that can then be 

rigorously evaluated for potential use by the medical community.  The proposed system will evaluate, 

extend and deploy our state-of-the-art pattern detection methods, in order to automatically detect 

substantial variations in care between groups which have significant impacts on patient outcomes.  

These impacts can either be negative (e.g. systematic errors), in which case we can detect and correct 

these sub-optimal patterns of care, or positive.  In the latter case, our system will have discovered a new 

potential best practice, which can then be investigated further, and if appropriate, shared with other 

groups. 

The first stage of the project will focus on the inpatient setting, applying our novel pattern detection 

methods to electronic medical records (EMR) data in order to discover potentially relevant patterns of 

care with significant positive or negative impacts on patient outcomes.  This stage has already received 

seed funding from a UPMC Healthcare Technology Innovation grant, and UPMC has committed to 

providing data consisting of thousands of patients with an entering diagnosis of chronic obstructive 

pulmonary disorder (COPD).  We will analyze this data to discover anomalous patterns of care for these 

patients that influence outcomes such as length of stay, readmission, mortality, and nosocomial illness 

(e.g. ventilator-acquired pneumonia and multidrug-resistant infections).  Due to personnel turnover on 

the UPMC side, as well as delays with the data use agreement between CMU and UPMC, our data 

acquisition has been continually delayed, but we hope to receive the data in the near future.  We are 

also planning to partner with Presence Healthcare (a major health provider in the Chicago area, with12 

hospitals, 29 long term care and senior residential facilities, numerous outpatient services and clinics, 

etc.) on a related project to identify and investigate anomalous patterns of care for patients with 

congestive heart failure. (A data sharing agreement is in progress.) 

The second stage of the project will focus on identifying care practices which are cost-effective as well as 

improving outcomes, by integrating claims data with EMR, and treating cost of care as an additional 

outcome to be optimized.  Claims data, while providing somewhat more limited information than the 

EMR data, has the advantages of having much more structure (making it easier to use within our existing 

methodological framework without needing to analyze large quantities of free text) and providing 

detailed cost information.  

The third stage of the project will focus on extending the work in three main directions:  First, we will 

attempt to understand the spread of hospital-acquired infections by using the methods above to 

investigate the effect of exposure to potential sources of illness in the hospital environment. Second, we 

will scale up our methods to monitor massive quantities of patient data within a hospital system in real 

time, enabling rapid responses to emerging trends and patterns in the inpatient setting.  Here, the 



discovered patterns could include emerging outbreaks of hospital-acquired illness, systematic errors in 

care (e.g. poor hand-washing practices), patterns of adverse events, or new trends in care practices.  

Third, we will evaluate the feasibility of extending health pattern discovery beyond the inpatient setting 

to outpatient clinics and preventive care.   

This project is currently in progress, and we are continuing to advance the underlying pattern detection 

methodology while waiting for data from our potential partners.  In the meantime, we have written an 

overview paper on “Using artificial intelligence to improve hospital inpatient care”, which describes both 

past related work and our ongoing work on the project described above, and this paper has been 

accepted for publication in IEEE Intelligent Systems (Neill, 2013, in press) 

Educational Activities: The Machine Learning and Policy (MLP) Initiative 

With the critical importance of addressing global policy problems ranging from disease pandemics to 

crime and terrorism, and the continuously increasing size and complexity of policy data, the use of 

machine learning has become increasingly essential for data-driven policy analysis and for development 

of new, practical information technologies that can be directly applied for the public good. The 

numerous challenges facing our world will require broad, successful innovations at the intersection of 

machine learning and public policy. This endeavor will require widespread collaboration between 

machine learning and policy researchers, increased emphasis on the education of future researchers 

with in-depth knowledge of both disciplines, and a broadly shared research focus on developing novel 

machine learning methods which directly address critical policy challenges.  Thus this project’s main 

educational focus is on a multi-pronged curricular program, the Machine Learning and Policy (MLP) 

initiative.  This program will facilitate the widespread use of machine learning methods for the public 

good by incorporating machine learning throughout the public policy curriculum.  The components of 

this program currently include the Joint Ph.D. Program in Machine Learning and Public Policy, a master’s 

level course on Large Scale Data Analysis for Public Policy, a Ph.D.-level Research Seminar in Machine 

Learning and Policy, and a series of courses, Special Topics in Machine Learning and Policy, all discussed 

in detail in last year’s report, as well as a workshop and seminar series in Machine Learning and Social 

Sciences. 

Our first student in the Joint Ph.D. program in Machine Learning and Public Policy is now completing his 

second year of doctoral study, and has been extremely productive as a member of the PI’s Event and 

Pattern Detection Laboratory, recently winning Heinz College’s Suresh Konda Best Paper Award.  

Additionally, the PI has been actively involved in coordinating the joint Ph.D. program admissions and in 

leading a faculty search in “Societal-Scale Data Analysis” which successfully recruited an additional 

tenure-track faculty member in this area.  MLP courses taught by the PI in the past year included Large 

Scale Data Analysis for Public Policy, the MLP Research Seminar, and a new Special Topics in MLP course 

focusing on “Mining Massive Datasets”, i.e., applying machine learning to Web- and societal-scale 

datasets that are too large for standard, basic machine learning techniques to be applied. 

In the near future, in addition to continuing with course and program development, directing the joint 

Ph.D. program, and being involved with additional faculty hiring, we intend to create an integrated web 



resource for Machine Learning and Policy at CMU, and to develop a workshop series which will spread 

these ideas outside the university.  As a first step toward wider dissemination of these ideas, the PI 

collaborated with several other CMU faculty members to put together an internal workshop on 

“Machine Learning for the Social Sciences” which was held in October 2012, with invitees across many 

CMU departments. The workshop was limited to CMU faculty and PhD students, and included talks and 

brainstorming on cross-disciplinary collaborations between machine learning and social science faculty.  

(The PI also gave an invited talk at this workshop, on “Predicting and Preventing Emerging Outbreaks of 

Crime”, along with leading that afternoon’s strategy discussion).  The success of and enthusiasm 

generated by this workshop has led to our creation of a monthly series of research talks by CMU faculty 

and students, with the goals of information sharing and facilitating collaborations between ML and 

social science faculty and students.  Finally, the PI was a member of the Heinz College committee which 

developed a new “Policy Analytics” track for our Master of Science in Public Policy and Management 

Program, which will help to get more master’s students involved in applied research at the intersection 

of machine learning and policy. 

Educational Activities: The Event and Pattern Detection Laboratory 

Over the past three years, thanks in large part to the generosity of the National Science Foundation, the 

PI has founded and directs the Event and Pattern Detection Laboratory (EPD Lab) at CMU.  The Lab 

currently consists of Dr. Neill and six fellows/students for whom he is the principal research advisor: one 

post-doctoral fellow (Dr. Feng Chen), three Heinz College Ph.D. students (Skyler Speakman, Edward 

McFowland III, and Sriram Somanchi), one student in the Joint Ph.D. Program in Machine Learning and 

Policy (Seth Flaxman), and one SCS master’s student (Kenton Murray).  All of these students are working 

on research highly relevant to the goals of this project, as described in the sections above, and at least 

two additional students will join the project in the coming year.  Strong emphasis is placed on student 

mentoring and group cohesion: Dr. Neill meets individually with each fellow/student on a weekly basis, 

along with bi-weekly lab meetings and occasional social events.  Eight additional master’s students 

involved with this project have successfully completed their studies in the past two years, including one 

LTI student (Yandong Liu), four MSIT-VLIS students (Amrut Nagasunder, Tarun Kumar, Xin Wu, and Kai 

Liu), one secondary MS in Machine Learning student (Kan Shao), and two MISM students (Rajas Lonkar 

and Yating Zhang).  All of these students were very successful in their job search and now have positions 

in industry, government, or Ph.D. programs.  Notable accomplishments by EPD Lab students related to 

this project include: 

 EPD Lab students have won three of the last five “Best Paper Awards” given each year by Heinz 

College to the best “First Heinz Research Paper” (presented by 2nd year students) and “Second Heinz 

Research Paper” (presented by 3rd year students): 

o Seth Flaxman won the 2013 Suresh Konda Award (“Best First Heinz Research Paper”) for his 

paper, “Correlates of homicide: new space/time interaction tests for spatiotemporal point 

processes” (Task 4a). 

o Sriram Somanchi won the 2013 George Duncan Award (“Best Second Heinz Research 

Paper”) for his paper, “Discovering Anomalous Patterns in Large Digital Pathology Images” 

(Task 4d). 



o Ed McFowland won the 2012 Suresh Konda Award (“Best First Heinz Research Paper”) for 

his paper, “Fast Generalized Subset Scan for Anomalous Pattern Detection” (Task 2a). 

o Also, Skyler Speakman was the runner-up for the 2011 George Duncan Award (“Best Second 

Heinz Research Paper”, for his paper, “Pattern Detection with Temporal Consistency and 

Connectivity Constraints” (Task 3c). 

 Research related to this project has led to the completion of seven First and Second Heinz Research 

Papers (by Skyler Speakman, Ed McFowland, Sriram Somanchi, and Seth Flaxman), three MSIT 

Capstone Projects (by Amrut Nagasunder, Tarun Kumar, and Xin Wu), and Kan Shao’s Data Analysis 

Project (equivalent to a master’s thesis for the MS in Machine Learning). 

 Two EPD Lab students (Skyler Speakman and Ed McFowland), currently pursuing their PhDs in 

Information Systems at Heinz College, were admitted into CMU’s secondary MS program in Machine 

Learning.  One additional student (Sriram Somanchi) will be applying this year. 

 Two EPD Lab students (Ed McFowland and Sriram Somanchi) have been awarded fellowships to 

participate in this year’s “Data Science for the Social Good” summer program. 

While we have presented multiple papers and talks under the EPD Lab banner in the past year, in the 

next year we hope to give the lab greater visibility by putting together a high-quality website (to replace 

our temporary website, currently linked off of the PI’s home page), making more of our software 

publicly available, and inviting our faculty research collaborators (and the students they are advising) to 

become affiliated with the lab. 

Outreach and Professional Activities: 

Dr. Neill has given multiple guest lectures related to his work on this project in the Heinz Ph.D. seminar, 

Heinz Faculty Research Seminar, SCS Immigration Course, and Workshop on Machine Learning and 

Social Science at CMU, as well as guest lecturing in multiple CMU courses.  He also was the PI of a $10M, 

university-wide grant proposal effort (leading a team of 37 CMU faculty members across 21 university 

departments) to create a Center for Development Data Analytics, focused on applying state-of-the-art 

machine learning methods to various problems in international development.  This proposal was well 

received by the U.S. Agency for International Development (USAID), receiving very positive feedback and 

reaching the final round of selection.  Though it was not funded at that time, USAID is now reconsidering 

some proposals that reached the final round, including ours.  Also, one piece of this work (focusing on 

Dr. Neill’s event detection and prediction work, as applied to detection of patterns of human rights 

abuses, violence, and conflict) has received initial funding from the MacArthur Foundation. 

As noted above, Dr. Neill helped to organize a CMU workshop on “Machine Learning for the Social 

Sciences” in October 2012, along with a follow-up lecture series that started in Spring 2013 and will 

continue in the 2013-14 academic year.  Additionally, he served as Scientific Program Chair for the 2011 

International Society for Disease Surveillance Annual Conference.  As program chair, his responsibilities 

included choosing and directing the Scientific Program Committee, coordinating the abstract submission 

and review process, and inviting speakers, with principal responsibility for the scientific content of the 

conference.  The conference was an outstanding success, with 321 registered participants, 96 

contributed talks, 65 posters, and 10 invited talks.  Dr. Neill has also been serving as the AI and Health 



Department Editor of IEEE Intelligent Systems, with the goal of presenting novel research and exciting 

applications at the intersection of artificial intelligence, machine learning, and health.  In the past year, 

he also served on two expert panels: “Urban Analytics and Neighborhood Health: Bridging Social and 

Computer Science Perspectives to Inform Research, Policy, and Practice”, organized and hosted by the 

MacArthur Foundation (Chicago, IL, May 2012), as well as the Subcommittee on Youth Violence for the 

Advisory Committee to the Social, Behavioral and Economic Sciences Directorate, National Science 

Foundation (Washington, DC, February 2013).  The subcommittee’s report, commissioned by 

Congressman Frank Wolf in response to the shooting at Sandy Hook Elementary, and focusing primarily 

on risk factors associated with mass shootings, was presented to Congress by Dr. Brad Bushman and NSF 

Director Dr. Subra Suresh, and was discussed at a hearing before the House Appropriations Commerce-

Justice-Science (CJS) subcommittee. Dr. Neill’s role focused primarily on identifying potential uses, 

challenges, and open questions for future research in event prediction, and the potential roles of 

machine learning and data mining in understanding the signaling behavior that precedes rare events 

such as mass shootings.  The full report, “Youth Violence: What We Need To Know”, is available at: 

http://wolf.house.gov/uploads/Violence_Report_Long_v4.pdf. 

  

http://wolf.house.gov/uploads/Violence_Report_Long_v4.pdf



