
Search-based Planning for Large Dynamic

Environments

Maxim Likhachev

September 2005
CMU-CS-05-182

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements
for the Degree of Doctor of Philosophy

Thesis Committee:
Geoff Gordon (co-chair)

Sebastian Thrun (co-chair)
Manuel Blum

Sven Koenig, University of Southern California

c©Copyright Maxim Likhachev, 2005

This research was sponsored in part by the Defense Advanced Research
Projects Agency (DARPA), in particular, its MICA and MARS programs. The
views and conclusions expressed in this publication are those of the author and
should not be interpreted as representing the official policies, either expressed or
implied, of DARPA, or the U.S. government.

Keywords: planning, replanning, anytime planning, search, heuristic
search, incremental search, anytime search, A* search, Dijkstra’s.

iii

Abstract

Agents operating in the real world often have to act under the conditions
where time is critical: there is a limit on the time they can afford to spend on
deliberating what action to execute next. Planners used by such agents must
produce the best plans they can find within the amount of time available.
The strategy of always searching for an optimal plan becomes infeasible in
these scenarios. Instead, we must use an anytime planner. Anytime planners
operate by quickly finding a highly suboptimal plan first, and then improving
it until the available time runs out.

In addition to the constraints on time, world models used by planners are
usually imperfect and environments are often dynamic. The execution of a
plan therefore often results in unexpected outcomes. An agent then needs to
update the model accordingly and re-execute a planner on the new model.
A planner that has a replanning capability (a.k.a. an incremental planner)
can substantially speed up each planning episode in such cases, as it tries to
make use of the results of previous planning efforts in finding a new plan.

Combining anytime with replanning capabilities is thus beneficial. For one,
at each planning episode it allows the planner to produce a better plan within
the available time: both in finding the first plan as well as in improving it,
the planner can use its replanning capability to accelerate the process. In
addition, the combination allows one to interleave planning and execution
effectively. While the agent executes the current plan, the planner can con-
tinue improving it without having to discard all of its efforts every time the
model of the world is updated.

This thesis concentrates on graph-based searches. It presents an alternative
view of A* search, a widely popular heuristic search in AI, and then uses this
view to easily derive three versions of A* search: an anytime version, an
incremental version and a version that is both anytime and incremental.
Each of these algorithms is also able to provide a non-trivial bound on the
suboptimality of the solution it generates. We believe that the simplicity,
the existence of suboptimality bounds and the generality of the presented
methods contribute to the research and development of planners well suited
for systems operating in the real world.

iv

Acknowledgements

First of all, I would like to thank my advisors, Geoff Gordon and Sebas-
tian Thrun, for letting me pursue the research I was most interested in and
providing guidance whenever needed. I would also like to thank the other
members of my thesis committee, Manuel Blum and Sven Koenig, for be-
ing very supportive throughout my Ph.D. studies. In particular, I am very
grateful to Sven Koenig for introducing me to search-based planning and
then being always ready to help with my research in this area. In addition,
I would like to thank the other academic mentors that I worked with during
my graduate studies, including Ronald C. Arkin, Chris Atkeson and Zoubin
Ghahramani.

I would also like to acknowledge a number of colleagues I had worked with
throughout my graduate studies, both at CMU and Georgia Tech. This
list includes Rahul Biswas, Tom Collins, Yoichiro Endo, David Furcy, Dirk
Haehnel, Michael Kaess, Zsolt Kira, Yaxin Liu, H. Brendan McMahan, Mike
Montemerlo, Nick Roy, Rudy Triebel and Daniel Wilson. I would like to
thank separately my colleague at CMU, Dave Ferguson, as our fruitful col-
laborations had direct influence on the work presented in this thesis.

Finally, and most importantly, I would like to thank my family. This work
would not have been done without the love and invaluable help of my par-
ents in every aspect of my life. I am grateful to my wife, Alla, for her moral
support and devotion to me during my graduate studies and to my beautiful
daughter, Alexandra, for making sure I did not work long hours.

Contents

1 Introduction 5

1.1 Background . 9

1.2 Related Work . 12

2 ARA*: Anytime A* Search with Provable Bounds on Sub-
optimality 21

2.1 Single-shot Search under Overconsistent Initialization 21

2.1.1 Reformulation of A* Search Using Inconsistent States . 22

2.1.2 Generalizing Priorities 26

2.1.3 Generalizing to Arbitrary Overconsistent Initialization 28

2.2 Anytime Search . 31

2.2.1 Using Weighted A* Searches to Construct an Anytime
Heuristic Search with Provable Suboptimality Bounds . 31

2.2.2 ARA*: An Efficient Version of Anytime Heuristic
Search with Provable Suboptimality Bounds 33

2.2.3 Theoretical Properties of ARA* 37

2.2.4 Experimental Analysis of the Performance of ARA* . . 38

2.3 Proofs for Single-shot Search under Overconsistent Initialization 41

2.3.1 Pseudocode . 41

2.3.2 Notation . 41

2.3.3 Proofs . 42

2.4 Proofs for Anytime Repairing A* 48

2.4.1 Pseudocode . 48

2.4.2 Notation . 49

2.4.3 Proofs . 50

2.5 Summary . 52

1

2 CONTENTS

3 LPA*: Incremental A* Search 55
3.1 The Effect of Cost Changes 55
3.2 Single-shot Search under Arbitrary Initialization 58

3.2.1 An Offline Approach to Correcting Initialization 58
3.2.2 An Online Approach to Correcting Initialization 59

3.3 Incremental Search . 63
3.3.1 LPA* . 63
3.3.2 Theoretical Properties of LPA* 66
3.3.3 Extensions to LPA* . 68
3.3.4 Experimental Analysis of the Performance of LPA* . . 69

3.4 Proofs for Single-shot Search under Arbitrary Initialization . . 71
3.4.1 Pseudocode . 71
3.4.2 Notation . 71
3.4.3 Proofs . 72

3.5 Proofs for Lifelong Planning A* 85
3.5.1 Pseudocode . 85
3.5.2 Notation . 85
3.5.3 Proofs . 85

3.6 Summary . 91

4 Anytime D*: Anytime Incremental A* with Provable
Bounds on Suboptimality 93
4.1 Anytime D* . 93

4.1.1 Combining ARA* with LPA* 93
4.1.2 Example . 97
4.1.3 Theoretical Properties of Anytime D* 101
4.1.4 Experimental Analysis of the Performance of Anytime

D* . 102
4.2 Proofs for Anytime D* . 106

4.2.1 Pseudocode . 106
4.2.2 Notation . 106
4.2.3 Proofs . 107

4.3 Summary . 112

5 Application to Outdoor Robot Navigation 113
5.1 Problem . 113
5.2 Our Approach . 115
5.3 Examples . 116

CONTENTS 3

6 A Brief Guide to Usage 121
6.1 Search-based Planning versus Other Planning Approaches . . 122
6.2 Applying ARA*, LPA* or AD* 124

7 Summary of Contributions 129

4 CONTENTS

Chapter 1

Introduction

The mechanism for deciding what to do next is one of the key components
in an autonomous agent. For example, consider one of the most common
problems in robotics that is also simple to illustrate: an autonomous robot
that controls in which direction to move needs to navigate from its current
position to a goal point (see figure 1.1(a)). The robot has some information
about the environment, such as the areas that are traversable and those that
are not, and based on this information needs to decide in which direction
it should move next. The robot must take moves that make progress in
reaching the goal point without causing catastrophic failures or situations
that make impossible to reach the goal (e.g., falling off a cliff or moving into
a one-way road that leads to a dead-end). A common approach that ensures
this, at least when no critical information about the environment is missing,
is to generate some plan of reaching a goal - a path shown in figure 1.1(a),
for example - based on the currently available information, start executing
the plan and re-plan if the environment changes or the agent gathers new
information.

One of the widely-popular ways to generate a plan is graph-based search.
Graph-based searches are theoretically well-grounded, extensively studied
and general enough to be applicable in many domains. For instance, to
generate a plan for our robot navigation example we first discretize the en-
vironment (figure 1.1(b)). We then construct a weighted graph where each
state encodes the position of a cell, each directed edge between two states
encodes an action of moving between two unobstructed cells that correspond
to these states, and the weight of an edge is the length of the correspond-
ing move (figure 1.1(c,d)). We then search the graph for a path from the

5

6 CHAPTER 1. INTRODUCTION

(a) environment map (b) discretized map

(c) a segment of discretized map (d) the graph corresponding to (c)

Figure 1.1: An example of planning for the robot navigation problem. The
robot is initially at START and needs to navigate to GOAL. Untraversable
areas are shown in black, traversable in white. (a) - the map of the environ-
ment as known to the robot; (b) - the map after discretization; (c) - a small
segment of discretized map; (d) - the graph that corresponds to the map in
(c) and is used by search to find a path.

state that corresponds to the position of the cell the robot is in to the state
that corresponds to the position of the cell the goal is in. The found path
is then the plan that the robot can follow. In particular, it can start ex-
ecuting the first action along this path. A uniform discretization that we
used is, perhaps, one of the simplest ways to construct a graph. A num-
ber of other more complex but often more efficient alternatives exist such
as graphs constructed based on non-uniform discretizations of environment
(e.g., [82]), based on trapezoidal cell decomposition for environments with
polygonal obstacles (e.g., [70]), based on random sampling of environment
(e.g., [41]) and based on other methods (the description of many of them can
be found in [55]).

7

Given a graph, the main question then becomes what search algorithm
to use for finding a path of a reasonable cost in it. Dijkstra’s algorithm is
an efficient search algorithm for finding a least-cost path in a graph when no
other information besides the graph is given. A* search [64] - a popular search
algorithm in AI community - extends Dijkstra’s algorithm by incorporating
lower bounds on the costs of paths from states to the goal state. It uses these
bounds to avoid the evaluation of states that have the bounds too high to
belong to an optimal path from the start state to the goal state. While A*
search also returns an optimal solution, it can often be several magnitudes
faster than Dijkstra’s algorithm when non-trivial lower bounds are provided.
In figure 1.1 for instance, a simple Euclidean distance between a cell and the
goal cell can be used as an effective and cheap to compute lower bound on
the length of a shortest path from the corresponding state to the goal state.

Unfortunately, in reality the problems can often be too large for finding
an optimal plan within an acceptable time. Moreover, even when an optimal
plan is found initially, the model of the problem is rarely perfect, the world
can rarely be predicted well, and therefore while executing the plan an agent
may often find discrepancies in the model. It then needs to update the model
and re-plan. Finding an optimal plan every time it needs to re-plan would
make the agent stop execution for too long and too often. Anytime plan-
ning [14,87] presents an appealing alternative. Anytime planning algorithms
try to find the best plan they can within the amount of time available to
them. They operate by quickly finding an approximate and possibly highly
suboptimal plan first, and then improving it until the available time runs out.
In addition to being able to meet time deadlines, many of such algorithms
make it also possible to interleave planning and execution: while the agent
executes its current plan, the planner can improve it. To this end, chapter 2
of this thesis develops an anytime heuristic search algorithm, called Any-
time Repairing A* (ARA*). The algorithm has control over a suboptimality
bound of the solution it produces, which it uses to achieve the anytime prop-
erty: it starts by finding a suboptimal solution quickly using a loose bound,
then tightens the bound progressively as time allows. Given enough time it
finds a provably optimal solution. While improving its bound, ARA* reuses
previous search efforts and, as a result, is significantly more efficient than the
other few existing anytime search methods. The chapter demonstrates this
empirically on the problem of motion planning for a high degree-of-freedom
simulated robot arm.

Despite the usefulness of anytime planning algorithms for systems operat-

8 CHAPTER 1. INTRODUCTION

ing in the real world, the problem arises when the model is not close to being
perfect or the environment is dynamic, and both cases do happen often. In
these cases the agent needs to update the model often. Unfortunately, the
updates to the model invalidate all of the previous efforts of the planner and
it has to start working on a new plan from scratch. This is especially unfor-
tunate when one tries to interleave planning with execution. All the efforts
spent on improving a plan during execution become wasted after a single
update to the model since the problem becomes different even though the
differences can often be small. For example, in our robot navigation problem
the robot may start out knowing the map only partially, plan assuming that
all unknown space is traversable and then begin executing the plan. While
executing the plan, it senses the environment around it and as it discovers
new obstacles it updates the map and constructs a new plan (e.g., [51, 63]).
As a result, the robot has to plan frequently during its execution. Replan-
ning algorithms are helpful in such cases as they use the results of previous
planning efforts in finding a plan for a problem that has slightly changed.
Chapter 3 of this thesis develops an incremental heuristic search algorithm,
called Lifelong Planning A* (LPA*). The first search of LPA* is the same
as that of A* search, but all subsequent searches of LPA* are usually much
faster because it tries to reuse as much of its previous search effort as possible.

While LPA* speeds up substantially a series of searches for similar prob-
lems it lacks the anytime property of ARA*, namely, once it finds a solution
it stops and does not improve the solution even if more planning time is
available. LPA* can only be pre-configured either as a search for an opti-
mal solution or as a search for a solution bounded by a given suboptimality
factor. Chapter 4 addresses this by developing a search algorithm, anytime
D* (AD*), that combines the anytime and incremental properties together.
The algorithm re-uses its old search efforts while simultaneously improving
its previous solution (ARA* capability) as well as re-planning if necessary
(LPA* capability). Besides merely speeding up planning, this combination
allows one to interleave planning and execution more effectively. The planner
can continue to improve a solution without having to discard all of its efforts
every time the model of the world is updated. To the best of our knowledge,
AD* is the first search algorithm that is both anytime and incremental, and
just like ARA* and LPA*, AD* also provides bounds on the suboptimality
of each solution it returns. In chapter 4 we experimentally demonstrate the
advantages of AD* over the searches that are either anytime or incremental
but not both on the problem of motion planning for a simulated robot arm.

1.1. BACKGROUND 9

In chapter 5 we demonstrate how AD* enables us to successfully solve the
problem of efficient path-planning for mobile robots that takes into account
the dynamics of the robot. Optimal trajectories in large outdoor environ-
ments involve fast motion and sweeping turns at speed. In such environments
it is particularly important to take advantage of the robot’s momentum and
find dynamic rather than static plans. To address this we extend the prob-
lem of planning in a 2D state space, figure 1.1 example, to the problem of
planning in a 4D state space: xy position, orientation, and velocity. High di-
mensionality and large environments result in very large state spaces for the
planner, however. They make it computationally infeasible for the robot to
plan optimally every time it discovers new obstacles. To solve this problem
we built a planner that uses AD* in its core for planning and re-planning.
Chapter 5 describes the planner and demonstrates its behavior. The plan-
ner has been successfully used for navigating several robotic systems in large
outdoor environments that were initially completely or partially unknown.

The development of the three main algorithms in this thesis, namely any-
time, incremental, and both anytime and incremental versions of A*, are all
mainly due to the simple alternative view of A* search that we develop in sec-
tion 2.1 and the extension of this view presented in section 3.2. We hope that
this interpretation of A* search will inspire research on other search-based
algorithms, while the simplicity, generality and practical utility of the pre-
sented algorithms will contribute to the research and development of planners
well suited for autonomous agents operating in the real world.

1.1 Background

In this thesis we concentrate on planning problems represented as a search
for a path in a known finite graph. We use S to denote the finite set of
states in the graph. succ(s) denotes the set of successor states of state s ∈ S,
whereas pred(s) denotes the set of predecessor states of state s. For any pair
of states s, s′ ∈ S such that s′ ∈ succ(s) we require the cost between the two
to be positive: 0 < c(s, s′) ≤ ∞.

Every time a search algorithm is executed it is given a graph that rep-
resents the problem and two states, sstart and sgoal. The task of the search
algorithm is to find a path from sstart to sgoal, denoted by π(sstart), as a se-
quence of states {s0, s1, . . . , sk} such that s0 = sstart, sk = sgoal and for every
1 ≤ i ≤ k si ∈ succ(si−1). This path thus defines a sequence of valid tran-

10 CHAPTER 1. INTRODUCTION

sitions between states in the graph, and an agent can therefore execute the
corresponding actions that will place the agent in the desired goal state if
the planning model is correct. The cost of the path is the summation of the
costs of the corresponding transitions, that is,

∑k
i=1 c(si−1, si). For any pair

of states s, s′ ∈ S we let c∗(s, s′) denote the cost of a least-cost path from s
to s′. For s = s′ we define c∗(s, s′) = 0.

The goal of shortest path search algorithms such as A* search is to find a
path from sstart to sgoal whose cost is minimal, that is equal to c∗(sstart, sgoal).
Suppose for every state s ∈ S we knew the cost of a least-cost path from sstart

to s, that is, c∗(sstart, s). Let us denote such cost by g∗(s). Then a least-cost
path from sstart to sgoal can be re-constructed in a backward fashion as follows:
start at sgoal, and at any state si pick a state si−1 = arg mins′∈pred(si)(g

∗(s′)+
c(s′, si)) until si−1 = sstart (ties can be broken arbitrarily). To see that a path
π(sstart) = {sstart = s0, s1, . . . , si−1, si, . . . , sk = sgoal} re-constructed this way
will be a least-cost path just note that the state s′ preceding any state si in
any least-cost path from sstart to si must be such that the summation of the
cost of a least-cost path from sstart to it and the cost of a transition from s′ to
si is minimal. Put mathematically, si−1 = arg mins′∈pred(si)(g

∗(s′) + c(s′, si)).

Consequently, algorithms like A* search try to compute g∗-values. In
particular, A* maintains g-values for each state it has visited so far. g(s) is
always the cost of the best path found so far from sstart to s. If no path to s
has been found yet then g(s) is assumed to be∞ (this includes the states that
have not been visited by search yet). Thus, the g-values are always upper
bounds on the g∗-values. The simple pseudocode in figure 1.2 maintains the
g-values this way. This code is not A* search but rather is its generalization.

1 OPEN = {sstart};
2 g(sstart) = 0;

3 while(sgoal is not expanded)

4 remove some state s from OPEN ;

5 for each successor s′ of s

6 if g(s′) > g(s) + c(s, s′)

7 g(s′) = g(s) + c(s, s′);

8 insert s′ into OPEN ;

Figure 1.2: Computation of the g-values via repetitive expansions

The code starts by setting g(sstart) to 0 and inserting sstart into OPEN.
Given the assumption that all the g-values are initially ∞ (initialization can

1.1. BACKGROUND 11

usually be done during the first time a state is visited by search), the g-
values before the loop are all upper bounds on the corresponding g∗-values.
The code then repetitively selects states from OPEN and expands them -
executes lines 5 through 8 - until sgoal is expanded. At any point in time
OPEN is a set of states that are candidates for expansion. These are also the
states to which new paths have been found but have not been propagated
to their children yet. As a result, the expansion of state s involves checking
if a path to any successor state s′ of s can be improved by going through
state s, and if so then setting the g-value of s′ to the cost of the new path
found and inserting it into OPEN. This way, s′ will also be selected for
expansion at some point and the cost of the found path will be propagated
to its children. Thus, the g-values are always the costs of paths found and
therefore are always upper bounds on the corresponding g∗-values.

If, when the algorithm terminates, the g-values of states on at least one of
the least-cost paths from sstart to sgoal are exactly equal to the corresponding
g∗-values, then one can re-construct a least-cost path from sstart to sgoal in a
backward fashion as follows: start at sgoal, and at any state si pick a state
si−1 = arg mins′∈pred(si)(g(s′)+ c(s′, si)) until si−1 = sstart (ties can be broken
arbitrarily). Let us call this path greedy. It is constructed in exactly the
same way as a least-cost path constructed using g∗-values except here we use
g-values instead. Since the g-values are all upper bounds on the g∗-values
and the g-values of states on at least one of the least-cost paths from sstart

to sgoal are exactly equal to the g∗-values, then only those states will be the
minimizing states.

The goal then is to expand states in such order as to minimize the number
of expansions required to guarantee that the states on at least one of the
least-cost paths from sstart to sgoal are exactly equal to the g∗-values. One
simple way to achieve this is to expand states in the order of their g-values,
a state with the smallest g-value is always expanded first. OPEN becomes a
priority queue that sorts states according to their g-values. This makes the
algorithm look very much like Dijkstra’s algorithm except that we terminate
as soon as sgoal is expanded. In the case of uniform costs it is equivalent
to Breadth-First Search. (The algorithms like this one do not use heuristics
to focus their search and are therefore commonly referred to as uninformed
searches [75].) The algorithm expands each state no more than once because
every time it expands a state, a least-cost path to it has already been found
and therefore, a better path to it will never show up later and the state will
never be re-inserted into OPEN .

12 CHAPTER 1. INTRODUCTION

A* is another instance of the search algorithm in figure 1.2. One can think
of it as a generalization of Dijkstra’s algorithm as it expands states in the
order of their g- plus h-values (i.e., g(s) + h(s)), where h-values estimate the
cost of a least-cost path from s to sgoal. The h-values must never overestimate,
or otherwise A* may return a suboptimal solution. Setting all h-values to zero
reduces A* to the search that expands states in the order of their g-values,
the uninformed search we have just described. A search with non-zero h-
values is often called an informed search [75]. In order for each state not to
be expanded more than once, h-values need to be also consistent: h(sgoal) = 0
and for any two states s, s′ ∈ S such that s′ ∈ succ(s), h(s) ≤ c(s, s′)+h(s′).
If h-values are consistent then once again every time the search expands a
state, a least-cost path to it has already been found and therefore a better
path to it will never show up later and the state will never be re-inserted into
OPEN . Ordering expansions based on the summation of g- and h-values
makes the search focus expansions on the states through which the whole
path from sstart to sgoal looks promising. In contrast, ordering expansions
based on just g-values makes the search prefer expanding states that have
paths from sstart to them of smallest costs, even if these states lead the search
away from sgoal. The searches that use heuristics can often be tremendously
faster and use much less memory than searches that do not.

1.2 Related Work

Anytime planning algorithms work by finding a first, possibly highly sub-
optimal, solution very fast and then continually working on improving the
solution until allocated time expires. The idea of anytime planning has been
proposed in AI community a while ago [14], and much work has been done
on the development of anytime planning algorithms since then (for instance,
[3, 35, 65, 69, 86]). Major fraction of the researched anytime planning algo-
rithms are domain specific, however. For example, the work in [65] constructs
an anytime planning algorithm for robot navigation in outdoor environments
based on a multi-resolution representation of the environment using wavelets.
The initial planning is done quickly in a low-resolution version of the environ-
ment. Afterwards, the plan is improved by planning in the higher-resolution
versions. ARA*, the anytime planning algorithm described in chapter 2 of
this thesis, does anytime planning on a commonly used graph representa-
tion of a problem and thus is independent of the domain. It is important to

1.2. RELATED WORK 13

note, however, that ARA* does heavily rely on the existence of informative
heuristics the efficient computation of which is usually specific to the domain.

Apart from often being domain specific, currently available anytime plan-
ning algorithms rarely provide bounds on the suboptimality of their solutions
unless the cost of an optimal solution is already known. Even less often
can these algorithms control their suboptimality. Providing suboptimality
bounds is valuable, though: it allows one to judge the quality of the current
plan, decide whether to continue or preempt search based on the current sub-
optimality, and evaluate the quality of past planning episodes and allocate
time for future planning episodes accordingly. Control over the suboptimal-
ity bounds helps in adjusting the tradeoff between computation and plan
quality. ARA* both provides suboptimality guarantees for its solutions and
allows one to control these bounds. To the best of our knowledge ARA* is
the only domain-independent anytime planning algorithm that is able to do
this.

Much less work has actually been done on researching anytime graph-
based searches. A simple and quite common way of transforming a search
into an anytime search is to first search in only a small region of the state
space surrounding the current state of an agent (such searches are commonly
referred to as agent-centered searches [13,45]), return the best solution found
there, and then to iteratively increase the region and return the best solution
in the new region until either the time available for planning expires or the
region has grown to the whole state space. Such searches can usually exhibit
good anytime behavior in any domain. In particular, such searches are ad-
vantageous in domains where coming up with any solution is hard within the
provided time window and executing a partial path is an acceptable choice.
On the negative side, such algorithms typically provide no bounds on the
quality of their solutions1 and may even return plans that lead to failures in
domains that have states with irreversible conditions (e.g., a one-way traffic
road that leads to a dead-end).

Out of anytime heuristic searches that return complete plans at any point
in time, the most closely related to ARA* is anytime heuristic search algo-
rithm called Anytime A* [84]. Both ARA* and Anytime A* rely on the fact
that in many domains inflating the heuristic by some constant ε > 1 can

1There does exist, however, a loose bound on the number of action executions required
to reach a goal for an agent that uses an agent-centered search for planning. The bound
is polynomial in the total number of states in the graph, and it assumes that the graph is
strongly connected [50].

14 CHAPTER 1. INTRODUCTION

drastically reduce the number of states A* has to examine before it can pro-
duce a solution [6,8,11,17,52,71,84]. An additional nice property of inflating
heuristics is that the cost of the solution found for an inflation factor ε is no
larger than ε times the cost of an optimal solution [66]. When obtaining a
first solution, both ARA* and Anytime A* inflate heuristics by a large ε. The
major difference is in how the algorithms improve the solution afterwards.
ARA* decreases ε and finds a new solution for this ε by efficiently repairing
the current search tree. ARA* thus controls its anytime behavior through the
control of ε. Anytime A*, on the other hand, simply continues to expand and
re-expand states after the first solution is found pruning away from OPEN
the states with f -values (g(s) + h(s), where h(s) is un-inflated) larger than
the cost of the best solution found so far. Unlike ARA*, therefore, Anytime
A* does not have a control over its suboptimality bound, except for the se-
lection of the inflation factor of the first search. Our experiments show that
ARA* is able to decrease its bounds much more gradually and, moreover,
does so significantly faster. Another advantage of ARA* is that it guarantees
to examine each state at most once during its first search, unlike Anytime
A*. This property is important because it provides a theoretical bound on
the amount of work before ARA* produces its first plan. Nevertheless, as
described in chapter 2, [84] describes a number of interesting ideas that are
also applicable to ARA*.

A few other anytime heuristic searches that return complete solutions
have been developed [29,54,83,85]. They all share the property, however, of
not being able to provide any non-trivial suboptimality bounds on their so-
lutions. On the other hand, most of them possess other nice properties that
perhaps can make them more suitable to certain domains than ARA*. The
algorithms such as depth-first branch-and-bound search [54] and Complete
Anytime Beam search [83] are variants of Depth-First search that prune away
the states that seem unlikely to belong to a good quality path from start to
goal (based on their f -values). As such, on the positive side, they tend to
use a much more limited amount of memory than A* and its variants, but on
the negative side tend to re-expand states exponentially many times and are
therefore mainly suited to domains with numerous paths to the goal where
there is a high chance of finding a solution of a reasonable quality just by
exploring a number of trajectories. Beam-Stack search [85] and ABULB [29],
on the other hand, are variants of Breadth-First search that also prune away
the states for which a path from start to goal through them looks ”bad”, but
both backtrack to guarantee completeness. They can be thought of as gener-

1.2. RELATED WORK 15

alizations of Depth-First branch-and-bound algorithms in that they explore
more than one trajectory at a time. Consequently, they are also memory-
bounded anytime search algorithms, but they can re-expand states many
times before producing even an initial solution. This is unlike ARA* which
guarantees that states are never re-expanded while working on a solution
for a particular suboptimality bound, a similar guarantee that A* with con-
sistent heuristics does. Memory-bounded algorithms may scale up to larger
domains than ARA* though, if memory becomes a bottleneck in obtaining
and improving a solution within the provided time window.

The field of re-planning has also been investigated extensively in the AI
community. Similarly to the case with anytime planning, however, most
of the work in re-planning lies outside of search-based planning, the type
of planning LPA* algorithm proposed in chapter 3 of this thesis performs.
Most notably, re-planning has been heavily developed in the area of sym-
bolic planning. Different from search-based planners, symbolic planning and
replanning algorithms use logical representations of states and the effects of
actions to avoid the instantiation of every possible state and to direct plan-
ning in a potentially more effective way. The examples of symbolic replan-
ning methods include case-based planning, planning by analogy, plan adap-
tation, transformational planning, planning by solution replay, repair-based
planning, and learning search-control knowledge. These replanning methods
have been used as part of systems such as CHEF [33], GORDIUS [76], LS-
ADJUST-PLAN [30], MRL [44], NoLimit [81], PLEXUS [2], PRIAR [40],
and SPA [34]. NoLimit, for example, accelerates a backward-chaining non-
linear planner that uses means-ends analysis, SPA accelerates a causal-link
partial-order planner, PRIAR accelerates a hierarchical nonlinear planner,
and LS-ADJUST-PLAN accelerates a planner that uses planning graphs.
Besides being based on search-based planning LPA* also differs from these
algorithms in that it finds solutions that satisfy a user specified suboptimal-
ity bound including optimal solutions if the bound is set so. In contrast, the
above listed replanning algorithms usually provide no suboptimality bounds
on their solutions.

LPA* configured to return only optimal solutions [48] (i.e., a subopti-
mality bound set to one) falls into the category of incremental search meth-
ods. Such methods solve dynamic shortest path problems, that is, path
problems where shortest paths have to be determined repeatedly as the
topology of a graph or its edge costs change [73]. They differ from sym-
bolic replanning methods in that they find shortest paths. A number of

16 CHAPTER 1. INTRODUCTION

incremental search methods have been suggested in the algorithms litera-
ture [5,18,19,24–26,31,37,43,60,72,74,77] and, to a much lesser degree, the
artificial intelligence literature [15]. They are all uninformed, that is, do not
use heuristics to focus their search, but differ in their assumptions, for ex-
ample, whether they solve single-source or all-pairs shortest path problems,
which performance measure they use, when they update the shortest paths,
which kinds of graph topology and edge costs they apply to, and how the
graph topology and edge costs are allowed to change over time [27]. If arbi-
trary sequences of edge insertions, deletions, or weight changes are allowed,
then the dynamic shortest path problems are called fully dynamic shortest
path problems [28]. LPA* configured to search for optimal solutions is an
incremental search method that solves fully dynamic shortest path problems
but, different from the incremental search methods cited above, uses heuris-
tics to focus its search and thus combines two different techniques to reduce
its search effort. LPA* as presented in this thesis can also be configured to
return solutions for any bound of suboptimality (a particular instance of a
general framework developed in [59]). It thus may also be suitable to the
domains where optimal planning is infeasible.

A particularly closely related to LPA* is an algorithm called
DynamicSWSF-FP [72]. The operation of LPA* configured to search for
optimal solutions follows very closely the operation of DynamicSWSF-FP
and even borrows such central concepts as state consistency. LPA* differs
from DynamicSWSF-FP in the following ways. First and most importantly,
LPA* is an informed search and therefore can use heuristics if available to
boost drastically its efficiency (as evidenced by our experiments in chap-
ter 3). Second, unlike DynamicSWSF-FP which can only search for optimal
solutions, LPA* as presented in this thesis can be configured to trade-off
the solution quality for the computational expense of finding it. It is impor-
tant in domains where a search for an optimal solution is infeasible. Other,
smaller differences between LPA* and DynamicSWSF-FP include the fact
that LPA* searches forward rather than backward and the fact that LPA*
maintains a solution from the start to the goal state rather than all shortest
paths to the goal.

A few incremental search methods have been developed that are also in-
formed, that is, can make use of heuristics. All of them have been developed
in the context of robot navigation. Methods like [68,80] perform re-planning
by identifying the perimeter of areas in which the states may need to be
updated, and they restart the search from there. LPA* differs from these

1.2. RELATED WORK 17

in that it finds and updates the states that need to be updated during the
search itself, and therefore directly generalizes A* search to an incremental
search. To the best of our knowledge, the only other incremental heuristic
search method that tries to update only the states that need to be updated
is D* [78]. D* and LPA*, and in particular, its extension, called D* Lite [47],
that was developed specifically for a moving agent, are similar in many re-
spects and are comparable in their performances. The algorithms, however,
are nevertheless different. In contrast to D*, LPA* is substantially simpler,
has a number of theoretical properties including ones that make it an in-
cremental version of A* and bound the number of times each state can be
expanded. LPA* as presented in this thesis also differs from D* and all the
other incremental heuristic searches in that it can plan and re-plan solutions
for a given suboptimality bound, rather than only optimal solutions. This
broadens the spectrum of problems incremental heuristic searches can be
used for.

Only few anytime replanning algorithms have been developed and, to the
best of our knowledge, all are outside of search-based planning. In particu-
lar, the ones we know of have been developed in the framework of symbolic
planning. The CASPER system [12], for example, is capable of always re-
turning a plan and constantly works on improving the plan and fixing it as
changes in the environment are detected. This is achieved, however, at the
expense of often returning plans that are only partial. The system may not
be suitable in cases when a complete solution is required before the agent
starts execution. A planner described in [23] uses local subplan replacement
methodology to quickly repair and then gradually improve a plan whenever
changes in the environment invalidate the current plan. Similarly to the any-
time incremental search, Anytime D*, described in chapter 4 of this thesis,
it also always returns a complete plan rather than a partial plan. Different
from Anytime D*, however, it provides no guarantees on the suboptimality
of a solution.

We know of no heuristic search algorithm that is both anytime and incre-
mental besides Anytime D* we present here. The figure 1.3 perhaps can serve
to better visualize different incremental and anytime algorithms developed in
the area of search-based planning. In light grey color are shown algorithms
that are optimal, that is, can only search for optimal solutions, and in dark
grey are algorithms that are able to trade-off optimality for computational
efficiency. In bold are shown the algorithms that are able to provide subop-
timality bounds on their solutions. Clearly, all optimal algorithms are shown

18 CHAPTER 1. INTRODUCTION

Figure 1.3: A graphical overview of the research on anytime and incremental
heuristic searches. In bold are shown the algorithms that provide suboptimal-
ity guarantees on their solutions. In light grey ovals are listed the algorithms
that can only search for optimal plans. The algorithms presented in this
thesis are ARA*, LPA* (and its extension D* Lite) and Anytime D*. Note
that Anytime D* is the only algorithm that lies off both of the axes.

in bold. On the y-axis are different anytime search algorithms ordered by
their anytime capability in some loose sense. Thus, the ”most anytime” algo-
rithms are agent-centered searches [13,45] as they can provide a plan in any
size and complexity domain since the plan is only partial and can often be
just a few first actions. The next group of anytime algorithms going down-
wards along the y axis includes ABULB [29], Anytime A* [84], ARA* [57]
(which is presented in this thesis), Beam-Stack [85], and CABS [83]. These
algorithms work on returning a complete plan even initially and therefore
may be less anytime in some hard-to-solve domains. Out of those algorithms
only Anytime A* and ARA* provide bounds on suboptimality. Next is DF-
BnB [54] (depth-first branch-and-bound) which is also an anytime algorithm
in the domains where there is a high chance of finding a path. On the x-
axis are incremental algorithms ordered by their degree of incrementalness in
some loose sense. Thus, at the origin is A* algorithm that is neither anytime
nor incremental. All of the incremental algorithms are optimal algorithms
except for LPA* [59] (and its extension to a moving robot, D* Lite [47]). The
graph shows LPA* as both an optimal search and a search that can trade-off
optimality for computational efficiency. Originally, LPA* was developed as

1.2. RELATED WORK 19

an optimal search [48]. Later, it was extended to a search that can find so-
lutions for any suboptimality bound [59]. The latter is the version presented
in this thesis. Currently and as far as we know, Anytime D* algorithm [56]
is the only heuristic search algorithm that lies off the two axis because it
is both anytime and incremental. It is also shown in bold as it provides
bounds on its solution suboptimality. The graph also shows that there is a
need for the future development of algorithms that add incremental planning
to the algorithms that are anytime in any domain at the expense of being
incomplete (e.g., agent-centered searches).

20 CHAPTER 1. INTRODUCTION

Chapter 2

ARA*: Anytime A* Search
with Provable Bounds on
Suboptimality

2.1 Single-shot Search under Overconsistent

Initialization

In section 2.2 we will develop anytime heuristic search algorithm, ARA*, that
provides bounds on its suboptimality. ARA* operates by executing a series
of searches with decreasing suboptimality bounds on the solution. It quickly
generates a first plan that satisfies the initial suboptimality bound and then
improves the plan so that it continues to satisfy the new bounds. ARA* gains
efficiency by making each search iteration to reuse the results of its previous
search iterations. In this section we will develop a novel formulation of A*
search that enables us to reuse the search results of its previous executions
quite easily.

In this section we will define the notion of an inconsistent state and
then formulate A* search as a repetitive expansion of inconsistent states. It
turns out that such search can be made to reuse the results of its previous
executions just by identifying all of the inconsistent states beforehand. In
this section we will also generalize the priority function that A* uses to any
function satisfying certain restrictions. This is necessary because ARA* will
use the search with different prioritization functions.

21

22 CHAPTER 2. ARA*

2.1.1 Reformulation of A* Search Using Inconsistent
States

The pseudocode below assumes the following :

1. g(sstart) = 0 and g-values of the rest of the states are set to ∞ (the initialization can also occur
whenever ComputePath encounters new states);

2. OPEN = {sstart}.

1 procedure ComputePath()

2 while(sgoal is not expanded)

3 remove s with the smallest f(s) from OPEN ;

4 for each successor s′ of s

5 if g(s′) > g(s) + c(s, s′)

6 g(s′) = g(s) + c(s, s′);

7 insert/update s′ in OPEN with f(s′) = g(s′) + h(s′);

Figure 2.1: A* Search: ComputePath function

In figure 2.1 we give a standard formulation of A* search. It is a particular
instance of the code given in figure 1.2. It specifies that the priorities accord-
ing to which states are chosen from OPEN for expansion are their f -values,
the summation of g- and h-values. Since g(s) is the cost of the best path
from sstart to s found so far, and h(s) estimates the cost of the best path from
s to sgoal, then f(s) is an estimate of the cost of the best path from sstart

to sgoal via state s. If h-values are admissible, that is, never overestimate
the cost of the least-cost path from s to sgoal, then A* search guarantees to
find an optimal path. If h-values are consistent, that is, for any two states
s, s′ ∈ S such that s′ ∈ succ(s), h(s) ≤ c(s, s′) + h(s′), then no state is ex-
panded more than once. The term expansion of state s usually refers to the
update of g-values of the successors of s (lines 4 through 7). These updates
make sure to decrease the g-value of a successor of s, whenever it is possible
to do so using g(s). Once the search finishes, the solution is given by the
greedy path, the path that is re-constructed backwards as follows: start at
sgoal, and at any state si pick a state si−1 = arg mins′∈pred(si)(g(s′) + c(s′, si))
until si−1 = sstart (ties can be broken arbitrarily). Figure 2.2 demonstrates
the operation of A* search on a simple example. We will use later the same
example to show the operation of our alternative formulation of A* search
(figure 2.7).

2.1. SEARCH UNDER OVERCONSISTENT INITIALIZATION 23

(a) after initialization (b) after the expansion of sstart

(c) after the expansion of s2 (d) after the expansion of s1

(e) after the expansion of s4 (f) after the expansion of sgoal

Figure 2.2: An example of how A* search operates. The states that have
bold borders are in OPEN . The g-values that have just changed are shown
in bold. After sgoal is expanded, a greedy path is computed and is shown in
bold.

24 CHAPTER 2. ARA*

We will now introduce a new variable, called v(s). Intuitively, these v-
values will also be the estimates of start distances, same as the g-values.
However, while g(s) is always the cost of the best path found so far from
sstart to s, v(s) is always equal to the cost of the best path found at the time
of the last expansion of s. Thus, every v-value is initially set to ∞, same as
the corresponding g-value, except for g(sstart), and then it is always reset to
the value of the state at the time it is being expanded. The new pseudocode
that involves these v-values is given in figure 2.3. In bold are shown the
introduced changes. The pseudocode in figure 2.3 is the exact equivalent of
the pseudocode of original A* search in figure 2.1: the v-values are only being
set (line 4) and do not participate in the computation of any other values.

The pseudocode below assumes the following :

1. v-values of all states are set to ∞, g(sstart) = 0 and the g-values of the rest of the states are
set to ∞ (the initialization can also occur whenever ComputePath encounters new states);

2. OPEN = {sstart}.

1 procedure ComputePath()

2 while(sgoal is not expanded)

3 remove s with the smallest f(s) from OPEN ;

4 v(s) = g(s);

5 for each successor s′ of s

6 if g(s′) > g(s) + c(s, s′)

7 g(s′) = g(s) + c(s, s′);

8 insert/update s′ in OPEN with f(s′) = g(s′) + h(s′);

Figure 2.3: A* Search: ComputePath function with v-values

Since we set v(s) = g(s) at the beginning of the expansion of s, v(s)
remains equal to g(s) while s is being expanded (lines 6 and 7). The only
way how v(s) would become different from g(s) is if g(s) changed during the
expansion of s. This is impossible, however, because for this to happen s
needs to be a successor of itself with g(s) larger than g(s) + c(s, s) in order
to pass the test on line 6. This makes c(s, s) a negative edge cost which
is inconsistent with our assumption that all edge costs are positive. One
benefit of introducing v-values is the following invariant that A* maintains:
for every state s′ ∈ S,

g(s′) = min
s′′∈pred(s′)

(v(s′′) + c(s′′, s′)). (2.1)

2.1. SEARCH UNDER OVERCONSISTENT INITIALIZATION 25

More importantly, what we ask the reader to observe is that only the
states s whose v(s) 6= g(s) are ever appear in OPEN . It is so initially, when
all states except for sstart have both v- and g-values infinite and OPEN only
contains sstart which has v(sstart) = ∞ and g(sstart) = 0. Afterwards, every
time a state is being selected for expansion it is removed from OPEN (line 3)
and its v-value is set to its g-value on the very next line. Finally, whenever a
g-value of any state is modified on line 7 it only decreases and thus becomes
strictly less than the corresponding v-value which is either still infinite if the
state was not expanded yet or equal to what the g-value of the state was
during its last expansion. After each modification of the g-value, the state is
made sure to be in OPEN (line 8).

Let us call a state s with v(s) 6= g(s) inconsistent and a state with
v(s) = g(s) consistent. Thus, OPEN is always a set of all and only states
that are inconsistent. Consequently, since all the states for expansion are
chosen from OPEN A* search expands only inconsistent states.

Here is a bit of intuitive explanation of A* operation in terms of incon-
sistent state expansions. Since at the time of expansion a state is made
consistent by setting its v-value equal to its g-value, a state remains incon-
sistent every time its g-value is decreased and until the next time the state
is expanded (sstart remains also initially inconsistent until its first expansion
since its g-value is initially zero). That is, suppose that a consistent state
s is the best predecessor for some state s′: g(s′) = mins′′∈pred(s′)(v(s′′) +
c(s′′, s′)) = v(s) + c(s, s′) = g(s) + c(s, s′). Then, if g(s) decreases we get
g(s′) > g(s)+ c(s, s′) and therefore g(s′) > mins′′∈pred(s′)(g(s′′)+ c(s′′, s′)). In
other words, the decrease in g(s) introduces an inconsistency between the g-
value of s and the g-values of its successors. Whenever s is expanded, on the
other hand, the inconsistency of s is corrected by re-evaluating the g-values
of the successors of s. This in turn makes the successors of s inconsistent.
In this way the inconsistency is propagated to the children of s via a series
of expansions. Eventually the children no longer rely on s, none of their
g-values are lowered, and none of them are inserted into the OPEN list.

Given this definition of inconsistency it is clear that the OPEN list con-
sists of exactly all inconsistent states: every time a g-value is lowered the
state is inserted into OPEN , and every time a state is expanded it is re-
moved from OPEN until the next time its g-value is lowered. Thus, the
OPEN list can be viewed as a set of states from which we need to propagate
inconsistency. The algorithm itself in its operation is still identical to A*
search. The variable v just makes it easy to identify all the states that are

26 CHAPTER 2. ARA*

inconsistent: these are all the states s with v(s) 6= g(s). In fact, in this
version of the ComputePath function, the g-values only decrease, and since
the v-values are initially infinite, all inconsistent states have v(s) > g(s). We
will call such states overconsistent. In later chapters we will encounter states
that are underconsistent, the states s with v(s) < g(s).

2.1.2 Generalizing Priorities

A* search uses one of the possible state expansion orderings. It expands
states in the order of increasing f -values. For any admissible heuristics, this
ordering guarantees optimality. In this section we generalize A* search as
presented in figure 2.3 to handle more general expansion priorities as long
as they satisfy certain restrictions. These restrictions will allow the search
to guarantee suboptimality bounds even when heuristics are inadmissible.
The pseudocode of this generalized version is given in figure 2.4. It is the
same pseudocode as before except now the function key() determines the
order in which states are expanded, and it can be any function satisfying the
restriction in the first assumption of the pseudocode. The variable ε can be
any finite real value larger than or equal to one. For example, key(s) = g(s)
corresponds to an uninformed optimal search such as Dijkstra’s, key(s) =
g(s)+h(s) corresponds to A* search, key(s) = g(s)+ ε ∗h(s) corresponds to
A* search with inflated heuristics, i.e., weighted A* search.

The restriction can be ”translated” as follows. We are given two states:
an overconsistent state s (and therefore a candidate for expansion) and a
possibly overconsistent state s′. The condition g(s′) > g(s) + ε ∗ c∗(s, s′)
implies that the g-value of state s′ might potentially overestimate the cost
of an optimal plan from sstart to state s′ by more than a factor of ε based on
the g-value of s. Hence, state s needs to be expanded first so that the path
through it can be propagated to s′ if it really is a cheaper path. This can be
ensured by setting key(s) to a smaller value than key(s′).

In section 2.3 we will show that if the restriction is satisfied then the cost
of a greedy path after the search finishes is at most ε times larger than the
cost of an optimal solution. It is easy to see that the restriction encompasses
the prioritization done by uninformed optimal searches such as Dijkstra’s
algorithm, A* with consistent heuristics and A* with consistent heuristics
inflated by some constant. For example, in case of an uninformed optimal
search, g(s′) > g(s)+ε∗c∗(s, s′) for any two states s, s′ ∈ S and ε = 1 implies
that key(s′) = g(s′) > g(s) + ε ∗ c∗(s, s′) = key(s) + ε ∗ c∗(s, s′) ≥ key(s)

2.1. SEARCH UNDER OVERCONSISTENT INITIALIZATION 27

The pseudocode below assumes the following:

1. key function satisfies the following restriction: for any two states s, s′ ∈ S if c∗(s′, sgoal) < ∞,
v(s′) ≥ g(s′), v(s) > g(s) and g(s′) > g(s) + ε ∗ c∗(s, s′), then key(s′) > key(s);

2. the v-values of all states are set to ∞, g(sstart) = 0 and the g-values of the rest of the states are
set to ∞ (the initialization can also occur whenever ComputePath encounters new states);

3. OPEN = {sstart}.

1 procedure ComputePath()

2 while(sgoal is not expanded)

3 remove s with the smallest key(s) from OPEN ;

4 v(s) = g(s);

5 for each successor s′ of s

6 if g(s′) > g(s) + c(s, s′)

7 g(s′) = g(s) + c(s, s′);

8 insert/update s′ in OPEN with key(s′);

Figure 2.4: A* search with a generalized priority function: ComputePath
function

since costs cannot be negative. Thus, the solution is optimal. In case of A*
search with consistent heuristics inflated by ε, g(s′) > g(s) + ε ∗ c∗(s, s′) for
any two states s, s′ ∈ S implies that

key(s′) = g(s′)+ε∗h(s′) > g(s)+ε∗h(s′)+ε∗c∗(s, s′) ≥ g(s)+ε∗h(s) = key(s).
(2.2)

where we used the fact that h(s) ≤ c∗(s, s′) + h(s′) when heuristics are
consistent [66]. In fact, it can be shown in the exact same way that the
restriction holds for key(s) = g(s) + h(s), where heuristics are any values
satisfying ε-consistency [59]: h(sgoal) = 0 and for any two states s, s′ ∈ S
h(s) ≤ ε∗c(s, s′)+h(s′). Many different heuristics are ε-consistent for a suit-
able ε including consistent heuristics, consistent heuristics inflated by some
constant, the summation of consistent heuristics (as often used in heuris-
tic search-based symbolic planning) and general inadmissible heuristics with
bounds on how much they under- and overestimate the true values [59].

In general, when heuristics are inconsistent the states in A* search may be
re-expanded multiple times. As we prove later in section 2.3, if we restrict the
expansions to no more than one per state, then the algorithm is still complete
and possesses ε-suboptimality if heuristics satisfy ε-consistency. We restrict

28 CHAPTER 2. ARA*

the expansions using the set CLOSED in the pseudocode shown in figure 2.5
(in the same way it is usually used in A* when re-expansions are not allowed).

The pseudocode below assumes the following:

1. key function satisfies the following restriction: for any two states s, s′ ∈ S if c∗(s′, sgoal) < ∞,
v(s′) ≥ g(s′), v(s) > g(s) and g(s′) > g(s) + ε ∗ c∗(s, s′), then key(s′) > key(s);

2. the v-values of all states are set to ∞, g(sstart) = 0 and the g-values of the rest of the states are
set to ∞ (the initialization can also occur whenever ComputePath encounters new states);

3. CLOSED = ∅ and OPEN = {sstart}.

1 procedure ComputePath()

2 while(sgoal is not expanded)

3 remove s with the smallest key(s) from OPEN ;

4 v(s) = g(s); CLOSED← CLOSED ∪ {s};
5 for each successor s′ of s

6 if g(s′) > g(s) + c(s, s′)

7 g(s′) = g(s) + c(s, s′);

8 if s′ 6∈ CLOSED

9 insert/update s′ in OPEN with key(s′);

Figure 2.5: A* search with a generalized priority function: ComputePath
function with at most one expansion per state

Initially, CLOSED is empty. Afterwards, every state that is being ex-
panded is added to it (line 4) and no state that is already in CLOSED is
inserted into OPEN and thus considered for expansion (line 8).

2.1.3 Generalizing to Arbitrary Overconsistent Initial-
ization

In previous sections we had a fixed initialization of states. We set the v-values
and the g-values of all states except for sstart to infinity, we set v(sstart) also
to infinity and we set g(sstart) to 0. In this section we relax this assumption
and the only restriction we make is that no state is underconsistent (with
v-value strictly smaller than its g-value) and all g-values satisfy the invariant
that A* maintains, namely the equation 2.1. This arbitrary overconsistent
initialization will allow us to re-use previous search results when running
more than one search in a row, by re-using the state values from previous
searches.

2.1. SEARCH UNDER OVERCONSISTENT INITIALIZATION 29

The pseudocode under this initialization is shown in figure 2.6. It remains
exactly the same as before except for the terminating condition (line 2) of
the while loop. The loop now terminates as soon as the key(sgoal) becomes
the same or less than the key of the state to be expanded next, that is, the
smallest key in OPEN (we assume that the min operator on an empty set
returns ∞). The reason is that under the new initialization sgoal may never
be expanded if it was already correctly initialized. For instance, if all states
are initialized in such a way that all of them are consistent, then OPEN
is initially empty, and the search terminates without a single expansion.
This is correct, because when all states are consistent, then for every state
s, g(s) = mins′∈pred(s)(v(s′) + c(s′, s)) = mins′∈pred(s)(g(s′) + c(s′, s)), which
means that the g-values are equal to corresponding g∗-values and no search
is necessary anymore, the greedy path is an optimal solution.

The pseudocode below assumes the following:

1. key function satisfies the following restriction: for any two states s, s′ ∈ S if c∗(s′, sgoal) < ∞,
v(s′) ≥ g(s′), v(s) > g(s) and g(s′) > g(s) + ε ∗ c∗(s, s′), then key(s′) > key(s);

2. v− and g−values of all states are initialized in such a way that v(s) ≥ g(s) = mins′∈pred(s)(v(s′)+
c(s′, s)) ∀s ∈ S − {sstart} and v(sstart) ≥ g(sstart) = 0 (the initialization can also occur whenever
ComputePath encounters new states);

3. CLOSED = ∅ and OPEN contains exactly all and only overconsistent states (i.e., states s whose
v(s) > g(s)).

1 procedure ComputePath()

2 while(key(sgoal) > mins∈OPEN (key(s)))

3 remove s with the smallest key(s) from OPEN ;

4 v(s) = g(s); CLOSED←CLOSED ∪ {s};
5 for each successor s′ of s

6 if g(s′) > g(s) + c(s, s′)

7 g(s′) = g(s) + c(s, s′);

8 if s′ 6∈ CLOSED

9 insert/update s′ in OPEN with key(s′);

Figure 2.6: A* search with a generalized priority function and under gener-
alized overconsistent initialization: ComputePath function

In figure 2.7 we show the operation of this version of A* search. Some of
the initial state values are already finite. These values, for example, could
have been generated by previous searches. Such will be the case with ARA*
that will execute the ComputePath function repeatedly, gradually improving

30 CHAPTER 2. ARA*

(a) initial state values (b) after the expansion of s4

(c) after the computation of a greedy path

Figure 2.7: An example of how the ComputePath function operates under
an arbitrary overconsistent initialization. States are expanded in the order
of f -values (the summation of g- and h-values). All overconsistent states
need to be in OPEN initially. The states that are in OPEN are shown with
bold borders. The g- and v-values that have just changed are shown in bold.
After the search terminates, a greedy path is computed and is shown in bold.
Note that the computed greedy path and all g-values are the same as what
regular A* search would have generated (figure 2.2).

its solution. The prioritization function in the example is the summation of
g- and h-values. That is, key(s) = g(s) + h(s).

In section 2.3 we prove the theorem about the correctness, ε-suboptimality
and the efficiency of this version of A* search. Here, we just give few of the
most important of those theorems. The key property of the search is that it
maintains the following invariant after each expansion.

Theorem 1 At line 2, for any state s with (c∗(s, sgoal) < ∞ ∧ key(s) ≤
key(u) ∀u ∈ OPEN), it holds that g∗(s) ≤ g(s) ≤ ε ∗ g∗(s).

In other words, every state s that may theoretically be on a path from

2.2. ANYTIME SEARCH 31

sstart to sgoal (c∗(s, sgoal) < ∞) and whose key is smaller than or equal to
the smallest key in OPEN has a g-value that is at worst ε-suboptimal and
therefore does not have to be processed anymore. Since a g-value is the cost
of the best path found so far from sstart to s, this path is at most ε-suboptimal.
Given this property and the terminating condition of the algorithm, it is clear
that after the algorithm terminates, it holds that g(sgoal) ≤ ε ∗ g∗(sgoal) and
the found path from sstart to sgoal is at most ε-suboptimal.

Theorem 2 When the ComputePath function exits the following holds:
g∗(sgoal) ≤ g(sgoal) ≤ ε ∗ g∗(sgoal) and the cost of a greedy path from sstart

to sgoal is no larger than ε ∗ g∗(sgoal).

Just like A* search with consistent heuristics, this version guarantees no
more than one expansion per state.

Theorem 3 No state is expanded more than once during the execution of
the ComputePath function.

Additionally, the following theorem shows that when the search is exe-
cuted with a non-trivial initialization of states, the states with the v-values
that cannot be lowered by finding better paths to them are not expanded.
This may result in substantial computational savings when using this search
for repetitive planning as discussed in the next section when presenting the
ARA* algorithm.

Theorem 4 A state s is expanded only if v(s) is lowered during its expan-
sion.

2.2 Anytime Search

2.2.1 Using Weighted A* Searches to Construct an
Anytime Heuristic Search with Provable Subop-
timality Bounds

Normally, the pseudocode of A* search in figure 2.6 uses key(s) = g(s)+h(s),
where h-values are consistent and therefore do not overestimate the cost of
paths from states to the goal state. In many domains, however, A* search
with inflated heuristics can drastically reduce the number of states it has to

32 CHAPTER 2. ARA*

ε = 2.5 ε = 1.5 ε = 1.0 (optimal search)

Figure 2.8: A* searches with inflated heuristics

examine before it produces a solution [6,8,11,17,52,71,84]. In our framework
this is equivalent to setting key(s) = g(s) + ε ∗ h(s). While the path the
search returns can be suboptimal, the search also provides a bound on the
suboptimality, namely, the ε by which the heuristic is inflated [66]1. Thus,
setting ε to 1 results in standard A* with an uninflated heuristic and the
resulting path is guaranteed to be optimal. For ε > 1 the length of the found
path is no larger than ε times the length of the optimal path [66], while the
search can often be much faster than its version with uninflated heuristics.

For example, figure 2.8 shows the operation of the A* algorithm with a
heuristic inflated by ε = 2.5, ε = 1.5, and ε = 1 (no inflation) on a simple grid
world. In this example we use an eight-connected grid with black cells being
obstacles. S denotes a start state, while G denotes a goal state. The cost of
moving from one cell to its neighbor is one. The heuristic is the larger of the
x and y distances from the cell to the goal. The cells which were expanded
are shown in grey. (Our version of A* search stops as soon as it is about to
expand a goal state without actually expanding it. Thus, the goal state is
not shown in grey.) The paths found by these searches are shown with grey
arrows. The A* searches with inflated heuristics expand substantially fewer
cells than A* with ε = 1, but their solution is suboptimal.

To construct an anytime algorithm with suboptimality bounds, one could
run a succession of these A* searches with decreasing inflation factors, just
like we did in the example. This naive approach results in a series of solutions,
each one with a suboptimality factor equal to the corresponding inflation
factor. This approach has control over the suboptimality bound, but wastes a
lot of computation since each search iteration duplicates most of the efforts of
the previous searches. One could try to employ incremental heuristic searches

1Note that as mentioned earlier restricting each state to be expanded at most once still
guarantees ε-suboptimality of the path. We prove this in section 2.3.

2.2. ANYTIME SEARCH 33

(e.g., [48]), but the suboptimality bounds for each search iteration would
no longer be guaranteed. In the next section we propose ARA* (Anytime
Repairing A*) algorithm, which is an efficient anytime heuristic search that
also runs A* with inflated heuristics in succession but reuses search efforts
from previous executions in such a way that the suboptimality bounds are still
satisfied. As a result, a substantial speedup is achieved by not re-computing
the state values that have been correctly computed in the previous iterations.

2.2.2 ARA*: An Efficient Version of Anytime Heuris-
tic Search with Provable Suboptimality Bounds

ARA* works by executing A* multiple times (just like in the example in
figure 2.8), starting with a large ε and decreasing ε prior to each execution
until ε = 1. As a result, after each search a solution is guaranteed to be
within a factor ε of optimal. Unlike it is done in the example, however,
ARA* reuses the results of the previous searches to save computation.

For our formulation of A* search in section 2.1.3 (pseudocode in fig-
ure 2.6), the reuse is trivial. As explained, the search only expands the
states that are inconsistent (in fact, a subset of them) and tries to make
them consistent. Therefore, if we have a number of consistent states due to
some previous search efforts, these states need not be expanded again unless
they become inconsistent during the search itself. Consequently, to make
search reuse previous search efforts we only need to make sure that before
each execution of the ComputePath function OPEN contains all inconsis-
tent states. Since the ComputePath function restricts each state to no more
than one expansion during each search iteration, OPEN may not contain all
inconsistent states during the execution of ComputePath. In fact, OPEN
contains only the inconsistent states that have not yet been expanded. We
need, however, to keep track of all inconsistent states as they will be the
starting points for the inconsistency propagation in the future search iter-
ations. We do this by maintaining the set INCONS of all the inconsistent
states that are not in OPEN (lines 12 and 13 in figure 2.9). Thus, the union
of INCONS and OPEN is exactly the set of all inconsistent states, and can
be used as a starting point for the inconsistency propagation before each new
search iteration.

Apart from the maintenance of the INCONS set the ComputePath func-
tion is almost identical to the ComputePath function of A* search that we

34 CHAPTER 2. ARA*

have presented in section 2.1.3. The only other difference is the explicit ini-
tialization of the states as they are encountered by ARA*. Note that the
states are initialized once per ARA* execution and not every time Com-
putePath encounters them for the first time during its current search. The
function key() used by ComputePath is a summation of g-value and h-value
inflated by the current value of ε as given in figure 2.10.

1 procedure ComputePath()

2 while(key(sgoal) > mins∈OPEN(key(s)))

3 remove s with the smallest key(s) from OPEN ;

4 v(s) = g(s); CLOSED←CLOSED ∪ {s};
5 for each successor s′ of s

6 if s′ was never visited by ARA* before then

7 v(s′) = g(s′) = ∞;

8 if g(s′) > g(s) + c(s, s′)

9 g(s′) = g(s) + c(s, s′);

10 if s′ 6∈ CLOSED

11 insert/update s′ in OPEN with key(s′);

12 else

13 insert s′ into INCONS ;

Figure 2.9: ARA*: ComputePath function. ARA* specific changes as com-
pared with A* search as formulated in figure 2.6 are shown in bold.

The main function of ARA* (figure 2.10) performs a series of search
iterations. It does initialization and then repetitively calls the ComputePath
function with a series of decreasing values of ε. Before each call to the
ComputePath function, however, a new OPEN list is constructed by moving
to it the contents of the set INCONS . Consequently, OPEN contains all
inconsistent states before each call to ComputePath. Since the OPEN list
has to be sorted by the current key-values of states, it is re-ordered (line 12,
Figure 2.10)2. Thus, after each call to the ComputePath function we get a
solution that is suboptimal by at most a factor of ε.

As suggested in [84] a suboptimality bound can also be computed as the
ratio between g(sgoal), which gives an upper bound on the cost of an optimal
solution, and the minimum un-weighted f -value of a inconsistent state, which
gives a lower bound on the cost of an optimal solution:

2At least in our domains, the reordering operation tends to be inexpensive in com-
parison to the overall search time. If necessary, however, one could also employ the
optimization discussed in [47] in the context of D* Lite algorithm. It avoids the reordering
operation altogether.

2.2. ANYTIME SEARCH 35

The pseudocode below assumes the following:

1. Heuristics are consistent: h(s) ≤ c(s, s′) + h(s′) for any successor s′ of s if s 6= sgoal and h(s) = 0
if s = sgoal.

1 procedure key(s)

2 return g(s) + ε ∗ h(s);

3 procedure Main()

4 g(sgoal) = v(sgoal) =∞; v(sstart) =∞;

5 g(sstart) = 0; OPEN = CLOSED = INCONS = ∅;
6 insert sstart into OPEN with key(sstart);

7 ComputePath();

8 publish current ε-suboptimal solution;

9 while ε > 1

10 decrease ε;

11 Move states from INCONS into OPEN ;

12 Update the priorities for all s ∈ OPEN according to key(s);

13 CLOSED = ∅;
14 ComputePath();

15 publish current ε-suboptimal solution;

Figure 2.10: ARA*: key and Main functions

g(sgoal)

mins∈OPEN∪INCONS(g(s)+h(s))
(2.3)

This is a valid suboptimality bound as long as the ratio is larger than or
equal to one. Otherwise, g(sgoal) is already equal to the cost of an optimal
solution. Thus, the actual suboptimality bound, ε′, for each solution ARA*
publishes can be computed as the minimum between ε and this new bound.

ε′ = min(ε,
g(sgoal)

mins∈OPEN∪INCONS(g(s)+h(s))
). (2.4)

At first, one may also think of using this actual suboptimality bound in
deciding how to decrease ε between search iterations (e.g., setting ε to ε′ minus
a small delta). This can lead to large jumps in ε, however, whereas based
on our experiments decreasing ε in small steps seems to be more beneficial.
The reason is that a small decrease in ε often results in the improvement
of the solution, despite the fact that the actual suboptimality bound of the
previous solution was already substantially less than the value of ε. A large

36 CHAPTER 2. ARA*

initial search (ε = 2.5) second search (ε = 1.5) third search (ε = 1.0)

Figure 2.11: ARA* search

decrease in ε, on the other hand, may often result in the expansion of too
many states during the next search.

Another useful suggestion from [84], which we have not implemented in
ARA*, is to prune OPEN so that it never contains a state whose un-weighted
f -value is larger than or equal to g(sgoal). This may turn out to be useful
in domains with very high branching factor, where an expansion of a state
may involve inserting into OPEN a large number of states that will never be
expanded due to their large f -values.

Within each execution of the ComputePath function we mainly save com-
putation by not re-expanding the states whose v-values were already correct
before the call to ComputePath (Theorem 6 states this more precisely). For
example, figure 2.11 shows a series of calls to the ComputePath function on
the same example we used before (figure 2.8). States that are inconsistent
at the end of an iteration are shown with an asterisk. While the first call
(ε = 2.5) is identical to the A* call with the same ε, the second call to the
ComputePath function (ε = 1.5) expands only 1 cell. This is in contrast
to 15 cells expanded by A* search with the same ε. For both searches the
suboptimality factor, ε, decreases from 2.5 to 1.5. Finally, the third call to
the ComputePath function with ε set to 1 expands only 9 cells. The solution
is now optimal, and the total number of expansions is 23. Only 2 cells are
expanded more than once across all three calls to the ComputePath function.
Even a single optimal search from scratch expands 20 cells.

If one is interested in interleaving search with the execution of the current
best plan, one needs to address the problem that the state of the agent
changes. In particular, as the agent moves, the starting state changes. A
way to deal with this problem is to perform the search backwards. That is,
the actual goal state of the agent becomes the start of the search, sstart, while
the current state of the agent becomes the goal of the search, sgoal. The search

2.2. ANYTIME SEARCH 37

can still be performed on directed graphs by reversing the direction of all the
edges in the original graph. Since heuristics estimate the distances to the goal
of the search, then in this backward search they estimate the distances to
the current state of the agent. As a result, the heuristics change as the agent
moves. This, in turn, changes the priorities of the states in the OPEN list.
Since ARA* algorithm reorders the OPEN list after each iteration anyway,
however, we can recompute the heuristic values of the states in the OPEN
list during the reorder operation (line 12 in figure 2.10).

2.2.3 Theoretical Properties of ARA*

Since the ComputePath function of ARA* is essentially the ComputePath
function of A* search as we have presented it in section 2.1.3 it inherits all
of its properties. We now list some of the theoretical properties of ARA*.
For the proofs of these and other properties of the algorithm please refer to
section 2.4. The first theorem states that, for any state s with a key smaller
than or equal to the minimum key in OPEN , we have computed a greedy
path from sstart to s which is within a factor of ε of optimal.

Theorem 5 Whenever the ComputePath function exits, for any state s with
key(s) ≤ min

s′∈OPEN(key(s′)), we have g∗(s) ≤ g(s) ≤ ε ∗ g∗(s), and the
cost of a greedy path from sstart to s is no larger than g(s).

The correctness of ARA* follows from this theorem. Each execution of
the ComputePath function terminates when key(sgoal) is no larger than the
minimum key in OPEN . This means that the greedy path from start to goal
is within a factor ε of optimal. Since before each iteration ε is decreased (and,
in case ARA* publishes ε′ bounds, ε, in its turn, is an upper bound on ε′),
ARA* gradually decreases the suboptimality bound and finds new solutions
to satisfy the bound.

Theorem 6 Within each call to ComputePath() a state is expanded at most
once and only if its v-value is lowered during its expansion.

The second theorem formalizes where the computational savings for
ARA* search come from. A usual implementation of A* search with inflated
heuristics can and does perform multiple re-expansions of many states. Each
search iteration in ARA*, on the other hand, is guaranteed not to expand

38 CHAPTER 2. ARA*

states more than once. Moreover, it also does not expand states whose v-
values before a call to the ComputePath function have already been correctly
computed by some previous search iteration.

2.2.4 Experimental Analysis of the Performance of
ARA*

In this section we evaluate the performance of ARA* on simulated 6 and 20
degree of freedom (DOF) robotic arms (Figure 2.12) and compare it against
other anytime heuristic searches that can provide suboptimality bounds,
namely, Anytime A* [84] and the succession of A* searches with decreas-
ing ε values (as described in section 2.2.1). The base of the arm is fixed,
and the task is to move its end-effector to the goal while navigating around
obstacles (indicated by grey rectangles). An action is defined as a change
of a global angle of any particular joint (i.e., the next joint further along
the arm rotates in the opposite direction to maintain the global angle of
the remaining joints.) We discretize the workspace into 50 by 50 cells and
compute a distance from each cell to the cell containing the goal while tak-
ing into account that some cells are occupied by obstacles. This distance
is our heuristic. In the environment where all obstacles are touching walls,
this heuristic seems to always direct the robot arm in an approximately cor-
rect direction. This property makes all the three algorithms we compare to
exhibit a good anytime behavior.

In order for the heuristic not to overestimate true costs, joint angles are
discretized so as to never move the end-effector by more than one cell in a
single action. The resulting state space is over 3 billion states for a 6 DOF
robot arm and over 1026 states for a 20 DOF robot arm. Memory for states
is allocated dynamically.

Figure 2.12(a) shows the planned trajectory of the robot arm after the
initial search of ARA* with ε = 3.0. This search takes about 0.05 secs. The
plot in Figure 2.12(b) shows that ARA* improves both the quality of the
solution and the bound on its suboptimality faster and in a more gradual
manner than either a succession of A* searches or Anytime A* [84]. In
this experiment ε is initially set to 3.0 for all three algorithms. For all the
experiments in this section ε is decreased in steps of 0.02 (2% suboptimality)
for ARA* and a succession of A* searches. Anytime A* does not control
ε, and in this experiment it performs a lot of computations that result in a

2.2. ANYTIME SEARCH 39

(a) 6D arm trajectory for ε = 3 (b) uniform costs (c) non-uniform costs

(d) both Anytime A* and A* (e) ARA* (f) non-uniform costs
after 90 secs after 90 secs

cost=682, ε′=15.5 cost=657, ε′=14.9

Figure 2.12: Top row: 6D robot arm experiments. Bottom row: 20D robot
arm experiments (the trajectories shown are downsampled by 6). Anytime
A* is the algorithm in [84].

large decrease of ε at the end. On the other hand, it does reach the optimal
solution first. To evaluate the expense of the anytime property of ARA*
we also ran ARA* and an optimal A* search in an environment with larger
gap between obstacles (for the optimal A* search to be feasible). Optimal A*
search required about 5.3 mins (2,202,666 state expanded) to find an optimal
solution, while ARA* required about 5.5 mins (2,207,178 state expanded) to
decrease ε in steps of 0.02 from 3.0 until a provably optimal solution was
found (about 4% overhead). In other domains such as path planning for
robot navigation, though, we have observed the overhead to be up to 30
percent.

While in the experiment for Figure 2.12(b), all the actions have the same
cost, in the experiment for Figure 2.12(c) actions have non-uniform costs.
This is because changing a joint angle closer to the base is more expensive
than changing a joint angle further away. As a result of the non-uniform
costs, our heuristic becomes less informative, and so search is much more
expensive. In this experiment we start with ε = 10, and run all algorithms
for 30 minutes. At the end, ARA* achieves a solution with a substantially

40 CHAPTER 2. ARA*

smaller cost (200 vs. 220 for the succession of A* searches and 223 for Anytime
A*) and a better suboptimality bound (3.92 vs. 4.46 for both the succession
of A* searches and Anytime A*). Also, since ARA* controls ε it decreases
the cost of the solution gradually. Reading the graph differently, ARA*
reaches a suboptimality bound ε′ = 4.5 after about 59,000 expansions and
11.7 secs, while the succession of A* searches reaches the same bound after
12.5 million expansions and 27.4 minutes (about 140-fold speedup by ARA*)
and Anytime A* reaches it after over 4 million expansions and 8.8 minutes
(over 44-fold speedup by ARA*). Similar results hold when comparing the
amount of work each of the algorithms spend on obtaining a solution of
cost 225. While Figure 2.12 shows execution time, the comparison of states
expanded (not shown) is almost identical. Additionally, to demonstrate the
advantage of ARA* expanding each state no more than once per search
iteration, we compare the first searches of ARA* and Anytime A*: the first
search of ARA* performed 6,378 expansions, while Anytime A* performed
8,994 expansions, mainly because some of the states were expanded up to
seven times before a first solution was found.

Figures 2.12(d-f) show the results of experiments done on a 20 DOF robot
arm, with actions that have non-uniform costs. All three algorithms start
with ε = 30. Figures 2.12(d) and 2.12(e) show that in 90 seconds of planning
the cost of the trajectory found by ARA* and the suboptimality bound it can
guarantee is substantially smaller than for the other algorithms. For example,
the trajectory in Figure 2.12(d) contains more steps and also makes one extra
change in the angle of the third joint from the base of the arm (despite the
fact that changing lower joint angles is very expensive) in comparison to
the trajectory in Figure 2.12(e). The graph in Figure 2.12(f) compares the
performance of the three algorithms on twenty randomized environments
similar to the environment in Figure 2.12(d). The environments had random
goal locations, and the obstacles were slid to random locations along the
outside walls. The graph shows the additional time the other algorithms
require to achieve the same suboptimality bound that ARA* does. To make
the results from different environments comparable, we normalize the bound
by dividing it by the maximum of the best bounds that the algorithms achieve
before they run out of memory. Averaging over all environments, the time
for ARA* to achieve the best bound was 10.1 secs. Thus, the difference of
40 seconds at the end of the Anytime A* graph corresponds to an overhead
of about a factor of 4.

2.3. PROOFS FOR SINGLE-SHOT SEARCH 41

2.3 Proofs for Single-shot Search under

Overconsistent Initialization

2.3.1 Pseudocode

The pseudocode for the ComputePath function under overconsistent initial-
ization is given in figure 2.13.

The pseudocode below assumes the following (Assumption A):

1. key function satisfies key-requirement 1 : for any two states s, s′ ∈ S if c∗(s′, sgoal) < ∞, v(s′) ≥
g(s′), v(s) > g(s) and g(s′) > g(s) + ε ∗ c∗(s, s′), then key(s′) > key(s);

2. v− and g−values of all states are initialized in such a way that v(s) ≥ g(s) = mins′∈pred(s)(v(s′)+
c(s′, s)) ∀s ∈ S − {sstart} and v(sstart) ≥ g(sstart) = 0 (the initialization can also occur whenever
ComputePath encounters new states);

3. initially, CLOSED = ∅ and OPEN contains exactly all and only overconsistent states (i.e., states
s whose v(s) > g(s)).

1 procedure ComputePath()

2 while(key(sgoal) > mins∈OPEN(key(s)))

3 remove s with the smallest key(s) from OPEN ;

4 v(s) = g(s); CLOSED←CLOSED ∪ {s};
5 for each successor s′ of s

6 if g(s′) > g(s) + c(s, s′)

7 g(s′) = g(s) + c(s, s′);

8 if s′ 6∈ CLOSED

9 insert/update s′ in OPEN with key(s′);

Figure 2.13: Generic search that expands overconsistent states

2.3.2 Notation

A state s is called inconsistent iff v(s) 6= g(s), overconsistent iff v(s) > g(s),
underconsistent iff v(s) < g(s) and consistent iff v(s) = g(s). g∗(s) denotes
the cost of a shortest path from sstart to s. We require that 1 ≤ ε < ∞.

Let us also recall the definition of a greedy path from sstart to s. It is
a path that is computed by tracing it backward as follows: start at s, and
at any state si pick a state si−1 = arg mins′∈pred(si)(g(s′) + c(s′, si)) until
si−1 = sstart.

42 CHAPTER 2. ARA*

We also assume that the min operation on an empty set returns ∞.

2.3.3 Proofs

In the first section we prove several lemmas about some of the more obvious
properties of the search. In the section labeled “Main Theorems” we prove
several theorems that constitute the main idea behind the algorithm. Fi-
nally, in the section “Correctness” we show how these theorems lead to the
correctness of the ComputePath function. In the last section we also present
few theorems relevant to the efficiency of the algorithm.

Low-level Correctness

Most of the lemmas in this section simply state the correctness of the program
state variables such as v- and g-values, OPEN , and CLOSED sets. The
lemmas also show that g(s) is always an upper bound on the cost of a greedy
path from sstart to s, and can never become smaller than the cost of a least-
cost path from sstart to s, g∗(s).

Lemma 7 At any point in time for any state s, v(s) ≥ g(s).

Proof: The theorem clearly holds before the ComputePath function is
called for the first time according to Assumption A.2. Afterwards, the g-
values can only decrease (lines 6-7). For any state s, on the other hand, v(s)
only changes on line 4 when it is set to g(s). Thus, it is always true that
v(s) ≥ g(s).

Lemma 8 At line 2, g(sstart) = 0 and for ∀s 6= sstart, g(s) =
mins′∈pred(s)(v(s′) + c(s′, s)).

Proof: The theorem holds right after the initialization according to As-
sumption A.2. The only place where g- and v-values are changed afterwards
is on lines 4 and 7. If v(s) is changed in line 4, then it is decreased according
to Lemma 7. Thus, it may only decrease the g-values of its successors. The
test on line 6 checks this and updates the g-values if necessary. Since all
costs are positive and never change, g(sstart) can never be changed: it will
never pass the test on line 6, and thus is always 0.

2.3. PROOFS FOR SINGLE-SHOT SEARCH 43

Lemma 9 At line 2, OPEN and CLOSED are disjoint, OPEN contains only
inconsistent states and the union of OPEN and CLOSED contains all incon-
sistent states (and possibly others).

Proof: The first time line 2 is executed the theorem holds according to
Assumption A.3 and the fact that all inconsistent states are overconsistent
according to Assumption A.2.

During the following execution whenever we decrease g(s) (line 7), and
as a result make s inconsistent (Lemma 7), we insert it into OPEN unless it
is already in CLOSED ; whenever we remove s from OPEN (line 3) we set
v(s) = g(s) (line 4) making the state consistent. We never add s to CLOSED
while it is still in OPEN , and we never modify v(s) or g(s) elsewhere.

Lemma 10 Suppose s is selected for expansion on line 3. Then the next
time line 2 is executed v(s) = g(s), where g(s) before and after the expansion
of s is the same.

Proof: Suppose s is selected for expansion. Then on line 4 v(s) = g(s),
and it is the only place where a v-value changes. We, thus, only need to
show that g(s) does not change. It could only change if s ∈ succ(s) and
g(s) > g(s)+c(s, s). The second test, however, implies that c(s, s) < 0. This
contradicts to our restriction that costs are positive.

Lemma 11 At line 2, for any state s, the cost of a greedy path from sstart

to s is no larger than g(s), and v(s) ≥ g(s) ≥ g∗(s).

Proof: v(s) ≥ g(s) holds according to Lemma 7. We thus need to show
that the cost of a greedy path from sstart to s is no larger than g(s), and
g(s) ≥ g∗(s). The statement follows if g(s) = ∞. We thus can restrict our
proof to a finite g-value.

Consider a greedy path from sstart to s: s0 = sstart, s1, ..., sk = s. Then
for any i, k ≥ i > 0, we have g(si) = mins′∈pred(si)(v(s′) + c(s′, si)) ≥
mins′∈pred(si)(g(s′)+ c(s′, si)) = g(si−1)+ c(si−1, si) from Lemma 8, Lemma 7
and the definition of a greedy path. For i = 0, g(si) = g(sstart) = 0
from Lemma 8. Thus, g(s) = g(sk) ≥ g(sk−1) + c(sk−1, sk) ≥ g(sk−2) +
c(sk−2, sk−1) + c(sk−1, sk) ≥ ... ≥ ∑

j=1..k c(sj−1, sj). That is, g(s) is at least
as large as the cost of the greedy path from sstart to s. Since the cost cannot
be smaller than the cost of a least-cost path we also have g(s) ≥ g∗(s).

44 CHAPTER 2. ARA*

Main theorems

We now prove two theorems which constitute our main results about the
search function in figure 2.13. These theorems guarantee that the algorithm
is ε-suboptimal (where ε is the minimum value for which assumption A.1
holds): when the algorithm finishes its processing, it has identified a set
of states for which its cost estimates g(s) are no more than a factor of ε
greater than the optimal costs g∗(s). Together with Lemma 11 this shows
that given such cost estimates the greedy paths that ComputePath finds to
these states are suboptimal by at most ε (we will prove these corollaries in
the next section).

For ε = 1, the ComputePath function is essentially equivalent to the
A* (or Dijkstra’s if zero heuristics are used) algorithm. For intuition, here
is a very brief summary of how our proofs below would apply to A*: we
would start by showing that the OPEN list always contains all inconsistent
states. (These states are arranged in a priority queue ordered by their key
values.) We say a state s is ahead of the OPEN list if key(s) ≤ key(u) for
all u ∈ OPEN. We then prove by induction that states which are ahead of
OPEN have already been assigned their correct optimal path length. The
induction works because, when we expand the state at the head of the OPEN
queue, its optimal path depends only on states which are already ahead of
the OPEN list.

The proofs for ComputePath with an arbitrary ε are somewhat more com-
plicated than for A* because the OPEN list may not contain all inconsistent
states. (Some of these states may be in CLOSED because they have already
been expanded.) Therefore, we will introduce the set Q instead:

Definition 1 Q = {u | v(u) > g(u) ∧ v(u) > ε ∗ g∗(u)}

This set contains all inconsistent states except those whose v-values (and
consequently g-values) are already within a factor of ε of their true costs.

The set Q takes the place of the OPEN list in the next theorem. In
particular, Theorem 12 says that all states which are ahead of Q have their
g-values within a factor of ε of optimal. Theorem 13 builds on this result
by showing that OPEN is always a superset of Q, and therefore the states
which are ahead of OPEN are also ahead of Q.

Theorem 12 At line 2, let Q be defined according to the definition 1. Then
for any state s with (c∗(s, sgoal) < ∞ ∧ key(s) ≤ key(u) ∀u ∈ Q), it holds
that g(s) ≤ ε ∗ g∗(s).

2.3. PROOFS FOR SINGLE-SHOT SEARCH 45

Proof: We prove by contradiction. Suppose there exists an s such that
c∗(s, sgoal) < ∞ ∧ key(s) ≤ key(u) ∀u ∈ Q, but g(s) > ε ∗ g∗(s). The latter
implies that g∗(s) < ∞. We also assume that s 6= sstart since otherwise
g(s) = 0 = ε ∗ g∗(s) from Lemma 8.

Consider a least-cost path from sstart to s, π(s0 = sstart, ..., sk = s). The
cost of this path is g∗(s). Such path must exist since g∗(s) < ∞. Our
assumption that g(s) > ε ∗ g∗(s) means that there exists at least one si ∈
π(s0, ..., sk−1), namely sk−1, whose v(si) > ε ∗ g∗(si). Otherwise,

g(s) = g(sk) = min
s′∈pred(s)

(v(s′) + c(s′, sk)) ≤

v(sk−1) + c(sk−1, sk) ≤
ε ∗ g∗(sk−1) + c(sk−1, sk) ≤

ε ∗ (g∗(sk−1) + c(sk−1, sk)) = ε ∗ g∗(sk) = ε ∗ g∗(s)

Let us now consider si ∈ π(s0, ..., sk−1) with the smallest index i ≥ 0 (that
is, the closest to sstart) such that v(si) > ε ∗ g∗(si). We will first show that
ε∗g∗(si) ≥ g(si). It is clearly so when i = 0 according to Lemma 8 which says
that g(si) = g(sstart) = 0. For i > 0 we use the fact that v(si−1) ≤ ε∗g∗(si−1)
from the way si was chosen,

g(si) = min
s′∈pred(si)

(v(s′) + c(s′, si)) ≤

v(si−1) + c(si−1, si) ≤
ε ∗ g∗(si−1) + c(si−1, si) ≤

ε ∗ g∗(si)

We thus have v(si) > ε ∗ g∗(si) ≥ g(si), which also implies that si ∈ Q.
We will now show that key(s) > key(si), and finally arrive at a contra-

diction. According to our assumption

g(s) > ε ∗ g∗(s) =

ε ∗ (c∗(s0, si) + c∗(si, sk)) =

ε ∗ g∗(si) + ε ∗ c∗(si, sk) ≥
g(si) + ε ∗ c∗(si, s)

Hence, we have g(s) > g(si) + ε ∗ c∗(si, s), v(si) > ε ∗ g∗(si) ≥ g(si),
v(s) ≥ g(s) from Lemma 7 and c∗(s, sgoal) < ∞ from theorem conditions.
Thus, from Assumption A.1 it follows that key(s) > key(si). This inequality,

46 CHAPTER 2. ARA*

however, implies that si /∈ Q since key(s) ≤ key(u) ∀u ∈ Q. But this
contradicts to what we have proven earlier.

Theorem 13 At line 2, for any state s with (c∗(s, sgoal) < ∞ ∧ key(s) ≤
key(u) ∀u ∈ OPEN), it holds that g(s) ≤ ε ∗ g∗(s).

Proof: Let Q be defined according to the definition 1. To prove the
theorem we will show that Q is a subset of OPEN and then appeal to The-
orem 12.

From the definition of set Q it is clear that for any state u ∈ Q it holds
that u is inconsistent (that is, v(u) 6= g(u)).

According to the Assumption A.2 and A.3 when the ComputePath func-
tion is called OPEN contains all inconsistent states. Therefore Q ⊆ OPEN,
because as we have just shown any state u ∈ Q is also inconsistent. Thus, if
any state s has c∗(s, sgoal) < ∞ ∧ key(s) ≤ key(u) ∀u ∈ OPEN , it is also
true that c∗(s, sgoal) < ∞ ∧ key(s) ≤ key(u) ∀u ∈ Q, and g(s) ≤ ε ∗ g∗(s)
from Theorem 12. Thus, the first time line 2 is executed the theorem holds.

Also, because during the first execution of line 2 CLOSED = ∅ according
to assumption A.3, the following statement, denoted by (*), trivially holds
when line 2 is executed for the first time: for any state s ∈ CLOSED v(s) ≤
ε ∗ g∗(s).

We will now show by induction that the theorem continues to hold for the
consecutive executions of the line 2. Suppose the theorem and the statement
(*) held during all the previous executions of line 2, and they still hold when a
state s is selected for expansion on line 3. We need to show that the theorem
holds the next time line 2 is executed.

We first prove that the statement (*) still holds during the next execution
of line 2. Since the v-value of only s is being changed and only s is being
added to CLOSED, we only need to show that v(s) ≤ ε ∗ g∗(s) during the
next execution of line 2 (that is, after the expansion of s). Since when s
is selected for expansion on line 3 key(s) = min

u∈OPEN(key(u)), we have
key(s) ≤ key(u) ∀u ∈ OPEN. According to the assumptions of our induction
then g(s) ≤ ε∗g∗(s). From Lemma 10 it then also follows that the next time
line 2 is executed v(s) ≤ ε ∗ g∗(s), and hence the statement (*) still holds.

We now prove that after s is expanded the theorem itself also holds. We
prove this by showing that Q continues to be a subset of OPEN the next time
line 2 is executed. According to Lemma 9 OPEN set contains all inconsistent
states that are not in CLOSED . Since, as we have just proved, the statement

2.3. PROOFS FOR SINGLE-SHOT SEARCH 47

(*) holds the next time line 2 is executed, all states s in CLOSED set have
v(s) ≤ ε∗g∗(s). Thus, any state s that is inconsistent and has v(s) > ε∗g∗(s)
is guaranteed to be in OPEN . Now consider any state u ∈ Q. As we have
shown earlier such state u is inconsistent, and v(u) > ε ∗ g∗(u) according
to the definition of Q. Thus, u ∈ OPEN. This shows that Q ⊆ OPEN.
Consequently, if any state s has c∗(s, sgoal) < ∞ ∧ key(s) ≤ key(u) ∀u ∈
OPEN, it is also true that c∗(s, sgoal) < ∞ ∧ key(s) ≤ key(u) ∀u ∈ Q, and
g(s) ≤ ε∗g∗(s) from Theorem 12. This proves that the theorem holds during
the next execution of line 2, and proves the whole theorem by induction.

Correctness

The corollaries in this section show how the theorems in the previous section
lead quite trivially to the correctness of ComputePath.

Corollary 14 When the ComputePath function exits the following holds for
any state s with c∗(s, sgoal) < ∞ ∧ key(s) ≤ mins′∈OPEN(key(s′)): the cost of
a greedy path from sstart to s is no larger than ε ∗ g∗(s).

Proof: According to Theorem 13 the condition c∗(s, sgoal) < ∞ ∧
key(s) ≤ min

s′∈OPEN(key(s′)) implies that g(s) ≤ ε ∗ g∗(s). The proof
then follows by direct application of Lemma 11.

Corollary 15 When the ComputePath function exits the following holds:
the cost of a greedy path from sstart to sgoal is no larger than ε ∗ g∗(sgoal).

Proof: According to the termination condition of the ComputePath func-
tion, upon its exit key(sgoal) ≤ min

s′∈OPEN(key(s′)). The proof then follows
from Corollary 14 noting that c∗(sgoal, sgoal) = 0.

Efficiency

Several theorems in this section provide some theoretical guarantees about
the efficiency of ComputePath.

Theorem 16 No state is expanded more than once during the execution of
the ComputePath function.

48 CHAPTER 2. ARA*

Proof: Suppose a state s is selected for expansion for the first time during
the execution of the ComputePath function. Then, it is removed from OPEN
set on line 3 and inserted into CLOSED set on line 4. It can then never be
inserted into OPEN set again unless the ComputePath function exits since
any state that is about to be inserted into OPEN set is checked against
CLOSED set membership on line 8. Because only the states from OPEN set
are selected for expansion, s can therefore never be expanded second time.

Theorem 17 A state s is expanded only if v(s) is lowered during its expan-
sion.

Proof: Only the states from OPEN can be selected for expansion. Any
such state is inconsistent according to Lemma 9. Moreover, for any such
state s it holds that v(s) > g(s) from Lemma 7. From Lemma 10 it then
follows that v(s) is set to g(s) during the expansion of v and thus is lowered.

Theorem 18 A state s is expanded only if it was already inconsistent be-
fore the call to ComputePath() or its g-value was lowered during the current
execution of ComputePath().

Proof: According to Lemma 9 any state s that is selected for expansion
on line 3 is inconsistent. If a state s was already inconsistent before the call
to ComputePath() then the theorem is immediately satisfied. If a state s was
not inconsistent before the call to the ComputePath function, then its g- and
v- values were equal. Since v(s) can only be changed during the expansion
of s, it must have been the case that g(s) was changed, and the only way
for it to change is to decrease on line 7. Thus, the g-value of s was lowered
during the execution of ComputePath().

2.4 Proofs for Anytime Repairing A*

2.4.1 Pseudocode

The pseudocode for ARA* is given in figures 2.14 and 2.15.

2.4. PROOFS FOR ARA* 49

1 procedure ComputePath()

2 while(key(sgoal) > mins∈OPEN(key(s)))

3 remove s with the smallest key(s) from OPEN ;

4 v(s) = g(s); CLOSED←CLOSED ∪ {s};
5 for each successor s′ of s

6 if s′ was never visited by ARA* before then

7 v(s′) = g(s′) = ∞;

8 if g(s′) > g(s) + c(s, s′)

9 g(s′) = g(s) + c(s, s′);

10 if s′ 6∈ CLOSED

11 insert/update s′ in OPEN with key(s′);

12 else

13 insert s′ into INCONS ;

Figure 2.14: The ComputePath function as used by ARA*. The changes
specific to ARA* are shown in bold.

The pseudocode below assumes the following (Assumption B):

1. Heuristics need to be consistent: h(s) ≤ c(s, s′) + h(s′) for any successor s′ of s if s 6= sgoal and
h(s) = 0 if s = sgoal.

1 procedure key(s)

2 return g(s) + ε ∗ h(s);

3 procedure Main()

4 g(sgoal) = v(sgoal) =∞; v(sstart) =∞;

5 g(sstart) = 0; OPEN = CLOSED = INCONS = ∅;
6 insert sstart into OPEN with key(sstart);

7 ComputePath();

8 publish current ε-suboptimal solution;

9 while ε > 1

10 decrease ε;

11 Move states from INCONS into OPEN ;

12 Update the priorities for all s ∈ OPEN according to key(s);

13 CLOSED = ∅;
14 ComputePath();

15 publish current ε-suboptimal solution;

Figure 2.15: ARA* algorithm

2.4.2 Notation

The notation is exactly the same as we have used in section 2.3. We re-
emphasize that ε is restricted to finite values larger than or equal to 1.

50 CHAPTER 2. ARA*

2.4.3 Proofs

The changes that we have introduced into the ComputePath function (lines 6,
7, 12 and 13 in figure 2.14) do not affect the properties that we have already
proven to hold for the ComputePath function in section 2.3, assuming that
every time the function is called assumption A holds. Lines 12 and 13 are
purely keeping track of states that are both inconsistent and not in OPEN .
This maintenance does not affect the operation of ComputePath in any way.
Lines 6 and 7, on the other hand, are used to do the online initialization of
states that have not been seen before. To make the following proofs easier
to read we therefore from now on assume that any state s with undefined
values (not visited) has v(s) = g(s) = ∞.

The goal of the proofs in this section is to show that ARA* algorithm as
presented in figure 2.15 ensures that the assumption A is true every time it
calls the ComputePath function. Once this is shown, all the properties in
section 2.3 apply here and we thus obtain the desired properties about each
search iteration in ARA* including its ε-suboptimality.

The proofs are based on induction. They begin by showing that assump-
tion A holds the first time the ComputePath function is called (line 7 in
figure 2.15). The proofs then continue by showing that if assumption A is
satisfied before calling the ComputePath function, then upon its exit moving
states from INCONS into OPEN (line 11) and resetting CLOSED (line 13)
is sufficient to restore the conditions of assumption A again. These opera-
tions are performed before each subsequent execution of the ComputePath
function (line 7). By induction, the assumption A thus holds before each
call to ComputePath, which makes all of the properties proven in section 2.3
applicable to each execution of the ComputePath function in figure 2.15.

Lemma 19 For any pair of states s and s′, ε ∗ h(s) ≤ ε ∗ c∗(s, s′) + ε ∗ h(s′).

Proof: According to [66] the consistency property required of heuristics
in Assumption B is equivalent to the restriction that h(s) ≤ c∗(s, s′) + h(s′)
for any pair of states s, s′ and h(sgoal) = 0. The theorem then follows by
multiplying the inequality with ε.

Theorem 20 If assumption A holds and INCONS = ∅ before the execution
of ComputePath, then during the execution of ComputePath, at line 2, OPEN
and INCONS are disjoint and INCONS contains exactly all the inconsistent
states which are also in CLOSED.

2.4. PROOFS FOR ARA* 51

Proof: We will prove the theorem by assuming that assumption A holds
and INCONS = ∅ before the execution of ComputePath. The first time line 2
is executed OPEN contains all inconsistent states according to assumption
A.2 and A.3, CLOSED = ∅ according to assumption A.3 and INCONS = ∅.
Thus, the statement of the theorem is not violated.

During the following execution of ComputePath whenever we remove s
from OPEN (line 3) we set v(s) = g(s) (line 4) making the state consistent
and therefore adding this state to CLOSED (line 4) does not require us to
add this state to INCONS ; whenever we decrease g(s) (line 9), and as a
result make s inconsistent (Lemma 7), we insert it into either OPEN if it is
not in CLOSED or INCONS if it is already in CLOSED . We never do any
other operations that would affect the membership of a state in CLOSED ,
OPEN or INCONS or an inconsistency of a state.

Theorem 21 Every time the ComputePath function is called from Main
function of ARA*, assumption A is fully satisfied prior to the execution of
ComputePath.

Let us first prove assumption A.1. Consider two arbitrary states s′ and
s such that c∗(s′, sgoal) < ∞, v(s′) ≥ g(s′), v(s) > g(s) and g(s′) > g(s) +
ε ∗ c∗(s, s′). We need to show that these conditions imply key(s′) > key(s).
Given the definition of the key() function in figure 2.15 we need to show that
g(s′)+ ε∗h(s′) > g(s)+ ε∗h(s). We examine the inequality g(s′) > g(s)+ ε∗
c∗(s, s′) and add ε∗h(s′) on both sides. Because h(s′) ≤ c∗(s′, sgoal) < ∞ due
to heuristics consistency we now have g(s′)+ε∗h(s′) > g(s)+ε∗c∗(s, s′)+ε∗
h(s′) and from Lemma 19 we obtain the desired g(s′)+ε∗h(s′) > g(s)+ε∗h(s).

Now, before we prove assumptions A.2 and A.3 let us first prove the
following statement denoted by (*): every time the ComputePath function is
called INCONS = ∅. This is true the first time ComputePath is called since
INCONS is reset to empty on line 5. Then the statement holds because
before each subsequent call to ComputePath all the states in INCONS are
moved into OPEN on line 11.

We are now ready to prove that assumptions A.2 and A.3 hold before
each execution of ComputePath by induction. Consider the first call to the
ComputePath function (line 7). At that point the g- and v-values of all
states except for sstart are infinite, and v(sstart) = ∞ and g(sstart) = 0.
Thus, for every state s 6= sstart, v(s) = g(s) = mins′∈pred(s)(v(s′) + c(s′, s))
and for s = sstart v(s) > g(s) = 0. Consequently, assumption A.2 holds.

52 CHAPTER 2. ARA*

Additionally, the only overconsistent state is sstart which is inserted into
OPEN at line 6. OPEN does not contain any other states and CLOSED
is empty. Hence, assumption A.3 is also satisfied.

Suppose now that the assumptions A.2 and A.3 held during the previous
calls to the ComputePath functions (we have already shown that assumption
A.1 holds before each call to ComputePath). We will now show that the
assumptions A.2 and A.3 continue to hold the next time ComputePath is
called and thus hold every time ComputePath is called by induction.

After ComputePath exits, according to theorems 7 and 8, for every state
s, v(s) ≥ g(s) and g(s) = mins′∈pred(s)(v(s′) + c(s′, s) for s 6= sstart and
g(s) = 0 for s = sstart. Since in the Main function of ARA* we do not
change v- or g-values, the assumption A.2 continues to hold the next time
the ComputePath function is called.

Since assumption A holds and INCONS = ∅ (statement (*)) right before
the call to ComputePath, Theorem 20 applies and we conclude that at the
time ComputePath exits INCONS contains exactly all inconsistent states
that are in CLOSED . Combined with the Lemma 9 this implies that INCONS
contains all and only inconsistent states that are not in OPEN . Thus, by
moving states from INCONS into OPEN on line 11 we force OPEN to
contain exactly all inconsistent states. Also, from Theorem 7 it holds that
the only inconsistent states are overconsistent states. Thus, the next time
ComputePath is executed, OPEN contains exactly all overconsistent states
while CLOSED is empty (due to line 13). Hence, assumption A.3 holds the
next time ComputePath is executed.

2.5 Summary

In this chapter we have presented an anytime heuristic search algorithm,
ARA*, that works by continually decreasing a suboptimality bound on its
solution and finding new solutions that satisfy the bound on the way. The
anytime property of the algorithm is achieved by initially setting the desired
suboptimality bound large and thus finding the solution quickly, and then
slowly decreasing the desired suboptimality bound and finding new improved
solutions until the available planning time runs out. Each planning episode in
ARA* is an A*-like search. Differently from A* search, however, each search
in ARA* tries to reuse as much as possible of the results from previous
searches.

2.5. SUMMARY 53

The key idea that enabled us to develop an A*-like search capable of
reusing results from previously executed searches was an observation that
A* search can be viewed as a repetitive expansion of overconsistent states.
In this chapter we therefore first introduced a notion of a state being over-
consistent. We then showed how to re-formulate A* search as a repetitive
expansion of overconsistent states. Afterwards, all that became necessary
for this search to reuse the results from previous search executions was to
identify all overconsistent states and make them candidates for expansion
before its execution. We showed how to do this rather simply in the context
of ARA*.

In our experiments the efficiency of these search iterations allow ARA* to
decrease suboptimality bounds and find cheaper solutions on the way much
faster than any of the previously developed anytime searches that could also
provide suboptimality bounds on their solutions. In addition, the ability to
control suboptimality bounds in ARA* allows one to tune its anytime be-
havior. For example, in some domains one can execute ARA* with gradually
decreasing bounds, while in others one might only be interested in obtaining
an optimal solution once a suboptimal one is known.

54 CHAPTER 2. ARA*

Chapter 3

LPA*: Incremental A* Search

This chapter presents an algorithm that is suitable for planning in domains
where the model of a problem changes over time. In such domains the pre-
sented algorithm gains efficiency by being able to re-use its previous planning
efforts. The model of a problem may change because the environment is dy-
namic, for instance, if a robot is navigating in a building populated with
people or a car route is being re-generated under changing traffic condi-
tions. The model of a problem may also change because it initially is fully
or partially unknown and more information about it is gathered during the
execution of a plan, for instance, if a robot is navigating with a partially un-
known map and updates the map while executing its plan whenever it senses
obstacles in front of it.

3.1 The Effect of Cost Changes

So far, we have only considered situations where the ComputePath function
was executed multiple times for a different value of ε used to inflate heuristics,
but always on the same graph. Since the value of ε affects purely the ordering
of expansions, changing ε does not affect the status of a state. In particular,
no state s would become underconsistent (i.e., v(s) < g(s)) if it was either
consistent (i.e., v(s) = g(s)) or overconsistent (i.e., v(s) > g(s)) before ε
was changed. Hence, when constructing the ARA* algorithm, the only thing
that we really have to worry about before each call to ComputePath is that
OPEN contains all inconsistent states and CLOSED is empty. All the other
assumptions the ComputePath function makes (listed in figure 2.6) remain

55

56 CHAPTER 3. LPA*

true within the search itself and remain satisfied outside of the ComputePath
function as well. These assumptions are that the function key() satisfies its
restriction, no state is underconsistent, and all g-values are exactly one step
look-ahead values based on the v-values of the predecessors. Function key()
of ARA* stays always the same, and function Main() of ARA* does not
change g-values, v-values or edge costs, it only changes ε.

The situation changes, however, when in between two calls to the Com-
putePath function some edge costs in the graph change. First, to satisfy the
requirement that all g-values are one step look-ahead values based on the v-
values of the predecessors, that is, for any s ∈ S, g(s) = mins′∈pred(s)(v(s′) +
c(s′, s)), we need to update the g-values of states for which the costs of in-
coming edges have changed. Let us first consider the simpler scenario when
edge costs can only decrease. Then, as we update the g-values of these states,
they can only decrease. This means that if a state s was not underconsistent
(in other words, s had v(s) ≥ g(s)) before some edge cost c(s′, s) decreased,
then it cannot become underconsistent due to the edge cost decrease either.
This means that all the assumptions of the ComputePath function in fig-
ure 2.6 will still be satisfied if we decrease some edge costs in the graph and
update the g-values correspondingly. This way we can construct a simple
incremental search for the case of decreasing edge costs.

The case of increasing edge costs is harder, however. As we update the g-
values of states whose incoming edge costs increased, they can increase now.
As such they may become larger than the corresponding v-values, and states
may become underconsistent (i.e., v(s) may become smaller than g(s)). An
example demonstrating this is shown in figure 3.1. The initial state values
are the same as in figure 2.7 after the ComputePath function terminated.
We now, however, change the cost of the edge from s2 to s1 and update the
g-value of s1 accordingly. This results in s1 becoming an underconsistent
state. Unfortunately, the presence of an underconsistent state violates the
assumption that no state is underconsistent before a call to the ComputePath
function. This is the main issue this chapter addresses in the next section.

3.1. THE EFFECT OF COST CHANGES 57

(a) state values after the previous execution of ComputePath (figure 2.7(c))

(b) after the cost c(s2, s1) changes (c) after the g-value of s1 is updated

Figure 3.1: An example of how an underconsistent state is created as a result
of increasing the cost of an edge. Overconsistent states are shown with solid
bold borders. Underconsistent states are shown with dashed bold borders.
The g-values that have just changed are shown in bold.

58 CHAPTER 3. LPA*

3.2 Single-shot Search under Arbitrary Ini-

tialization

3.2.1 An Offline Approach to Correcting Initialization

In this section we show a way to restore the property that no state is under-
consistent before the ComputePath function is called. In the next section,
however, we will show how to incorporate this process of fixing states into
the ComputePath function itself and how to do it only for the states that
need to be fixed rather than all underconsistent states.

One way to restore the property that no state is underconsistent before
the ComputePath function is called is to set the v-value of every underconsis-
tent state s to ∞. This forces the state to stop being underconsistent (recall
that an underconsistent state has v(s) < g(s)), but may possibly affect the
g-values of the successors of s. As we update their g-values so that they
remain to be one-step look-ahead values based on the predecessor v-values,
their g-values may now increase. As a result, these states may become under-
consistent themselves. If so, we will need to fix their v-values as well. We can
continue doing this until no state is underconsistent. The simple pseudocode
that does this is shown in figure 3.2.

1 procedure FixInitialization()

2 while(there is an underconsistent state)

3 let s be an underconsistent state (i.e., v(s) < g(s));

4 v(s) =∞;

5 for each successor s′ of s

6 g(s′) = mins′′∈pred(s′) v(s′′) + c(s′′, s′);

Figure 3.2: A code that forces all states to become either consistent or over-
consistent

We process states until there are no underconsistent states left. For every
underconsistent state we pick (line 3), we first force it to become either
consistent or overconsistent (line 4). We then make sure the g-values of
all of its successors are updated to be consistent with the v-values of their
predecessors (line 6).

The pseudocode is a simple way of preprocessing the states that en-
sures the proper state value initialization before the ComputePath function
is called. The computational expense of this pre-processing step, though,

3.2. SEARCH UNDER ARBITRARY INITIALIZATION 59

can become a burden. On the positive side, this pseudocode processes each
state only once (once a v-value is set to ∞, the state cannot become under-
consistent again) and the processing is limited to only the states that have
been expanded in previous searches (otherwise their v-values are infinite).
The last property, perhaps, is even more important because it ensures that
the pre-processing step will not require more memory than what is currently
used. On the negative side, the preprocessing step may still be inefficient in
cases when many of these underconsistent states are no longer relevant to
the computation of a plan. This can be the case, when the agent moves and
changes in edge costs in the regions of the state space where agent used to
be and no longer currently is are unlikely to be relevant to the computation
of a current plan. In the next section we will incorporate this pre-processing
step into the ComputePath function, so that it becomes online processing
and fixes only the states that are relevant to the computation of a plan from
the current state of the agent.

3.2.2 An Online Approach to Correcting Initialization

When A* search expands any overconsistent state s′ there exists at least one
path from sstart to s′ whose cost is at most ε times c∗(sstart, s

′) and all of
the states on which have their v- and g-values no more than ε times their
g∗-values. Hence, when we expand s′, g(s′) is at worst ε-suboptimal since
it is equal to mins′′∈pred(s′)(v(s′′) + c(s′′, s′)), and when we set its v-value to
its g-value the v-value of s′ also becomes at worst ε-suboptimal. Now that
some states can be initially underconsistent we need to make sure that when
an overconsistent s′ is being expanded no state on which a path to s′ can
depend on is underconsistent. In other words, we need to make sure that all
the states that can possibly belong to the currently best path from sstart to
s are pre-processed so that they are not underconsistent. For example, we
can pre-process all such states in the same way it was done in the previous
section, namely, set their v-values to ∞ and update their successors (lines 4
through 6 in figure 3.2)).

The pseudocode that achieves this is shown in figure 3.3. Notice that its
second assumption no longer requires that no state is underconsistent. The
first change is that we make this step of setting v-value to ∞ and updat-
ing the successors of a state to be an expansion of an underconsistent state
(lines 15 through 17 in figure 3.3). This also means that OPEN , the list of
candidates for expansions, should contain both underconsistent and overcon-

60 CHAPTER 3. LPA*

sistent states. We have moved the process of deciding on the membership
in OPEN into its own function UpdateSetMembership, which inserts an in-
consistent state into OPEN unless it was already expanded as overconsistent
(i.e., in CLOSED set) and removes a state from OPEN if it is consistent.
This function is called every time a g- or v-value is modified except for
line 10, where s is consistent and was just removed from OPEN anyway.
Also, initially OPEN needs to contain all inconsistent states, independently
of whether they are overconsistent or underconsistent (the third assumption
in figure 3.3).

The pseudocode below assumes the following:

1. key function satisfies the following restrictions: for any two states s, s′ ∈ S (a) if c∗(s′, sgoal) <∞,
v(s′) ≥ g(s′), v(s) > g(s) and g(s′) > g(s) + ε ∗ c∗(s, s′), then key(s′) > key(s), and (b) if
c∗(s′, sgoal) <∞, v(s′) ≥ g(s′), v(s) < g(s) and g(s′) ≥ v(s) + c∗(s, s′), then key(s′) > key(s);

2. v− and g− values of all states are initialized in such a way that all the v-values are non-negative,
g(sstart) = 0 and for every state s ∈ S − {sstart} g(s) = mins′∈pred(s)(v(s′) + c(s′, s)) (the
initialization can also occur whenever ComputePath encounters new states);

3. initially, CLOSED = ∅ and OPEN contains exactly all inconsistent states (i.e., states s whose
v(s) 6= g(s)).

1 procedure UpdateSetMembership(s)

2 if (v(s) 6= g(s))

3 if (s 6∈ CLOSED) insert/update s in OPENwith key(s);

4 else

5 if (s ∈ OPEN) remove s from OPEN ;

6 procedure ComputePath()

7 while(key(sgoal) > mins∈OPEN(key(s)) OR v(sgoal) < g(sgoal))

8 remove s with the smallest key(s) from OPEN ;

9 if (v(s) > g(s))

10 v(s) = g(s); CLOSED←CLOSED ∪ {s};
11 for each successor s′ of s

12 if g(s′) > g(s) + c(s, s′)

13 g(s′) = g(s) + c(s, s′); UpdateSetMembership(s′);

14 else //propagating underconsistency

15 v(s) =∞; UpdateSetMembership(s);

16 for each successor s′ of s

17 g(s′) = mins′′∈pred(s′) v(s′′) + c(s′′, s′); UpdateSetMembership(s′);

Figure 3.3: ComputePath function that expands both overconsistent and
underconsistent states

The second change takes care of making sure that all underconsistent

3.2. SEARCH UNDER ARBITRARY INITIALIZATION 61

states which can belong to a path from sstart to s′ are expanded before s′ is
expanded. This constraint is specified using an additional restriction on the
function key() (case (b) in the first assumption in figure 3.3). This additional
restriction can be ”translated” as follows. Given an underconsistent state s
and an overconsistent or consistent state s′ that can potentially belong to a
path from sstart to sgoal (i.e., c∗(s′, sgoal) < ∞), a currently found path from
sstart to s′ may potentially contain s if g(s′) ≥ v(s) + c∗(s, s′). Therefore,
s needs to be expanded first, or in other words, key(s) needs to be strictly
smaller than key(s′). If there exists no underconsistent state s such that
g(s′) ≥ v(s)+c∗(s, s′) then there is no underconsistent state on the currently
best path from sstart to s′, the property we wanted to achieve.

The last small modification we have to make is the terminating condition.
We need to make sure that sgoal itself is not underconsistent when the search
terminates. The second part of the terminating condition, namely, v(sgoal) <
g(sgoal) ensures that the search forces the process of expansions until sgoal is
either consistent or overconsistent.

Figure 3.4 demonstrates the operation of the ComputePath function when
some states are initially underconsistent. The initial state values are the same
as in figure 3.1, where we have changed the cost c(s2, s1) after the Com-
putePath function was already executed. This small example imitates the
conditions under which LPA* will be executing the ComputePath function:
it will execute the ComputePath function repeatedly, updating edge costs
in between. The prioritization function according to which states are cho-
sen for expansion is min(g(s), v(s)) + h(s) with ties broken towards smaller
min(g(s), v(s)). That is, key(s) = [min(g(s), v(s)) + h(s); min(g(s), v(s))]
and key(s) > key(s′) iff min(g(s), v(s)) + h(s) > min(g(s′), v(s′)) + h(s′)
or min(g(s), v(s)) + h(s) = min(g(s′), v(s′)) + h(s′) and min(g(s), v(s)) >
min(g(s′), v(s′)). This function satisfies the key function restrictions listed
in figure 3.3.

While the pseudocode in figure 3.3 is correct, there remains one signifi-
cant optimization. The re-evaluation of g-values on line 17 is an expensive
operation as it requires us to iterate over all predecessors of s′. We can de-
crease the number of times this re-evaluation is done if we notice that it is
invoked when state s is expanded as underconsistent and therefore its v-value
is increased to ∞. Therefore, only a successor of s whose g-value depends on
s can be affected. If s 6= arg mins′′∈pred(s′) v(s′′)+c(s′′, s′) before its expansion,
then setting v(s) to ∞ cannot change g(s′) and we therefore don’t need to
re-evaluate g(s′). To implement this test we simply maintain back-pointers,

62 CHAPTER 3. LPA*

(a) initial state values (b) after the expansion of s1

(c) after the expansion of s3 (d) after the expansion of s1

(e) after the computation of a greedy path

Figure 3.4: An example of how the ComputePath function operates under
an arbitrary initialization. The example uses the following prioritization
function: key(s) = [min(g(s), v(s)) + h(s); min(g(s), v(s))]. All inconsistent
states need to be in OPEN initially. Overconsistent states are shown with
solid bold borders. Underconsistent states are shown with dashed bold bor-
ders. The g- and v-values that have just changed are shown in bold. After
the search terminates, a greedy path is computed and is shown in bold. The
computed greedy path and all the g-values are the same as what regular A*
search would have generated (provided it broke ties in a certain manner when
selecting states with the same f -values for expansion).

3.3. INCREMENTAL SEARCH 63

so that for any state s′ ∈ S

bp(s′) = arg min
s′′∈pred(s′)

v(s′′) + c(s′′, s′). (3.1)

The pseudocode that maintains these back-pointers and uses them to
avoid unnecessary re-evaluations of the g-values is given in figure 3.5 (changes
are shown in bold). Back-pointers are updated whenever the g-values change
(lines 14 and 20). In case of underconsistent state expansions the re-
evaluations of the g-values are now only done for states whose back-pointer
points to the state being expanded (lines 18 through 20).

The use of back-pointers also simplifies the re-construction of a solution
after the search finishes. Recall that previously the solution was given by
a greedy path that was computed in a backward fashion as follows: start
at sgoal, and at any state si pick a state si−1 = arg mins′∈pred(si)(g(s′) +
c(s′, si)) until si−1 = sstart (ties can be broken arbitrarily). Now, as we prove
in section 3.4 the solution can also be re-constructed using back-pointers,
tracing it backwards as follows: start at sgoal, and at any state si pick a state
si−1 = bp(si) until si−1 = sstart. We will refer to the path re-constructed in
this way as the path defined by back-pointers.

3.3 Incremental Search

3.3.1 LPA*

Now, that we have a version of the ComputePath function that can han-
dle an arbitrary initialization of states, that is, states that are consistent,
overconsistent and underconsistent, it is a simple exercise to construct an in-
cremental heuristic search algorithm. We call this search Lifelong Planning
A* (LPA*) [48]1. The pseudocode is given in figures 3.6 and 3.7. The code for
the ComputePath function is essentially the same as what we have presented
in the previous section (the differences are shown in bold). The only differ-
ences are that first, we maintain INCONS list to keep track of all inconsistent
states (lines 4 and 7 in figure 3.6) so that we can restore OPEN to contain

1The version presented in [48] is an incremental heuristic search that is restricted to
finding optimal solutions only. The version we present here is a generalization in that it
can trade-off the optimality for computational savings. The algorithm follows closely the
generalized LPA* algorithm developed in [59].

64 CHAPTER 3. LPA*

The pseudocode below assumes the following:

1. key function satisfies the following restrictions: for any two states s, s′ ∈ S (a) if c∗(s′, sgoal) <∞,
v(s′) ≥ g(s′), v(s) > g(s) and g(s′) > g(s) + ε ∗ c∗(s, s′), then key(s′) > key(s), and (b) if
c∗(s′, sgoal) <∞, v(s′) ≥ g(s′), v(s) < g(s) and g(s′) ≥ v(s) + c∗(s, s′), then key(s′) > key(s);

2. v−, g− and bp− values of all states are initialized in such a way that all the v-values are
non-negative, bp(sstart) = null, g(sstart) = 0 and for every state s ∈ S − {sstart} bp(s) =
arg mins′∈pred(s)(v(s′) + c(s′, s)) and g(s) = v(bp(s)) + c(bp(s), s) (the initialization can also
occur whenever ComputePath encounters new states);

3. initially, CLOSED = ∅ and OPEN contains exactly all inconsistent states (i.e., states s whose
v(s) 6= g(s)).

1 procedure UpdateSetMembership(s)

2 if (v(s) 6= g(s))

3 if (s 6∈ CLOSED) insert/update s in OPENwith key(s);

4 else

5 if (s ∈ OPEN) remove s from OPEN ;

6 procedure ComputePath()

7 while(key(sgoal) > mins∈OPEN(key(s)) OR v(sgoal) < g(sgoal))

8 remove s with the smallest key(s) from OPEN ;

9 if (v(s) > g(s))

10 v(s) = g(s); CLOSED←CLOSED ∪ {s};
11 for each successor s′ of s

12 if g(s′) > g(s) + c(s, s′)

13 bp(s′) = s;

14 g(s′) = g(bp(s′)) + c(bp(s′), s′); UpdateSetMembership(s′);

15 else //propagating underconsistency

16 v(s) =∞; UpdateSetMembership(s);

17 for each successor s′ of s

18 if bp(s′) = s

19 bp(s′) = arg mins′′∈pred(s′) v(s′′) + c(s′′, s′);

20 g(s′) = v(bp(s′)) + c(bp(s′), s′); UpdateSetMembership(s′);

Figure 3.5: ComputePath function that expands both overconsistent and un-
derconsistent states and uses back-pointers to avoid g-value re-computations.

all inconsistent states before each call to the ComputePath function, and
second, we explicitly initialize the states that LPA* (not the ComputePath
function) has not seen before on lines 14-15 and 22-23.

The function key() that LPA* uses is given in figure 3.7. It is straight-
forward to show that it satisfies the restriction on the key function (the
first assumption in figure 3.5). One can also design other key functions
that satisfy the restriction and are suited better for certain domains. For

3.3. INCREMENTAL SEARCH 65

1 procedure UpdateSetMembership(s)

2 if (v(s) 6= g(s))

3 if (s 6∈ CLOSED) insert/update s in OPENwith key(s);

4 else if (s 6∈ INCONS) insert s into INCONS ;

5 else

6 if (s ∈ OPEN) remove s from OPEN ;

7 else if (s ∈ INCONS) remove s from INCONS ;

8 procedure ComputePath()

9 while(key(sgoal) > mins∈OPEN(key(s)) OR v(sgoal) < g(sgoal))

10 remove s with the smallest key(s) from OPEN ;

11 if (v(s) > g(s))

12 v(s) = g(s); CLOSED←CLOSED ∪ {s};
13 for each successor s′ of s

14 if s′ was never visited by LPA* before then

15 v(s′) = g(s′) = ∞; bp(s′) = null;

16 if g(s′) > g(s) + c(s, s′)

17 bp(s′) = s;

18 g(s′) = g(bp(s′)) + c(bp(s′), s′); UpdateSetMembership(s′);

19 else //propagating underconsistency

20 v(s) =∞; UpdateSetMembership(s);

21 for each successor s′ of s

22 if s′ was never visited by LPA* before then

23 v(s′) = g(s′) = ∞; bp(s′) = null;

24 if bp(s′) = s

25 bp(s′) = arg mins′′∈pred(s′) v(s′′) + c(s′′, s′);

26 g(s′) = v(bp(s′)) + c(bp(s′), s′); UpdateSetMembership(s′);

Figure 3.6: LPA*: ComputePath function. LPA* specific changes as com-
pared with the search that can handle arbitrary state initialization (figure 3.5)
are shown in bold.

example, in some cases it is more efficient to use buckets for maintaining
OPEN . Setting key(s) = [g(s) + ε ∗ h(s); 1] if s is not underconsistent and
key(s) = [v(s) + h(s); 0] otherwise is more suitable for this case as it will
create much fewer buckets than the key function in figure 3.7 and will satisfy
the required restriction. For other examples of possibly useful key functions
see [59].

The main function Main() in the pseudo code of LPA* first initializes
the variables so that the start state is initially the only inconsistent state
and is inserted into the otherwise empty priority queue (line 9 in figure 3.7).
Main() then calls ComputePlan() to find a path that is ε-suboptimal at
worst. The path defined by back-pointers is then published as the current

66 CHAPTER 3. LPA*

solution (line 12). (If g(sstart) = ∞ after the search, then there is no finite
cost path from the start state to the goal state.) Main() then waits for
changes in edge costs. If some edge costs have changed, Main() updates
the corresponding bp- and g-values (lines 19 and 20) so that the second
assumption of the ComputePath function (figure 3.5) is satisfied2. Before
it calls the ComputePath function again, Main() makes OPEN contain all
inconsistent states by moving the contents of the INCONS list into it. To
fully satisfy the assumption of the ComputePath function it finally resets
CLOSED (line 22). Main() then re-computes a path that is ε-suboptimal at
worst by calling ComputePath() again, and iterates.

3.3.2 Theoretical Properties of LPA*

We now give several theoretical properties of LPA*. The proofs of these and
other properties are given in section 3.5. Since the ComputePath function of
LPA* is essentially the ComputePath function in figure 3.5 they both share
the same theoretical properties. The first theorem is similar to the corre-
sponding theorem about ARA*. It says that once ComputePath terminates
we have computed a path that is at worst ε-suboptimal from sstart to every
consistent and overconsistent state s that can be on a path from sstart to sgoal

and whose key is no larger than the minimum key in OPEN .

Theorem 22 When the ComputePath function exits the following holds
for any state s with (c∗(s, sgoal) < ∞ ∧ v(s) ≥ g(s) ∧ key(s) ≤
mins′∈OPEN(key(s′))): g∗(s) ≤ g(s) ≤ ε ∗ g∗(s), and the cost of the path
from sstart to s defined by backpointers is no larger than g(s).

Given that ComputePath terminates when the key of sgoal is no larger
than the smallest key in OPEN and sgoal is either consistent or overconsis-
tent, the path defined by backpointers from sstart to sgoal is also at worst
ε-suboptimal. The next few theorems talk about the efficiency of LPA*. The
first one says that each state can only be expanded at most twice. In ARA*,
each state could be expanded only once. Here, a state can first potentially be
pre-processed if it ever becomes underconsistent. Since we count this as an
expansion, a state can be expanded at most twice: once as underconsistent
and once as overconsistent.

2In problems that involve large number of edge cost updates one can avoid a large
number of g-value re-computations. The optimization is based on the idea described at
the end of section 3.2.2. It is given explicitly in [48].

3.3. INCREMENTAL SEARCH 67

The pseudocode below assumes the following:

1. Heuristics need to be consistent: h(s) ≤ c(s, s′) + h(s′) for any successor s′ of s if s 6= sgoal and
h(s) = 0 if s = sgoal.

1 procedure key(s)

2 if (v(s) ≥ g(s))

3 return [g(s) + ε ∗ h(s); g(s)];

4 else

5 return [v(s) + h(s); v(s)];

6 procedure Main()

7 g(sgoal) = v(sgoal) =∞; v(sstart) =∞; bp(sgoal) = bp(sstart) = null;

8 g(sstart) = 0; OPEN = CLOSED = INCONS = ∅;
9 insert sstart into OPEN with key(sstart);

10 forever

11 ComputePath();

12 publish ε-suboptimal solution;

13 wait for changes in edge costs;

14 for all directed edges (u, v) with changed edge costs

15 update the edge cost c(u, v);

16 if v 6= sstart

17 if v was never visited by LPA* before then

18 v(v) = g(v) =∞; bp(v) = null;

19 bp(v) = arg mins′′∈pred(v) v(s′′) + c(s′′, v);

20 g(v) = v(bp(v)) + c(bp(v), v); UpdateSetMembership(v);

21 Move states from INCONS into OPEN ;

22 CLOSED = ∅;

Figure 3.7: LPA*: key and Main functions

Theorem 23 No state is expanded more than twice during the execution of
the ComputePath function: at most once as underconsistent and at most once
as overconsistent.

The next theorem shows that no state is expanded needlessly. It is ex-
panded only if it was inconsistent before ComputePath was invoked or if it
needs to propagate the change in its v-value.

Theorem 24 A state s is expanded by ComputePath only if either it was
inconsistent initially or its v-value was altered by ComputePath at some point
during its execution.

The last theorem about the efficiency of LPA* states that if LPA* searches
for an optimal solution (i.e., ε = 1), then no state is expanded if its v-value

68 CHAPTER 3. LPA*

was already correct, in other words, equal to the cost of a least-cost path
from sstart to the state, before the ComputePath function was called.

Theorem 25 If ε = 1 then no state s which has a finite c∗(s, sgoal) and which
had v(s) initialized to g∗(s) before the ComputePath function was called is
expanded by it.

LPA* possesses a number of other interesting properties, in particular,
the ones that relate it to A*. For these and other additional properties please
refer to [49].

3.3.3 Extensions to LPA*

Moving Agent For many problems an agent may need to re-plan while
executing the plan. For example, a robot navigating to its goal in a partially
known environment gathers new information about its environment while
navigating and this information alters the cost function. In these cases
the state of the robot may change from one invocation of ComputePath to
another. Just as we have described for ARA* in section 2.2.2, it is common
to perform the search backwards, so that the start of the search remains the
same and the search tree can be re-used. In this case heuristics estimate
distances to the current state of the agent, and therefore change as the robot
moves. This means that we need to re-order OPEN before each re-planning
episode if the robot moved since the last time planning occurred. This can
be done right before ComputePath is called in Main() (line 11, figure 3.7).
The operation, however, can be expensive, especially, when optimal planning
is performed. The work in [47] describes an algorithm, called D* Lite, that
extends LPA* by avoiding the heap reordering based on an idea presented
in [78].

Minimax LPA* LPA* applies to deterministic domains, that is, to
domains where each action has only one possible outcome. In many domains
however, an action may have more than one outcome due to either inherent
randomness of the action or uncertainty in the model of the world. In [58]
we develop a minimax version of LPA*, called Minimax LPA*, that solves
nondeterministic domains. Minimax LPA* is an incremental planning
algorithm that, instead of returning least-cost deterministic paths, returns
plans that minimize the worst-case plan execution cost. Minimax LPA*

3.3. INCREMENTAL SEARCH 69

proved to be highly beneficial in speeding up the Parti-game algorithm [62],
a popular algorithm for finding feasible control policies in continuous and
high-dimensional state spaces.

Generalizations of LPA* Our work in [59] generalizes LPA* in several
ways. Most importantly, it presents alternative key functions that satisfy
the key requirements outlined in figure 3.5. The alternative key functions
may prove to be useful for certain domains. For example, [59] presents a key
function that breaks ties among the candidates for expansions with the same
f -values in order of states with larger g-values. This tie breaking criteria is
important in domains where numerous optimal solutions exist and we want
to avoid exploring all of them.

3.3.4 Experimental Analysis of the Performance of
LPA*

In this section we present an analysis of the efficiency of LPA* on the problem
of path planning for robot navigation in initially unknown environments. The
environments are modelled as gridworlds. We have used a version of LPA*
that was optimized for moving agents and presented in [47]. We compared
LPA* against several alternatives: complete uninformed search (breadth-
first search), complete heuristic search (A*), incremental uninformed search
(DynamicSWSF-FP [72] with a modified termination condition that stops
each search iteration as soon as a shortest path to the goal state is found), and
a different kind of incremental heuristic search (D* [78]). We implemented all
priority queues using standard binary heaps, although using more complex
data structures (such as Fibonacci heaps) could possibly make U.Update()
more efficient. A* broke ties among cells with the same f-value in favor of cells
with larger g-values, which tends to be more efficient than the opposite way
of breaking ties. Since all of these search methods move the robot in the same
way, we only need to perform a simulation study in which we compare the
total planning times of the search methods. Since the actual planning times
are implementation and machine dependent, we also use two measures that
both correspond to common operations performed by the search methods
and thus heavily influence their planning times, yet are implementation and
machine independent: the total number of cell expansions and the total
number of heap percolates (exchanges of a parent and child in the heap).

70 CHAPTER 3. LPA*

Search Algorithm Planning Time Cell Expansions Heap Percolates
Breadth-First Search 302.30 msecs 845,433 4,116,516
A* 10.55 msecs 17,096 276,287
Dynamic SWSF-FP 6.41 msecs 13,962 75,738
(Focussed) D* 4.28 msecs 2,138 79,214
LPA* 2.82 msecs 2,856 32,988

Figure 3.8: Experimental Results – Terrain with Random Obstacles.

Search Algorithm Planning Time Cell Expansions Heap Percolates
Breadth-First Search 194.13 msecs 543,408 2,643,916
A* 5.49 msecs 8,680 156,801
Dynamic SWSF-FP 6.26 msecs 13,931 76,703
(Focussed) D* 1.18 msecs 596 19,066
LPA* 0.97 msecs 393 5,316

Figure 3.9: Experimental Results – Fractal Terrain.

We performed experiments on eight-connected grids of size 129× 129, where
the start cell of the robot was (x = 12, y = 12) and the goal cell was (x =
116, y = 116). We report the averages over 500 runs on randomly generated
grids. All experiments were run on a 1.9 GHz PC under Linux.

In one set of experiments, we used grids whose cells were either traversable
or, with forty percent probability, untraversable, where untraversable cells
were modeled as cells with no incoming or outgoing edges. The robot initially
assumed that all edges were present with cost one. The robot always deleted
those edges entering its neighboring cells that did not exist in the true model
and then replanned a shortest path from its current cell to the goal cell. We
used the maximum of the absolute differences of the x and y coordinates of
any two cells as a heuristic estimate of their distances. Table 3.8 compares
LPA* against the other search methods. It shows that incremental heuristic
searches outperform both incremental and heuristic searches individually,
and that LPA* is competitive with D*.

In the second set of experiments, we used fractal terrain, similar to the
one used in [79]. All pairs of adjacent cells were connected by an edge but its
cost varied from 5 to 14 according to the traversal difficulty of the cell it was
entering. The robot initially assumed that all edges were present with cost 5.
The robot always updated the cost of the edges entering its neighboring cells
to correspond to the traversal difficulty of the corresponding neighboring
cell and then replanned a shortest path from its current cell to the goal
cell. We used five times of the maximum of the absolute differences of the x
and y coordinates of any two cells as a heuristic estimate of their distances.
Table 3.9 presents the same comparison as in the previous experiment. The
conclusions of the previous experiment continue to hold in these grids, that

3.4. PROOFS FOR SINGLE-SHOT SEARCH 71

might be more realistic models of outdoor terrain.

3.4 Proofs for Single-shot Search under Ar-

bitrary Initialization

3.4.1 Pseudocode

The pseudocode for the ComputePath function under arbitrary initialization
is given in figure 3.10.

3.4.2 Notation

The notation includes the one in section 2.3 plus few additional ones that
concern the new variable, bp(s), that we have introduced. bp(s) is a back-
pointer that points towards a predecessor state of s that lies on the currently
computed path from sstart to s.

To make the following proofs easier to read we assume that arg min
operation, used to compute backpointer values, when called on the set
consisting of only infinite values returns null, and in the computation
g(s) = v(bp(s)) + c(bp(s), s) it is assumed that if bp(s) = null then g(s)
is set to ∞.

Throughout the proofs we sometimes refer to a path from sstart to s defined
by backpointers. This path is defined as a path that is computed by tracing it
backward as follows: start at s, and at any state si pick a state si−1 = bp(si)
until si−1 = sstart.

We want to remind that ε is restricted to finite values larger than or equal
to 1.

The Assumption C, required to execute the ComputePath function in
figure 3.10, is an equivalent of the Assumption A that was required to execute
ComputePath when no underconsistent states were allowed (figure 2.13).
In particular, C.1 extends A.1 by adding an additional requirement on the
computation of keys in cases when a state is underconsistent (C.1(b)), C.2
extends A.2 by allowing to have underconsistent states initially, and C.3
extends A.3 by making OPEN to contain all inconsistent states rather than
all oveconsistent ones as it was in A.3.

72 CHAPTER 3. LPA*

The pseudocode below assumes the following (Assumption C):

1. key function satisfies key-requirement 2 : for any two states s, s′ ∈ S (a) if c∗(s′, sgoal) < ∞,
v(s′) ≥ g(s′), v(s) > g(s) and g(s′) > g(s) + ε ∗ c∗(s, s′), then key(s′) > key(s), and (b) if
c∗(s′, sgoal) <∞, v(s′) ≥ g(s′), v(s) < g(s) and g(s′) ≥ v(s) + c∗(s, s′), then key(s′) > key(s);

2. v−, g− and bp− values of all states are initialized in such a way that all the v-values are
non-negative, bp(sstart) = null, g(sstart) = 0 and for every state s ∈ S − {sstart} bp(s) =
arg mins′∈pred(s)(v(s′) + c(s′, s)) and g(s) = v(bp(s)) + c(bp(s), s) (the initialization can also
occur whenever ComputePath encounters new states);

3. initially, CLOSED = ∅ and OPEN contains exactly all inconsistent states (i.e., states s whose
v(s) 6= g(s)).

1 procedure UpdateSetMembership(s)

2 if (v(s) 6= g(s))

3 if (s 6∈ CLOSED) insert/update s in OPENwith key(s);

4 else

5 if (s ∈ OPEN) remove s from OPEN ;

6 procedure ComputePath()

7 while(key(sgoal) > mins∈OPEN(key(s)) OR v(sgoal) < g(sgoal))

8 remove s with the smallest key(s) from OPEN ;

9 if (v(s) > g(s))

10 v(s) = g(s); CLOSED←CLOSED ∪ {s};
11 for each successor s′ of s

12 if g(s′) > g(s) + c(s, s′)

13 bp(s′) = s;

14 g(s′) = g(bp(s′)) + c(bp(s′), s′); UpdateSetMembership(s′);

15 else //propagating underconsistency

16 v(s) =∞; UpdateSetMembership(s);

17 for each successor s′ of s

18 if bp(s′) = s

19 bp(s′) = arg mins′′∈pred(s′) v(s′′) + c(s′′, s′);

20 g(s′) = v(bp(s′)) + c(bp(s′), s′); UpdateSetMembership(s′);

Figure 3.10: ComputePath function that is able to handle underconsistent
states.

3.4.3 Proofs

The structure of the proofs is similar to the structure we used in section 2.3.3.
The first section mostly proves that the ComputePath function in figure 3.10
correctly maintains its variables. The section “Main Theorems” is more
interesting and proves the key properties of the algorithm. The section la-
beled “Correctness” uses these key properties to quite trivially derive the

3.4. PROOFS FOR SINGLE-SHOT SEARCH 73

ε-suboptimality property of the algorithm. Finally, the last section proves
several properties regarding the efficiency of the algorithm.

Low-level Correctness

Most of the theorems in this section simply state the correctness of the pro-
gram state variables such as v-, g-values and bp-values, and OPEN and
CLOSED sets.

Lemma 26 At line 7, all v- and g-values are non-negative, bp(sstart) = null,
g(sstart) = 0 and for ∀s 6= sstart, bp(s) = arg mins′∈pred(s)(v(s′) + c(s′, s)),
g(s) = v(bp(s)) + c(bp(s), s).

Proof: The theorem holds right after the initialization according to As-
sumption C.2 and the fact that g-values can only be non-negative when all
the v-values are non-negative and costs are positive. The only places where
g-, v- and bp-values are changed afterwards are on lines 10, 13, 14, 16, 19,
and 20.

If v(s) is set to g(s) on line 10, then it is decreased since s is being
expanded as overconsistent (i.e., v(s) > g(s) before the expansion according
to the test on line 9). Thus, it may only decrease the g-values of its successors.
The test on line 12 checks this for each successor of s and updates the bp- and
g-values if necessary. Since all costs are positive and never change, bp(sstart)
and g(sstart) can never be changed: it will never pass the test on line 12,
and thus is always 0. Since v(s) is set to g(s) it still remains non-negative.
Consequently, when the g-values of the successors of s are re-calculated their
g-values also remain non-negative.

If v(s) is set to ∞ on line 16, then it either stays the same or increases
since it is the “else” case of the test on line 9 (i.e., v(s) ≤ g(s) before the
expansion of s). (As we will show in later theorems the inequality will always
be strict as no consistent state is ever expanded.) Thus, it may only affect
the g- and bp− values of the successors of s if their bp-value is equal to s.
The test on line 18 checks this for each successor of s and re-computes the
bp- and g-values if necessary. Since bp(sstart) = null the test will never pass
for sstart and therefore bp(sstart) and g(sstart) can never be changed. Since
v(s) is set to ∞ it remains non-negative. Consequently, when the g-values of
the successors of s are re-calculated their g-values also remain non-negative.
The theorem thus holds.

74 CHAPTER 3. LPA*

Lemma 27 At line 7, OPEN and CLOSED are disjoint, OPEN contains
only inconsistent states and the union of OPEN and CLOSED contains all
inconsistent states (and possibly others).

Proof: The first time line 7 is executed the theorem holds according to
Assumption C.3.

During the following execution whenever we remove s from OPEN (line
8) it is either made consistent on line 10 and its addition to CLOSED on the
same line is therefore valid, or its v-value is set to ∞ on line 16 but its set
membership is immediately updated on the same line by calling UpdateSet-
Membership function. This function makes sure that the state it is called on
is consistent with the theorem.

The g-values of states could also be modified on lines 14 and 20, but the
set membership of these states is updated immediately by calling Update-
SetMembership function on the same lines.

Lemma 28 Suppose an overconsistent state s is selected for expansion in
line 8. Then the next time line 7 is executed v(s) = g(s), where g(s) before
and after the expansion of s is the same.

Proof: Suppose an overconsistent state s (i.e., v(s) > g(s)) is selected
for expansion. Then line 10 sets v(s) = g(s), and it is the only place where
a v-value changes while expanding an overconsistent state. We, thus, only
need to show that g(s) does not change. It could only change if s ∈ succ(s)
and g(s) > g(s) + c(s, s) (test on line 12) which is impossible since all costs
are positive.

Main theorems

We now prove two main theorems about the ComputePath function in fig-
ure 3.10. These theorems guarantee the ε-suboptimality of the algorithm
(where ε is the minimum value for which assumption C.1 holds): when the
algorithm finishes its processing, it has identified a set of states s for which
a path from sstart to s as defined by backpointers is guaranteed to be of cost
no larger than g(s) which in turn is no more than a factor of ε greater than
the optimal cost g∗(s).

Just like in the proofs for the ComputePath function that deals only
with overconsistent states we introduce here the set Q again but now it
additionally contains all underconsistent states:

3.4. PROOFS FOR SINGLE-SHOT SEARCH 75

Definition 2 Q = {u | v(u) < g(u) ∨ (v(u) > g(u) ∧ v(u) > ε ∗ g∗(u))}

In other words, the set Q contains all underconsistent states and all those
overconsistent states whose v-values are larger than a factor of ε of their true
costs. As we will show later OPEN is always a superset of set Q.

Theorem 29 At line 7, let Q be defined according to the definition 2. Then
for any state s with (c∗(s, sgoal) < ∞ ∧ v(s) ≥ g(s) ∧ key(s) ≤ key(u)
∀u ∈ Q), it holds that (i) g(s) ≤ ε ∗ g∗(s), (ii) the cost of the path from sstart

to s defined by backpointers is no larger than g(s).

Proof: (i) We first prove statement (i). We prove by contradiction.
Suppose there exists an s such that (c∗(s, sgoal) < ∞∧ v(s) ≥ g(s)∧ key(s) ≤
key(u) ∀u ∈ Q), but g(s) > ε ∗ g∗(s). The latter implies that g∗(s) < ∞.
We also assume that s 6= sstart since otherwise g(s) = 0 = ε ∗ g∗(s) from
Lemma 26.

Consider a least-cost path from sstart to s, π(s0 = sstart, ..., sk = s). The
cost of this path is g∗(s). Such path must exist since g∗(s) < ∞. We will
now show that such path must contain a state s′ that is overconsistent and
whose v-value overestimates g∗(s′) by more than ε. As a result, such state is
a member of Q. We will then show that its key, on the other hand, must be
strictly smaller than the key of s. This, therefore, becomes a contradiction
since s according to the theorem assumptions has a key smaller than or equal
to the key of any state in Q.

Our assumption that g(s) > ε ∗ g∗(s) means that there exists at least one
si ∈ π(s0, ..., sk−1), namely sk−1, whose v(si) > ε ∗ g∗(si). Otherwise,

g(s) = g(sk) = min
s′∈pred(s)

(v(s′) + c(s′, sk)) ≤

v(sk−1) + c(sk−1, sk) ≤
ε ∗ g∗(sk−1) + c(sk−1, sk) ≤

ε ∗ (g∗(sk−1) + c(sk−1, sk)) = ε ∗ g∗(sk) = ε ∗ g∗(s)

Let us now consider si ∈ π(s0, ..., sk−1) with the smallest index i ≥ 0 (that
is, the closest to sstart) such that v(si) > ε ∗ g∗(si). We will first show that
ε∗g∗(si) ≥ g(si). It is clearly so when i = 0 according to Lemma 26 which says
that g(si) = g(sstart) = 0. For i > 0 we use the fact that v(si−1) ≤ ε∗g∗(si−1)
from the way si was chosen,

g(si) = min
s′∈pred(si)

(v(s′) + c(s′, si)) ≤

76 CHAPTER 3. LPA*

v(si−1) + c(si−1, si) ≤
ε ∗ g∗(si−1) + c(si−1, si) ≤

ε ∗ g∗(si)

We thus have v(si) > ε ∗ g∗(si) ≥ g(si), which also implies that si ∈ Q.
We will now show that key(s) > key(si), and finally arrive at a contra-

diction. According to our assumption

g(s) > ε ∗ g∗(s) =

ε ∗ (c∗(s0, si) + c∗(si, sk)) =

ε ∗ g∗(si) + ε ∗ c∗(si, sk) ≥
g(si) + ε ∗ c∗(si, s)

Hence, we have g(s) > g(si) + ε ∗ c∗(si, s), v(si) > ε ∗ g∗(si) ≥ g(si),
v(s) ≥ g(s) and c∗(s, sgoal) < ∞ from theorem assumptions. Thus, from
Assumption C.1(a) it follows that key(s) > key(si). This inequality, however,
implies that si /∈ Q since key(s) ≤ key(u) ∀u ∈ Q. But this contradicts to
what we have proven earlier.

(ii) Let us now prove statement (ii). We assume that g(s) < ∞ for
otherwise the statement holds trivially. Suppose we start following the back-
pointers starting at s. We need to show that we will reach sstart at the
cumulative cost of the transitions less than or equal to g(s) (we assume that
if we encounter a state with bp-value equal to null before sstart is reached
then the cumulative cost is infinite).

We first show that we are guaranteed not to encounter an underconsistent
state or a state with bp-value equal to null before sstart is reached. Once we
have proven this property, we will be able to show that the cost of the path
is bounded above by g(s) simply from the fact that at each backtracking
step in the path the g-value can only be larger than or equal to the sum
of the g-value of the state the backpointer points to and the cost of the
transition. Consequently, the g-value can never underestimate the cost of
the remaining part of the path. The property that we are guaranteed not
to encounter an underconsistent state or a state with bp-value equal to null
before sstart is reached is based on the fact that any such state will have a key
strictly smaller than the key of s or have an infinite g-value. The first case is
impossible because key(s) is smaller than or equal to the key of any state in
Q and this set already contains all underconsistent states. The second case
can also be shown to be impossible quite trivially.

3.4. PROOFS FOR SINGLE-SHOT SEARCH 77

We thus first prove by contradiction the property that we are guaranteed
not to encounter an underconsistent state or a state with bp-value equal to
null before sstart is reached while following backpointers from s to sstart.
Suppose the sequence of backpointer transitions leads us through the states
{s0 = s, s1, . . . , si} where si is the first state that is either underconsistent or
has bp(si) = null (or both). It could not have been state s since v(s) ≥ g(s)
from the assumptions of the theorem and g(s) < ∞ implies bp(s) 6= null
according to Lemma 26 (except when s = sstart in which case the theorem
holds trivially). We now show that si cannot be underconsistent. Since all the
states before si are not underconsistent and have defined backpointer values
we have g(s) = v(s1)+c(s1, s) ≥ g(s1)+c(s1, s) = v(s2)+c(s2, s1)+c(s1, s) ≥
. . . ≥ v(si) +

∑
k=1..i c(sk, sk−1) ≥ v(si) + c∗(si, s). If si was underconsistent,

then we would have had c∗(s, sgoal) < ∞, v(s) ≥ g(s), v(si) < g(si) and
g(s) ≥ v(si)+c∗(si, s), and the Assumption C.1(b) would imply that key(s) >
key(si) which means that si /∈ Q and therefore cannot be underconsistent
according to the definition of Q. We will now show that bp(si) cannot be
equal to null either. Since si is not underconsistent v(si) ≥ g(si). From
our assumption that g(s) < ∞ and the fact that g(s) ≥ v(si) + c∗(si, s) it
then follows that g(si) is finite. As a result, from Lemma 26 bp(si) 6= null
unless si = sstart. Hence, as we backtrack from s to sstart the path defined by
backpointers we are guaranteed to have states that are not underconsistent
and whose bp-values are not equal to null except for sstart.

We are now ready to show that the cost of the path from sstart to s
defined by backpointers is no larger than g(s). Let us denote such path as:
s0 = sstart, s1, ..., sk = s. Since all states on this path are either consistent
or overconsistent and their bp-values are defined (except for sstart), for any i,
k ≥ i > 0, we have g(si) = v(si−1) + c(si−1, si) ≥ g(si−1) + c(si−1, si) from
Lemma 26. For i = 0, g(si) = g(sstart) = 0 from the same theorem. Thus,
g(s) = g(sk) ≥ g(sk−1) + c(sk−1, sk) ≥ g(sk−2) + c(sk−2, sk−1) + c(sk−1, sk) ≥
... ≥ ∑

j=1..k c(sj−1, sj). That is, g(s) is at least as large as the cost of the
path from sstart to s as defined by backpointers.

Theorem 30 At line 7, for any state s with (c∗(s, sgoal) < ∞ ∧ v(s) ≥
g(s) ∧ key(s) ≤ key(u) ∀u ∈ OPEN), it holds that (i) g(s) ≤ ε ∗ g∗(s), (ii)
the cost of the path from sstart to s defined by backpointers is no larger than
g(s).

Proof: Let Q be defined according to the definition 2. To prove the

78 CHAPTER 3. LPA*

theorem we will show that Q is a subset of OPEN and then appeal to The-
orem 29. We will show that Q is a subset of OPEN by induction. We
will first show that it holds initially because OPEN contains all inconsistent
states initially and set Q is a subset of those. Afterwards, we will show that
any state s ∈ CLOSED always remains either consistent or overconsistent
but with v(s) ≤ ε ∗ g∗(s). Given that the union of OPEN and CLOSED
contains all inconsistent states, it is then clear that OPEN contains at least
all those (and possibly other) inconsistent states that are in Q.

We now prove the theorem. From the definition of set Q it is clear that
for any state u ∈ Q it holds that u is inconsistent (that is, v(u) 6= g(u)).

According to the Assumption C.3 when the ComputePath function is
called OPEN contains all inconsistent states. Therefore Q ⊆ OPEN, because
as we have just said any state u ∈ Q is also inconsistent. Thus, if any state
s has key(s) ≤ key(u) ∀u ∈ OPEN , it is also true that key(s) ≤ key(u)
∀u ∈ Q. Thus, from the direct application of Theorem 29 it follows that the
first time line 7 is executed the theorem holds.

Also, because during the first execution of line 7 CLOSED = ∅ according
to assumption C.3, the following statement, denoted by (*), trivially holds
when line 7 is executed for the first time: for any state v ∈ CLOSED it holds
that g(v) ≤ v(v) ≤ ε ∗ g∗(v) and g(v) < v(s′) + c∗(s′, v) ∀s′ ∈ {s′′ | v(s′′) <
g(s′′)}. We will later prove that this statement always holds and thus all
states v ∈ CLOSED are either consistent or overconsistent but ε-suboptimal
(i.e., v(v) ≤ ε ∗ g∗(v)).

We will now show by induction that the theorem continues to hold for the
consecutive executions of the line 7. Suppose the theorem and the statement
(*) held during all the previous executions of line 7, and they still hold when a
state s is selected for expansion on line 8. We need to show that the theorem
holds the next time line 7 is executed.

We first prove that the statement (*) still holds during the next execution
of line 7. Suppose first we select an overconsistent state s to be expanded.
Because it is added to CLOSED immediately afterwards, we need to show
that it does not violate statement (*). Since when s is selected for expansion
on line 8 key(s) = min

u∈OPEN(key(u)), we have key(s) ≤ key(u) ∀u ∈
OPEN. According to the assumptions of our induction then g(s) ≤ ε ∗
g∗(s). From Lemma 28 it then also follows that the next time line 7 is
executed g(s) = v(s) ≤ ε ∗ g∗(s). To show that g(s) < v(s′) + c∗(s′, s)∀s′ ∈
{s′′ | v(s′′) < g(s′′)} after s is expanded we show that this is true right
before s is expanded and therefore since the v-values of all states except

3.4. PROOFS FOR SINGLE-SHOT SEARCH 79

for s do not change during the expansion of s and g(s) does not change
either (Lemma 28) it still holds afterwards. To show that the inequality
held before the expansion of s we note that according to our assumptions
CLOSED contained no underconsistent states and they were all therefore in
OPEN (Lemma 27); from the way s was selected from OPEN it then followed
that key(s) ≤ key(s′)∀s′ ∈ {s′′ | v(s′′) < g(s′′)}; finally, the fact that s was
overconsistent (v(s) > g(s)) implies that g(s) < v(s′) + c∗(s′, s)∀s′ ∈ {s′′ |
v(s′′) < g(s′′)} because otherwise c∗(s, sgoal) < ∞, v(s) > g(s), v(s′) < g(s′)
and g(s) ≥ v(s′) + c∗(s′, s) would imply key(s) > key(s′) according to the
Assumption C.1.(b). As for the rest of the states the statement (*) follows
from the following observations: only v-value of s was changed and s is
not underconsistent after its expansion (it is in fact consistent according to
Lemma 28); since g(s) decreased during the expansion of s the g-values of
its successors could only decrease implying that they could not have violated
the statement (*); and finally no other changes to either v- or g-values were
done and no operations except for insertion of s were done on CLOSED .

Suppose now an underconsistent state s is selected for expansion. Because
it is not added to CLOSED , we only need to show that statement (*) remains
to hold true for all the states that were in CLOSED prior to the expansion
of s. Since only v-value of s has been changed, none of the v-values of
states in CLOSED are changed. We will now show that none of their g-
values could have changed either. Since prior to the expansion of s, s was
underconsistent and statement (*) held by our induction assumptions, it was
true that for any state v ∈ CLOSED, g(v) < v(s)+ c∗(s, v). This means that
bp(v) 6= s (Lemma 26) and therefore the test on line 18 will not pass and
g(v) will not change during the expansion of s. Finally, we will now show
that the newly introduced underconsistent states could not have violated
the statement (*) either. The v-values of states that were underconsistent
before s was expanded were not changed (v-value of only s was changed and
s could not remain underconsistent as its v-value was set to ∞). Suppose
some state s′ became underconsistent as a result of expanding s. We need
to show that after the expansion of s, for any state v ∈ CLOSED it holds
that g(v) < v(s′) + c∗(s′, v). Since s′ became underconsistent as a result
of expanding s it must be the case that before the expansion of s v(s′) ≥
g(s′) and bp(s′) = s (in order for g(s′) to change). Consequently before the
expansion of s, v(s′) ≥ g(s′) = v(s)+ c(s, s′). Since before the expansion of s
statement (*) held, for any state v ∈ CLOSED g(v) < v(s)+c∗(s, v). We thus
had g(v) < v(s) + c∗(s, v) ≤ v(s) + c(s, s′) + c∗(s′, v) ≤ v(s′) + c∗(s′, v). This

80 CHAPTER 3. LPA*

continues to hold after the expansion of s since neither v(s′) nor g(v) changes
during the expansion of s as we have just shown. Hence the statement (*)
continues to hold the next time line 7 is executed.

We now prove that after s is expanded the theorem itself also holds.
We prove it by showing that Q continues to be a subset of OPEN the
next time line 7 is executed. According to Lemma 27 OPEN set con-
tains all inconsistent states that are not in CLOSED . Since, as we have
just proved, the statement (*) holds the next time line 7 is executed, all
states s in CLOSED set have g(s) ≤ v(s) ≤ ε ∗ g∗(s). Thus, any state
s that is inconsistent and has either g(s) > v(s) or v(s) > ε ∗ g∗(s) (or
both) is guaranteed to be in OPEN . Now consider any state u ∈ Q. As
we have shown earlier such state u is inconsistent, and either g(u) > v(u)
or v(u) > ε ∗ g∗(u) (or both) according to the definition of Q. Thus,
u ∈ OPEN. This shows that Q ⊆ OPEN. Consequently, if any state s
has c∗(s, sgoal) < ∞ ∧ v(s) ≥ g(s) ∧ key(s) ≤ key(u) ∀u ∈ OPEN, it is
also true that c∗(s, sgoal) < ∞ ∧ v(s) ≥ g(s) ∧ key(s) ≤ key(u) ∀u ∈ Q,
and the statement of the theorem holds from Theorem 29. This proves that
the theorem holds during the next execution of line 7, and proves the whole
theorem by induction.

Correctness

The corollaries in this section show how the theorems in the previous sec-
tion lead quite trivially to the correctness of ComputePath that can handle
underconsistent states (figure 3.10).

Corollary 31 When the ComputePath function exits the following holds
for any state s with (c∗(s, sgoal) < ∞ ∧ v(s) ≥ g(s) ∧ key(s) ≤
mins′∈OPEN(key(s′))): the cost of the path from sstart to s defined by back-
pointers is no larger than ε ∗ g∗(s).

Proof: The corollary follows directly from Theorem 30 after we combine
the statements (i) and (ii) of the theorem.

Corollary 32 When the ComputePath function exits the following holds:
the cost of the path from sstart to sgoal defined by backpointers is no larger
than ε ∗ g∗(sgoal).

3.4. PROOFS FOR SINGLE-SHOT SEARCH 81

Proof: According to the termination condition of the ComputePath func-
tion, upon its exit (v(sgoal) ≥ g(sgoal) ∧ key(sgoal) ≤ min

s′∈OPEN(key(s′))).
The proof then follows from Corollary 31 noting that c∗(sgoal, sgoal) = 0.

Efficiency

Several theorems in this section provide some theoretical guarantees about
the efficiency of ComputePath in figure 3.10.

Theorem 33 Once a state is expanded as overconsistent it can never be
expanded again (independently of it being overconsistent or underconsistent).

Proof: Suppose a state s is selected for expansion as overconsistent for
the first time during the execution of the ComputePath function. Then, it is
removed from OPEN set on line 8 and inserted into CLOSED set on line 10.
It can then never be inserted into OPEN set again unless the ComputePath
function exits since any state that is about to be inserted into OPEN set is
checked against membership in CLOSED on line 3. Because only the states
from OPEN set are selected for expansion, s can therefore never be expanded
second time.

Theorem 34 No state is expanded more than once as underconsistent during
the execution of the ComputePath function.

Proof: Once a state is expanded as underconsistent its v-value is set
to ∞. As a result, unless the state is expanded as overconsistent this state
can never become underconsistent again. This is so because for a state to be
underconsistent it needs to have its v-value strictly less than its g-value, which
implies that the v-value needs to be finite. The only way for a v-value to
change its value onto a finite value, on the other hand, is during the expansion
of the state as an overconsistent state. However, if the state is expanded as
overconsistent then according to Theorem 33 the state is never expanded
again. Thus, a state can be expanded at most once as underconsistent.

Corollary 35 No state is expanded more than twice during the execution of
the ComputePath function.

82 CHAPTER 3. LPA*

Proof: According to theorems 33 and 34 each state can be expanded
at most once as underconsistent and at most once as overconsistent. Since
there are no other ways to expand states, this leads to the desired result:
each state is expanded at most twice.

Theorem 36 A state s was expanded by ComputePath only if either it was
inconsistent initially or its v-value was altered by ComputePath at some point
during its execution.

Proof: Let us pick a state s such that right before a call to the
ComputePath function it was consistent and during the execution of
ComputePath its v-value has never been altered. Then it means that
vafterComputePath(s) = vbeforeComputePath(s) = gbeforeComputePath(s). Since only
states from OPEN are selected for expansion and OPEN contains only in-
consistent states, then in order for s to have been selected for expansion, it
should have had v(s) 6= g(s). Because the v-value of s remains the same
throughout the ComputePath function execution, it has to be the case that
the g-value of s has changed since the beginning of ComputePath. If s is ex-
panded as overconsistent then v(s) is changed by setting it to g(s), whereas
if s is expanded as underconsistent then v(s) is increased by setting it to
∞ (it could not have been equal to ∞ before since it was underconsistent,
i.e., v(s) < g(s) ≤ ∞). Both cases contradict to our assumption that v(s)
remained the same throughout the execution of ComputePath.

In order to state the next theorem we first need to introduce an additional
property that the function key() may often satisfy:

Definition 3 key-requirement 3: for any two states s, s′ ∈ S if
c∗(s′, sgoal) < ∞, v(s′) < g(s′), v(s) > g(s) and v(s′) > g(s) + c∗(s, s′), then
key(s′) > key(s).

This key-requirement essentially says that given an underconsistent state
s′ and an overconsistent state s we need to expand s first (i.e., key(s′) >
key(s)) whenever the expansion of s (setting v(s) = g(s)) may potentially
decrease g(s′) (as the g-values of the successors of s are being updated) and
correct its underconsistency. That is, if v(s′) > g(s) + c∗(s, s′), then it may
potentially be possible that during the expansion of s we set g(s′) = v(s) +

3.4. PROOFS FOR SINGLE-SHOT SEARCH 83

c∗(s, s′) = g(s) + c∗(s, s′) and therefore state s′ ceases to be underconsistent.
The next theorem makes use of it, and shows that if the function key() does
satisfy this property, then ComputePath can guarantee not to expand the
states whose v-values are already correct when searching for an optimal path
(i.e., ε = 1).

Theorem 37 If key-requirement 3 holds and Assumption C.1 is satisfied
for ε = 1 then no state s which has a finite c∗(s, sgoal) and which had v(s)
initialized to g∗(s) before a call to ComputePath is expanded.

Proof: We prove the theorem by contradiction. Suppose there is some
state s with c∗(s, sgoal) < ∞, whose v-value before ComputePath was exe-
cuted was equal to g∗(s), and which was expanded at least once during the
execution of the ComputePath function. Let us consider the first expan-
sion of s. We will show that at that point there must have been another
state which was inconsistent and had a key strictly smaller than the key of
s. Moreover, since ε = 1, it will turn out that any inconsistent state must
be in OPEN which will lead us to a contradiction since s was selected for
expansion as a state with the smallest key among the states in OPEN .

First, let us consider the case when s is expanded as overconsistent. Then
right before it is selected for expansion on line 8, c∗(s, sgoal) < ∞, v(s) > g(s)
and key(s) ≤ key(u)∀u ∈ OPEN. Hence, according to Theorem 30 it holds
that the cost of the path from sstart to s as defined by backpointers is no
larger than g(s). This implies that g(s) ≥ g∗(s). Because the v-values of
states are only changed when states are expanded and initially v(s) = g∗(s)
we then have g(s) ≥ v(s). This contradicts to our assumption that s is
expanded as overconsistent and rules out the possibility of s being expanded
first as overconsistent.

Now let us consider the case when s is expanded as underconsistent.
Then right before it is selected for expansion on line 8 v(s) < g(s) and
key(s) ≤ key(u)∀u ∈ OPEN. The first inequality and the fact that before
the expansion v(s) is equal to g∗(s) implies that g∗(s) is finite. The same
inequality also implies that s 6= sstart from Lemma 26. Let us therefore
consider an optimal path from sstart to s, π(s0 = sstart, ..., sk = s). The cost
of this path is g∗(s) < ∞.

Our assumption that g(s) > v(s) = g∗(s) means that there exists at least
one si ∈ π(s0, ..., sk−1), namely sk−1, whose v(si) > g∗(si). Otherwise,

g(s) = g(sk) = min
s′∈pred(s)

(v(s′) + c(s′, sk)) ≤

84 CHAPTER 3. LPA*

v(sk−1) + c(sk−1, sk) ≤
g∗(sk−1) + c(sk−1, sk) =

g∗(s) = v(s)

Let us now consider si ∈ π(s0, ..., sk−1) with the smallest index i ≥ 0
(that is, the closest to sstart) such that v(si) > g∗(si). We will first show that
g∗(si) ≥ g(si). This is clearly so when i = 0 according to Lemma 26 which
says that g(si) = g(sstart) = 0. For i > 0 we use the fact that v(si−1) ≤
g∗(si−1) from the way si was chosen,

g(si) = min
s′∈pred(si)

(v(s′) + c(s′, si)) ≤

v(si−1) + c(si−1, si) ≤
g∗(si−1) + c(si−1, si) ≤

g∗(si)

We thus have v(si) > g∗(si) ≥ g(si). We will now show that si ∈ OPEN.
Since it is inconsistent then according to Lemma 27 si is either in CLOSED or
OPEN . Suppose that si ∈ CLOSED. In order for this to be true si must have
been expanded as overconsistent. Since si is on an optimal path from sstart

to s and g ∗ (s) and c∗(s, sgoal) are both finite, it then follows that g ∗ (si)
and c∗(si, sgoal) are also both finite. Therefore, according to Theorem 30
right before si was selected for expansion as an overconsistent state g(si) ≤
ε ∗ g∗(si) = g∗(si). From the fact that during the expansion v(si) is set to
g(si) and si is never expanded afterwards (Theorem 33), and consequently
v(si) is never changed, follows that v(si) > g∗(si) is an impossible assumption
for a state that is in CLOSED . Hence, si ∈ OPEN.

We will now show that key(s) > key(si), and finally arrive at a contra-
diction. According to our assumption

v(s) = g∗(s) =

c∗(s0, si) + c∗(si, sk) =

g∗(si) + c∗(si, sk) ≥
g(si) + c∗(si, s)

Hence, we have c∗(s, sgoal) < ∞, v(s) > g(si)+ c∗(si, s), v(si) > g(si) and
v(s) < g(s) at the time s is selected for expansion. Since key-requirement 3
holds it then follows that key(s) > key(si). This inequality, however, implies

3.5. PROOFS FOR LPA* 85

that si /∈ OPEN since otherwise si should have been selected for expansion
instead of s. But this contradicts to what we have proven earlier, namely
that si does indeed belong to OPEN. This rules out the possibility of having
expanded s as underconsistent first. Since we have already proven that s
could not have been expanded as overconsistent first s could not have been
expanded altogether.

3.5 Proofs for Lifelong Planning A*

3.5.1 Pseudocode

The pseudocode for LPA* is given in figures 3.11 and 3.12.

3.5.2 Notation

The notation is exactly the same as we have used in section 3.4. We re-
emphasize that ε is restricted to finite values larger than or equal to 1.

3.5.3 Proofs

The changes that we have introduced into the ComputePath function (all
lines in bold in figure 3.11, i.e., lines 4, 7, 14, 15, 22 and 23) are equivalent
to the changes we introduced into the ComputePath function when used by
ARA*. Just like there, these changes do not affect the properties that we
have already proven to hold for the ComputePath function in section 3.4.3,
assuming that every time the function is called assumption C (figure 3.10)
holds. Lines 4 and 7 are purely keeping track of states that are both incon-
sistent and not in OPEN . This maintenance does not affect the operation of
ComputePath in any way. The other four lines, 14, 15, 22 and 23 are used
to do online initialization of states that have not been seen before. For the
sake of the proofs simplicity we therefore from now on assume that any state
s with undefined values (not visited) has v(s) = g(s) = ∞ and bp(s) = null.

Similarly to the proofs of ARA*, the goal of proofs in this section is
to show that LPA* algorithm as presented in figure 3.12 ensures that the
assumption C is true every time it calls the ComputePath function. Once
this is shown, all the properties in section 3.4.3 apply here and we thus obtain

86 CHAPTER 3. LPA*

1 procedure UpdateSetMembership(s)

2 if (v(s) 6= g(s))

3 if (s 6∈ CLOSED) insert/update s in OPENwith key(s);

4 else if (s 6∈ INCONS) insert s into INCONS ;

5 else

6 if (s ∈ OPEN) remove s from OPEN ;

7 else if (s ∈ INCONS) remove s from INCONS ;

8 procedure ComputePath()

9 while(key(sgoal) > mins∈OPEN(key(s)) OR v(sgoal) < g(sgoal))

10 remove s with the smallest key(s) from OPEN ;

11 if (v(s) > g(s))

12 v(s) = g(s); CLOSED←CLOSED ∪ {s};
13 for each successor s′ of s

14 if s′ was never visited by LPA* before then

15 v(s′) = g(s′) = ∞; bp(s′) = null;

16 if g(s′) > g(s) + c(s, s′)

17 bp(s′) = s;

18 g(s′) = g(bp(s′)) + c(bp(s′), s′); UpdateSetMembership(s′);

19 else //propagating underconsistency

20 v(s) =∞; UpdateSetMembership(s);

21 for each successor s′ of s

22 if s′ was never visited by LPA* before then

23 v(s′) = g(s′) = ∞; bp(s′) = null;

24 if bp(s′) = s

25 bp(s′) = arg mins′′∈pred(s′) v(s′′) + c(s′′, s′);

26 g(s′) = v(bp(s′)) + c(bp(s′), s′); UpdateSetMembership(s′);

Figure 3.11: ComputePath function as used by LPA*. Changes specific to
LPA* are shown in bold.

the desired properties about each search iteration in LPA* including its ε-
suboptimality and other properties regarding its efficiency. The flow of the
proofs is very similar to the flow of the proofs for ARA* (section 2.4.3).

Lemma 38 For any pair of states s and s′, ε ∗ h(s) ≤ ε ∗ c∗(s, s′) + ε ∗ h(s′).

Proof: According to [66] the consistency property required of heuristics
in Assumption D is equivalent to the restriction that h(s) ≤ c∗(s, s′) + h(s′)
for any pair of states s, s′ and h(sgoal) = 0. The theorem then follows by
multiplying the inequality with ε.

Theorem 39 If assumption C holds and INCONS = ∅ before the execution
of ComputePath, then during the execution of ComputePath, at line 9, OPEN

3.5. PROOFS FOR LPA* 87

The pseudocode below assumes the following (Assumption D):

1. Heuristics need to be consistent: h(s) ≤ c(s, s′) + h(s′) for any successor s′ of s if s 6= sgoal and
h(s) = 0 if s = sgoal.

1 procedure key(s)

2 if (v(s) ≥ g(s))

3 return [g(s) + ε ∗ h(s); g(s)];

4 else

5 return [v(s) + h(s); v(s)];

6 procedure Main()

7 g(sgoal) = v(sgoal) =∞; v(sstart) =∞; bp(sgoal) = bp(sstart) = null;

8 g(sstart) = 0; OPEN = CLOSED = INCONS = ∅;
9 insert sstart into OPEN with key(sstart);

10 forever

11 ComputePath();

12 publish ε-suboptimal solution;

13 wait for changes in edge costs;

14 for all directed edges (u, v) with changed edge costs

15 update the edge cost c(u, v);

16 if v 6= sstart

17 if v was never visited by LPA* before then

18 v(v) = g(v) =∞; bp(v) = null;

19 bp(v) = arg mins′′∈pred(v) v(s′′) + c(s′′, v);

20 g(v) = v(bp(v)) + c(bp(v), v); UpdateSetMembership(v);

21 Move states from INCONS into OPEN ;

22 CLOSED = ∅;

Figure 3.12: LPA* algorithm

and INCONS are disjoint and INCONS contains exactly all the inconsistent
states which are also in CLOSED.

Proof: We will prove the theorem by assuming that assumption C holds
and INCONS = ∅ before the execution of ComputePath. Thus, the first
time line 9 is executed OPEN contains exactly all inconsistent states and
CLOSED = ∅ according to assumption C.3 and INCONS = ∅. Therefore,
the statement of the theorem is not violated at this point.

Let us now examine all the lines where we change v- or g-values of states
or their set membership during the following execution of ComputePath. On
line 10 we remove a state s from OPEN . This operation by itself cannot
violate the theorem. On line 12 we insert the state s into CLOSED but
since we set v(s) = g(s) on the same line, the state is consistent and still

88 CHAPTER 3. LPA*

cannot violate the theorem. On all the other lines of ComputePath where we
modify either v- or g-values of states except for state initialization (lines 15
and 23) we also call UpdateSetMembership function. The state initialization
code leaves a state consistent but since the state was never visited before
it correctly does not belong to any set. We thus only need to show that
UpdateSetMembership function correctly updates the set membership of a
state.

In UpdateSetMembership function if a state s is inconsistent and is not
in CLOSED it is inserted into OPEN , otherwise it is inserted into INCONS
(unless it is already there). Combined with Lemma 27 that states that OPEN
and CLOSED are disjoint, this procedure ensures that an inconsistent state
s does not appear in both OPEN and INCONS and does appear in INCONS
if it also belongs to CLOSED . If a state s is consistent and belongs to OPEN ,
then it does not belong to CLOSED (since these sets are disjoint according
to Lemma 27) and consequently does not belong to INCONS . If a state s is
consistent and does not belong to OPEN , then it may potentially belong to
INCONS . We check this and remove s from INCONS if it is there on line 7.

Theorem 40 The function Key() satisfies the key-requirement in assump-
tion C.1.

Consider first case C.1(a): two arbitrary states s′ and s such that
c∗(s′, sgoal) < ∞, v(s′) ≥ g(s′), v(s) > g(s) and g(s′) > g(s) + ε ∗ c∗(s, s′).
We need to show that these conditions imply key(s′) > key(s). Given
the definition of the key function in figure 3.12 we need to show that
[g(s′) + ε ∗ h(s′); g(s′)] > [g(s) + ε ∗ h(s); g(s)]. We examine the inequal-
ity g(s′) > g(s) + ε ∗ c∗(s, s′) and add ε ∗ h(s′), which should be fi-
nite since c∗(s′, sgoal) is finite and heuristics are consistent. We thus have
g(s′) + ε ∗h(s′) > g(s) + ε ∗ c∗(s, s′) + ε ∗h(s′) and from Lemma 38 we obtain
g(s′) + ε ∗ h(s′) > g(s) + ε ∗ h(s) that guarantees that the desired inequality
holds.

Consider now case C.1(b): two arbitrary states s′ and s such that
c∗(s′, sgoal) < ∞, v(s′) ≥ g(s′), v(s) < g(s) and g(s′) ≥ v(s) + c∗(s, s′).
We need to show that these conditions imply key(s′) > key(s). Given
the definition of the key function in figure 3.12 we need to show that
[g(s′) + ε ∗ h(s′); g(s′)] > [v(s) + h(s); v(s)]. Since v(s) < g(s), v(s) is fi-
nite. Consider now the inequality g(s′) ≥ v(s) + c∗(s, s′). Because v(s) < ∞

3.5. PROOFS FOR LPA* 89

and costs are positive we can conclude that g(s′) > v(s). We now add ε∗h(s′)
to both sides of the inequality and use the consistency of heuristics as follows
g(s′)+ε∗h(s′) ≥ v(s)+c∗(s, s′)+ε∗h(s′) ≥ v(s)+c∗(s, s′)+h(s′) ≥ v(s)+h(s).
Hence, we have g(s′) + ε ∗ h(s′) ≥ v(s) + h(s) and g(s′) > v(s). These in-
equalities guarantee that [g(s′) + ε ∗ h(s′); g(s′)] > [v(s) + h(s); v(s)].

Theorem 41 Every time the ComputePath function is called from the Main
function of LPA*, assumption C is fully satisfied prior to the execution of
ComputePath.

We have already proven that assumption C.1 is satisfied in Theorem 40.
Before we prove assumptions C.2 and C.3 let us first prove the following
statement denoted by (*): every time the ComputePath function is called
INCONS = ∅. This is true the first time ComputePath is called since IN-
CONS is reset to empty on line 8. Then the statement holds because before
each subsequent call to ComputePath all the states in INCONS are moved
into OPEN on line 21.

We are now ready to prove that assumptions C.2 and C.3 hold before
each execution of ComputePath by induction. Consider the first call to
the ComputePath function. At that point the g- and v-values of all states
except for sstart are infinite, and v(sstart) = ∞ and g(sstart) = 0. Also, the
bp-values of all states are equal to null. Thus, for every state s 6= sstart,
bp(s) = null and v(s) = g(s) = ∞, and for s = sstart, bp(s) = null, g(s) = 0
and v(s) = ∞. Consequently, assumption C.2 holds. Additionally, the only
inconsistent state is sstart which is inserted into OPEN at line 9. OPEN does
not contain any other states and CLOSED is empty. Hence, assumption C.3
is also satisfied.

Suppose now that the assumptions C.2 and C.3 held during the previous
calls to the ComputePath functions. We will now show that the assumptions
C.2 and C.3 continue to hold the next time ComputePath is called and thus
hold every time ComputePath is called by induction.

Since assumption C held before ComputePath started, after Com-
putePath exits, according to Lemma 26, all the v-values are non-negative,
for every state s 6= sstart, bp(s) = arg mins′∈pred(s)(v(s′) + c(s′, s)) and
g(s) = v(bp(s)) + c(bp(s), s) and for s = sstart bp(s) = null and g(s) = 0.
The assumption C.2 therefore continues to hold when ComputePath exits.
After ComputePath exits, costs may change on line 15. The bp- and g-values,

90 CHAPTER 3. LPA*

though, are updated correctly on the following lines 19 and 20. The assump-
tion C.2 therefore continues to hold the next time the ComputePath function
is called.

Since assumption C holds and INCONS = ∅ (statement (*)) right before
the call to ComputePath Theorem 39 applies and we conclude that at the
time ComputePath exits INCONS contains exactly all inconsistent states
that are in CLOSED . Combined with the Lemma 27 it implies that INCONS
contains all and only inconsistent states that are not in OPEN .

We then may introduce new inconsistent states or make some inconsistent
consistent by changing g-values of states on line 20. Their set membership,
however, is updated by UpdateSetMembership function on the same line.
In this function if a state s is inconsistent and is not in CLOSED it is in-
serted into OPEN , otherwise it is inserted into INCONS (unless it is already
there). Because OPEN and CLOSED are disjoint at this point, this pro-
cedure ensures that an inconsistent state s does not appear in both OPEN
and INCONS and does appear in INCONS if it also belongs to CLOSED .
If a state s is consistent and belongs to OPEN , then it does not belong to
CLOSED (since these sets are disjoint) and consequently does not belong
to INCONS . If a state s is consistent and does not belong to OPEN , then
it may potentially belong to INCONS . We check this and remove s from
INCONS if it is there in UpdateSetMembership (figure 3.11). Thus, after
UpdateSetMembership function exits INCONS continues to contain all and
only inconsistent states that are not in OPEN .

By moving states from INCONS into OPEN on line 21 we make OPEN
to contain exactly all inconsistent states. Thus, the next time ComputePath
is executed, OPEN contains exactly all inconsistent states while CLOSED
is empty (due to line 22). Hence, assumption C.3 holds the next time Com-
putePath is executed.

Theorem 42 If LPA* algorithm is used with ε = 1 (on line 3 in the Main()
function), then the key function satisfies key-requirement 3.

Proof: Suppose LPA* algorithm is used with ε = 1. We then need to
show that if we are given two arbitrary states s′ and s such that c∗(s′, sgoal) <
∞, v(s′) < g(s′), v(s) > g(s) and v(s′) > g(s) + c∗(s, s′), then these con-
ditions imply key(s′) > key(s). Given the definition of the key function in
figure 3.12 we need to show that [v(s′)+h(s′); v(s′)] > [g(s)+h(s); g(s)]. Let
us examine inequality v(s′) > g(s) + c∗(s, s′) and add h(s′) to both sides of

3.6. SUMMARY 91

it. Since c∗(s, sgoal) is finite and heuristics are consistent, h(s′) is also finite.
We therefore have v(s′) + h(s′) > g(s) + c∗(s, s′) + h(s′) and from heuristics
consistency we get v(s′) + h(s′) > g(s) + h(s). This is sufficient to guarantee
that [v(s′) + h(s′); v(s′)] > [g(s) + h(s); g(s)] as desired.

3.6 Summary

In this chapter we have presented an incremental heuristic search, LPA*. It is
a repetitive execution of A*-like searches where in between the searches one or
more edge costs in the graph can change. LPA* is therefore suitable to solving
dynamic or partially known environments. In these environments the edge
costs in the graph that models the environment change as the environment
changes or new information about it is received.

While each search iteration in the anytime heuristic search, ARA*, devel-
oped in the previous chapter, was based on the observation that A* can be
viewed as a repetitive expansion of overconsistent states and we only need
to identify these overconsistent states before each new search iteration, it
is not sufficient for the operation of LPA* search. In this chapter we have
shown that edge cost increases can actually introduce underconsistent states,
something that can never happen in ARA* which changes only suboptimal-
ity bounds in between its search iterations. In this chapter we therefore first
introduced a notion of a state being underconsistent. We then showed how
to efficiently fix underconsistent states so that we once again can employ
the formulation of A* search that repetitively expands overconsistent states.
Once we had a version of search that can handle both underconsistent and
overconsistent states, LPA* algorithm only needed to identify all such states
in between search iterations. The section 3.3 in this chapter showed how
LPA* managed this task.

92 CHAPTER 3. LPA*

Chapter 4

Anytime D*: Anytime
Incremental A* with Provable
Bounds on Suboptimality

4.1 Anytime D*

4.1.1 Combining ARA* with LPA*

Previous chapters have demonstrated an anytime search algorithm suitable
for solving complex planning problems under the conditions where time is
critical (ARA*) and an incremental search algorithm suitable for planning
in domains that require frequent re-planning, for example, dynamic environ-
ments (LPA*). This chapter presents an algorithm that combines the two
algorithms into a single anytime incremental search algorithm, called Any-
time D* (where D* stands for Dynamic A*, same as in [78]). We will often
refer to Anytime D* simply as AD*. AD* can plan under time constraints,
just like ARA* can, but gains efficiency over it by being able to re-use previ-
ous planning efforts in domains where the model of a problem changes over
time.

Both ARA* and LPA* re-use their previous search efforts when execut-
ing the ComputePath function to re-compute a solution. The difference is
that before each call to the ComputePath function ARA* changes the sub-
optimality bound ε, while LPA* changes one or more edge costs in a graph.
Anytime D* algorithm should be able to do both types of changes simultane-
ously, so that it can improve a solution by decreasing ε even when the model

93

94 CHAPTER 4. ANYTIME D*

of a problem changes slightly as reflected in the edge cost changes.

It turns out that the version of the ComputePath function that LPA*
uses is already sufficient to handle both of these types of changes 1. The rea-
sons for this are as follows. A change in ε does not change the v- or g-values
of states. Therefore, if there were no underconsistent states (states s with
v(s) < g(s)) before ε was changed, then there would be no underconsistent
states afterwards either. Combined with the fact that A* search by itself
does not create any underconsistent states if there were none before it was
executed, all states that ARA* needs to handle are either consistent of over-
consistent. As a result, it only needs to execute the ComputePath function
which requires that no state is underconsistent initially (the version developed
in section 2.1.3). The ComputePath function used by LPA*, on the other
hand, needs to be able to handle all three types of states, consistent, overcon-
sistent and underconsistent, because underconsistent states can be created
when some edge costs are increased (as discussed in section 3.1). This ver-
sion of the ComputePath function (presented in section 3.2.2) is therefore a
generalization of the ComputePath function used by ARA*. Consequently,
it can be executed even if the changes in ε and edge costs occur at the same
time, exactly the scenario that Anytime D* needs to be able to handle.

The pseudocode of Anytime D* algorithm is shown in figures 4.1 and 4.2.
Just like in case of LPA*, the code for the ComputePath function is essen-
tially the same as the ComputePath function that can handle arbitrary state
initialization (figure 3.5). The differences, shown in bold, are that we main-
tain the INCONS list to keep track of all inconsistent states (lines 4 and 7,
figure 4.1) so that we can restore OPEN to contain all inconsistent states
before each call to the ComputePath function, and we explicitly initialize the
states that Anytime D* (not just the current execution of the ComputePath
function) has not seen before (lines 14-15 and 22-23).

The function Main() of Anytime D* (figure 4.2) first sets ε to a sufficiently
high value ε0, so that an initial, possibly highly suboptimal, plan can be gen-
erated quickly and performs the initialization of states (lines 7 through 9)
so that the assumptions of the ComputePath function (assumptions listed in
figure 3.5) are satisfied. It then calls the ComputePath function to gener-
ate a first plan and publishes an ε-suboptimal solution. Afterwards, unless

1This is only true of the ComputePath function in generalized LPA* [59]. The Com-
putePath function of the original LPA* [48] would not be able to handle changes in ε as
it can only search for optimal solutions.

4.1. ANYTIME D* 95

1 procedure UpdateSetMembership(s)

2 if (v(s) 6= g(s))

3 if (s 6∈ CLOSED) insert/update s in OPENwith key(s);

4 else if (s 6∈ INCONS) insert s into INCONS ;

5 else

6 if (s ∈ OPEN) remove s from OPEN ;

7 else if (s ∈ INCONS) remove s from INCONS ;

8 procedure ComputePath()

9 while(key(sgoal) > mins∈OPEN(key(s)) OR v(sgoal) < g(sgoal))

10 remove s with the smallest key(s) from OPEN ;

11 if (v(s) > g(s))

12 v(s) = g(s); CLOSED←CLOSED ∪ {s};
13 for each successor s′ of s

14 if s′ was never visited by AD* before then

15 v(s′) = g(s′) = ∞; bp(s′) = null;

16 if g(s′) > g(s) + c(s, s′)

17 bp(s′) = s;

18 g(s′) = g(bp(s′)) + c(bp(s′), s′); UpdateSetMembership(s′);

19 else //propagating underconsistency

20 v(s) =∞; UpdateSetMembership(s);

21 for each successor s′ of s

22 if s′ was never visited by AD* before then

23 v(s′) = g(s′) = ∞; bp(s′) = null;

24 if bp(s′) = s

25 bp(s′) = arg mins′′∈pred(s′) v(s′′) + c(s′′, s′);

26 g(s′) = v(bp(s′)) + c(bp(s′), s′); UpdateSetMembership(s′);

Figure 4.1: Anytime D*: ComputePath function. This version is identical
to the version used by LPA*. The changes as compared with the search that
can handle arbitrary state initialization (figure 3.5), on the other hand, are
shown in bold.

changes in edge costs are detected, the Main function decreases ε (line 25) and
improves the quality of its solution, by re-initializing OPEN and CLOSED
properly (lines 26 through 28) and re-executing the ComputePath function,
until the solution is guaranteed to be optimal, that is, ε = 1. This part is
identical to how the function Main() in ARA* works: before each execution
of ComputePath the OPEN list is made to contain exactly all inconsistent
states by moving INCONS into OPEN and CLOSED is emptied.

If changes in edge costs are detected, then Main() updates the bp- and g-
values (lines 20 and 21) so that the second assumption of the ComputePath
function (the second assumption in figure 3.5) is satisfied. These updates

96 CHAPTER 4. ANYTIME D*

The pseudocode below assumes the following:

1. Heuristics need to be consistent: h(s) ≤ c(s, s′) + h(s′) for any successor s′ of s if s 6= sgoal and
h(s) = 0 if s = sgoal.

1 procedure key(s)

2 if (v(s) ≥ g(s))

3 return [g(s) + ε ∗ h(s); g(s)];

4 else

5 return [v(s) + h(s); v(s)];

6 procedure Main()

7 g(sgoal) = v(sgoal) =∞; v(sstart) =∞; bp(sgoal) = bp(sstart) = null;

8 g(sstart) = 0; OPEN = CLOSED = INCONS = ∅; ε = ε0;

9 insert sstart into OPEN with key(sstart);

10 forever

11 ComputePath();

12 publish ε-suboptimal solution;

13 if ε = 1

14 wait for changes in edge costs;

15 for all directed edges (u, v) with changed edge costs

16 update the edge cost c(u, v);

17 if v 6= sstart

18 if v was never visited by AD* before then

19 v(v) = g(v) =∞; bp(v) = null;

20 bp(v) = arg mins′′∈pred(v) v(s′′) + c(s′′, v);

21 g(v) = v(bp(v)) + c(bp(v), v); UpdateSetMembership(v);

22 if significant edge cost changes were observed

23 increase ε or re-plan from scratch (i.e., re-execute Main function);

24 else if ε > 1

25 decrease ε;

26 Move states from INCONS into OPEN ;

27 Update the priorities for all s ∈ OPEN according to key(s);

28 CLOSED = ∅;

Figure 4.2: Anytime D*: key and Main functions

are identical to what LPA* does as well. If edge costs changes are large,
then it may be computationally expensive to repair the current solution to
regain or even improve ε-suboptimality. In such a case, one alternative for
the algorithm is to increase ε so that a less optimal solution can be produced
quickly (line 23). In some cases, however, it might be a good time to release
all the currently used memory and just re-execute the Main() function for
the initial setting of ε (line 23). While we do not give a specific strategy for
deciding whether the changes in edge costs are large enough to plan from

4.1. ANYTIME D* 97

scratch, in section 5.2 we give an example of a strategy that seems to work
well for the problem of dynamic path planning. If the changes in edge costs
are not substantial and are unlikely to cause expensive re-planning efforts,
Main() can decrease ε (line 25), so that it re-plans for new edge costs and
improves the solution via a single execution of the ComputePath function.

Similarly to how it is done in ARA*, and based on the idea in [84], the
suboptimality bound on the solution can also be given by:

g(sgoal)

mins∈OPEN∪INCONS(g(s)+h(s))
(4.1)

If the ratio becomes smaller than one then g(sgoal) is already equal to
the cost of an optimal solution. Thus, the actual suboptimality bound, ε′,
for each solution Anytime D* publishes can be computed as the minimum
between ε and this new bound.

ε′ = min(ε,
g(sgoal)

mins∈OPEN∪INCONS(g(s)+h(s))
). (4.2)

When interleaving planning with execution with Anytime D* as a planner,
the agent executes the best plan it has so far while the planner works on fixing
the plan if edge costs change and improving it. Same as with ARA*, however,
as the agent moves the start of the search changes. Once again one can deal
with this problem by performing the search backward: the start of the search,
sstart, is the actual goal state of the agent, the goal of the search, sgoal, is the
current state of the agent and the search is performed on a directed graph
by reversing the direction of all edges in the original graph. The heuristics
then estimate the distances to the current state of the agent as it is the goal
of the search. Consequently, the heuristics change as the agent moves and
this changes the priorities of the states in the OPEN list. Just like in ARA*,
we can recompute the heuristic values of the states in the OPEN list during
the reorder operation (line 27 in figure 4.2)2.

4.1.2 Example

Figures 4.3 and 4.4 illustrate the approaches discussed in this thesis on a
simple grid world planning problem. In this example we have an eight-

2The heap reorder operation might become expensive when the heap grows large. An
optimization based on the idea in [78] can be done to avoid heap reordering. This is
discussed in [56].

98 CHAPTER 4. ANYTIME D*

connected grid where black cells represent obstacles and white cells represent
free space. The cell marked R denotes the position of an agent navigating
this environment towards the goal cell, marked G (in the upper left corner
of the grid world). The cost of moving from one cell to any non-obstacle
neighboring cell is one. The heuristic used by each algorithm is the larger
of the x (horizontal) and y (vertical) distances from the current cell to the
cell occupied by the agent. The cells expanded by each algorithm for each
subsequent agent position are shown in grey. The resulting paths are shown
as dark grey arrows.

The first approach shown is backwards A* with ε = 1 (figure 4.3, top
row), that is, an optimal A* with its search directed from the goal state to
the start state. The initial search performed by A* provides an optimal path
for the agent. After the agent takes two steps along this path, it receives
information indicating that one of the cells in the top wall is in fact free
space. It then replans from scratch using A* to generate a new, optimal
path to the goal. The combined total number of cells expanded at each of
the first three agent positions is 31.

In contrast to the optimal A* search backwards A* with a constant in-
flation factor of ε = 2.5 (figure 4.4, top row) produces an initial suboptimal
solution very quickly. When the agent receives the new information regard-
ing the top wall, this approach replans from scratch using its inflation factor
and produces a new path, which happens to be optimal. The total num-
ber of cells expanded is only 19, but the solution is only guaranteed to be
ε-suboptimal at each stage.

The second row in the figures shows the operation of the optimal LPA*
(figure 4.3) and LPA* with a constant inflation factor of ε = 2.5 (figure 4.4).
Both versions were run backwards. The bounds on the quality of the solutions
returned by these respective approaches are equivalent to those returned by
the first two versions of A*. However, because LPA* reuses previous search
results, it is able to produce its solutions with fewer overall cell expansions.
LPA* without an inflation factor expands 27 cells (almost all in its initial
solution generation) and always maintains an optimal solution, and LPA*
with an inflation factor of 2.5 expands 13 cells but produces solutions that
are suboptimal every time it replans.

The last row in figure 4.3 shows the results of planning with ARA* and
the last row in the figure 4.4 shows the results of planning with AD*. Both
algorithms were run backwards as well. Each of these approaches begins
by computing a suboptimal solution using an inflation factor of ε = 2.5.

4.1. ANYTIME D* 99

optimal A*

ε = 1.0 ε = 1.0 ε = 1.0
optimal LPA*

ε = 1.0 ε = 1.0 ε = 1.0
ARA*

ε = 2.5 ε = 1.5 ε = 1.0

Figure 4.3: An example of planning with optimal A*, optimal LPA*, and
ARA*. The states expanded by the algorithms are shown in grey. Note
that after the third planning episode each of the algorithms can guarantee
solution optimality (ε = 1.0).

100 CHAPTER 4. ANYTIME D*

A* with ε = 2.5

ε = 2.5 ε = 2.5 ε = 2.5
LPA* with ε = 2.5

ε = 2.5 ε = 2.5 ε = 2.5
Anytime D*

ε = 2.5 ε = 1.5 ε = 1.0

Figure 4.4: An example of planning with A* with an inflation factor ε = 2.5,
LPA* with an inflation factor ε = 2.5 and AD*. The states expanded by
the algorithms are shown in grey. Note that after the third planning episode
only Anytime D* can guarantee solution optimality (ε = 1.0).

4.1. ANYTIME D* 101

While the agent moves one step along this path, this solution is improved by
reducing the value of ε to 1.5 and reusing the results of the previous search.
The path cost of this improved result is guaranteed to be at most 1.5 times
the cost of an optimal path. Up to this point, both ARA* and AD* have
expanded the same 15 cells each. However, when the robot moves one more
step and finds out the top wall is broken, each approach reacts differently.
Because ARA* cannot incorporate edge cost changes, it must replan from
scratch with this new information. Using an inflation factor of 1.0 it produces
an optimal solution after expanding 9 cells (in fact this solution would have
been produced regardless of the inflation factor used). AD*, on the other
hand, is able to repair its previous solution given the new information and
lower its inflation factor at the same time. Thus, the only cells that are
expanded are the 5 whose costs are directly affected by the new information
and that reside between the agent and the goal.

Overall, the total number of cells expanded by AD* is 20. This is 4 less
than the 24 required by ARA* to produce an optimal solution, and much less
than the 27 required by optimal LPA*. Because AD* reuses previous solu-
tions in the same way as ARA* and repairs invalidated solutions in the same
way as LPA*, it is able to provide anytime solutions in dynamic environments
very efficiently.

4.1.3 Theoretical Properties of Anytime D*

In section 4.2 we prove a number of properties of AD*, including its ter-
mination and ε-suboptimality. In here we only state the most important of
these theorems. These properties of Anytime D* are essentially the same as
the properties of LPA* since both algorithms have the same ComputePath
function.

Theorem 43 When the ComputePath function exits, the following holds
for any state s with (c∗(s, sgoal) < ∞ ∧ v(s) ≥ g(s) ∧ key(s) ≤
mins′∈OPEN(key(s′))): g∗(s) ≤ g(s) ≤ ε ∗ g∗(s), and the cost of the path
from sstart to s defined by backpointers is no larger than g(s).

This theorem guarantees ε-suboptimality of the solution returned by the
ComputePath function, because when it terminates v(sstart) ≥ g(sstart) and
the key value of sstart is at least as large as the minimum key value of all
states in the OPEN queue.

102 CHAPTER 4. ANYTIME D*

The following theorems relate to the efficiency of Anytime D*. The first
one says that the ComputePath function of Anytime D* has the same worst-
case bound as LPA* on the number of times each state can be expanded,
namely two.

Theorem 44 No state is expanded more than twice during the execution
of the ComputePath function. A state can be expanded at most once as
underconsistent and at most once as overconsistent.

According to the next theorem, just like in LPA*, no state is expanded
needlessly. A state is expanded only if it was inconsistent before the Com-
putePath was invoked or if it needs to propagate the change in its v-value.

Theorem 45 A state s is expanded by ComputePath only if either it is in-
consistent initially or its v-value is altered by ComputePath at some point
during its execution.

4.1.4 Experimental Analysis of the Performance of
Anytime D*

To evaluate the performance of AD*, we compared it to ARA* and LPA*
with an inflation factor of ε = 20 (it was actually an extension of LPA* to
the case of a moving agent, called D* Lite [47]) on a simulated 3 degree of
freedom (DOF) robotic arm manipulating an end-effector through a dynamic
environment (see Figures 4.5 and 4.6). In this set of experiments, the base of
the arm is fixed, and the task is to move into a particular goal configuration
while navigating the end-effector around fixed and dynamic obstacles. We
used a manufacturing-like scenario for testing, where the links of the arm
exist in an obstacle-free plane, but the end-effector projects down into a
cluttered space (such as a conveyor belt moving goods down a production
line).

In each experiment, we started with a known map of the end-effector
environment. As the arm traversed each step of its trajectory, however,
there was some probability Po that an obstacle would appear in its path,
forcing the planner to repair its previous solution.

We have included results from two different initial environments and sev-
eral different values of Po, ranging from Po = 0.04 to Po = 0.2. In these
experiments, the agent was given a fixed amount of time for deliberation,

4.1. ANYTIME D* 103

optimal solution end-effector trajectory

probability of obstacle appearing probability of obstacle appearing

so
lu

ti
on

co
st

st
at

e
ex

pa
ns

io
ns

Figure 4.5: Environment used in our first experiment, along with the optimal
solution and the end-effector trajectory (without any dynamic obstacles).
The links of the arm exist in an obstacle-free plane (and therefore in the
shown view from the top they look as if intersecting obstacles). The end-
effector projects down into a cluttered space. Also shown are the solution
cost of the path traversed and the number of states expanded by each of the
three algorithms compared. D* Lite is an extension of LPA* to a moving
agent case.

T d = 1.0 seconds, at each step along its path. The cost of moving each link
was nonuniform: the link closest to the end-effector had a movement cost
of 1, the middle link had a cost of 4, and the lower link had a cost of 9.
The heuristic used by all algorithms was the maximum of two quantities; the
first one was the cost of a 2D path from the current end-effector position to
its position at the state in question, accounting for all the currently known
obstacles on the way; the second one was the maximum angular difference
between the joint angles at the current configuration and the joint angles at
the state in question. This heuristic is admissible and consistent.

104 CHAPTER 4. ANYTIME D*

In each experiment, we compared the cost of the path traversed by ARA*
with ε0 = 20 and LPA* with ε = 20 to that of AD* with ε0 = 20, as well
as the number of states expanded by each approach. Our first environment
had only one general route that the end-effector could take to get to its
goal configuration, so the difference in path cost between the algorithms
was due to manipulating the end-effector along this general path more or
less efficiently. Our second experiment presented two qualitatively different
routes the end-effector could take to the goal. One of these had a shorter
distance in terms of end-effector grid cells but was narrower, while the other
was longer but broader, allowing for the links to move in a much cheaper
way to get to the goal.

Each environment consisted of a 50 × 50 grid, and the state space for
each one consisted of slightly more than 2 million states. The results of the
experiments, along with 95% confidence intervals, can be found in figures
4.5 and 4.6. As can be seen from these graphs, AD* was able to generate
significantly better trajectories than ARA* while processing far fewer states.
LPA* processed very few states, but its overall solution quality was much
worse than that of either one of the anytime approaches. This is because it
is unable to improve its suboptimality bound.

We have also included results focussing exclusively on the anytime behav-
ior of AD*. To generate these results, we repeated the above experiments
without any randomly-appearing obstacles (i.e., Po = 0). We kept the delib-
eration time available at each step, T d, set at the same value as in the original
experiments (1.0 seconds). Figure 4.7 shows the total path cost (the cost of
the executed trajectory so far plus the cost of the remaining path under the
current plan) as a function of how many steps the agent has taken along
its path. Since the agent plans before each step, the number of steps taken
corresponds to the number of planning episodes performed. These graphs
show how the quality of the solution improves over time. We have included
only the first 20 steps, as in both cases AD* has converged to the optimal
solution by this point.

We also ran the original experiments using LPA* with no inflation factor
and unlimited deliberation time, to get an indication of the cost of an optimal
path. On average, the path traversed by AD* was about 10% more costly
than the optimal path, and it expanded roughly the same number of states
as LPA* with no inflation factor. This is particularly encouraging: not only
is the solution generated by AD* very close to optimal, but it is providing
this solution in an anytime fashion for roughly the same total amount of

4.1. ANYTIME D* 105

optimal solution end-effector trajectory

probability of obstacle appearing probability of obstacle appearing

so
lu

ti
on

co
st

st
at

e
ex

pa
ns

io
ns

Figure 4.6: Environment used in our second experiment, along with the opti-
mal solution and the end-effector trajectory (without any dynamic obstacles).
Also shown are the solution cost of the path traversed and the number of
states expanded by each of the three algorithms compared.

106 CHAPTER 4. ANYTIME D*

steps taken (planning episodes) steps taken (planning episodes)
environment in figure 4.5 environment in figure 4.6

so
lu

ti
on

co
st

so
lu

ti
on

co
st

Figure 4.7: An illustration of the anytime behavior of AD*. Each graph
shows the total path cost (the cost of the executed trajectory so far plus the
cost of the remaining path under the current plan) as a function of how many
steps the agent has taken along its path.

processing as would be required to generate the solution in one shot.

4.2 Proofs for Anytime D*

4.2.1 Pseudocode

The pseudocode for Anytime D* is given in figures 4.8 and 4.9.

4.2.2 Notation

The notation is exactly the same as we have used in section 3.5. Unlike
in the previous algorithms, however, AD* now controls the computational
expense of the ComputePath function by increasing or decreasing ε in few
places inside the function Main. While the actual values of ε are not specified
as they are domain dependent, they need to be finite and no smaller than
1. This also means that the initial value of ε, namely ε0, is restricted to the
same range of values.

4.2. PROOFS FOR ANYTIME D* 107

1 procedure UpdateSetMembership(s)

2 if (v(s) 6= g(s))

3 if (s 6∈ CLOSED) insert/update s in OPENwith key(s);

4 else if (s 6∈ INCONS) insert s into INCONS ;

5 else

6 if (s ∈ OPEN) remove s from OPEN ;

7 else if (s ∈ INCONS) remove s from INCONS ;

8 procedure ComputePath()

9 while(key(sgoal) > mins∈OPEN(key(s)) OR v(sgoal) < g(sgoal))

10 remove s with the smallest key(s) from OPEN ;

11 if (v(s) > g(s))

12 v(s) = g(s); CLOSED←CLOSED ∪ {s};
13 for each successor s′ of s

14 if s′ was never visited by AD* before then

15 v(s′) = g(s′) = ∞; bp(s′) = null;

16 if g(s′) > g(s) + c(s, s′)

17 bp(s′) = s;

18 g(s′) = g(bp(s′)) + c(bp(s′), s′); UpdateSetMembership(s′);

19 else //propagating underconsistency

20 v(s) =∞; UpdateSetMembership(s);

21 for each successor s′ of s

22 if s′ was never visited by AD* before then

23 v(s′) = g(s′) = ∞; bp(s′) = null;

24 if bp(s′) = s

25 bp(s′) = arg mins′′∈pred(s′) v(s′′) + c(s′′, s′);

26 g(s′) = v(bp(s′)) + c(bp(s′), s′); UpdateSetMembership(s′);

Figure 4.8: ComputePath function as used by AD*. Changes specific to AD*
are shown in bold.

4.2.3 Proofs

The changes introduced into the ComputePath function (all lines in bold in
figure 4.8, i.e., lines 4, 7, 14, 15, 22 and 23) as compared to the ComputePath
function in figure 3.10 are identical to the changes we introduced into the
ComputePath function when used by LPA* (figure 3.11). Therefore just
like there, these changes do not affect the properties that we have already
proven to hold for the ComputePath function in section 3.4.3, assuming that
every time the function is called assumption C (figure 3.10) holds. Once again
lines 4 and 7 are purely keeping track of states that are both inconsistent and
not in OPEN , while the other four lines we introduced are used to perform
online initialization of states that have not been seen before. To simplify

108 CHAPTER 4. ANYTIME D*

The pseudocode below assumes the following (Assumption E):

1. Heuristics need to be consistent: h(s) ≤ c(s, s′) + h(s′) for any successor s′ of s if s 6= sgoal and
h(s) = 0 if s = sgoal.

1 procedure key(s)

2 if (v(s) ≥ g(s))

3 return [g(s) + ε ∗ h(s); g(s)];

4 else

5 return [v(s) + h(s); v(s)];

6 procedure Main()

7 g(sgoal) = v(sgoal) =∞; v(sstart) =∞; bp(sgoal) = bp(sstart) = null;

8 g(sstart) = 0; OPEN = CLOSED = INCONS = ∅; ε = ε0;

9 insert sstart into OPEN with key(sstart);

10 forever

11 ComputePath();

12 publish ε-suboptimal solution;

13 if ε = 1

14 wait for changes in edge costs;

15 for all directed edges (u, v) with changed edge costs

16 update the edge cost c(u, v);

17 if v 6= sstart

18 if v was never visited by AD* before then

19 v(v) = g(v) =∞; bp(v) = null;

20 bp(v) = arg mins′′∈pred(v) v(s′′) + c(s′′, v);

21 g(v) = v(bp(v)) + c(bp(v), v); UpdateSetMembership(v);

22 if significant edge cost changes were observed

23 increase ε or re-plan from scratch (i.e., re-execute Main function);

24 else if ε > 1

25 decrease ε;

26 Move states from INCONS into OPEN ;

27 Update the priorities for all s ∈ OPEN according to key(s);

28 CLOSED = ∅;

Figure 4.9: AD* algorithm

the subsequent proofs we therefore assume that any state s with undefined
values (not visited) has v(s) = g(s) = ∞ and bp(s) = null.

Similarly to the proofs for ARA* and LPA*, the task of proofs in this
section is to show that AD* algorithm as presented in figure 4.9 ensures
that the assumption C is true every time it calls the ComputePath function.
Once this is shown, all the properties in section 3.4.3 apply here and we thus
obtain the desired properties about each search iteration in AD* including its

4.2. PROOFS FOR ANYTIME D* 109

ε-suboptimality and other properties regarding its efficiency. The flow of the
proofs is essentially identical to the flow of the proofs for LPA* (section 3.5.3).

Lemma 46 For any pair of states s and s′, ε ∗ h(s) ≤ ε ∗ c∗(s, s′) + ε ∗ h(s′).

Proof: According to [66] the consistency property required of heuristics
in Assumption E is equivalent to the restriction that h(s) ≤ c∗(s, s′) + h(s′)
for any pair of states s, s′ and h(sgoal) = 0. The theorem then follows by
multiplying the inequality with ε.

Theorem 47 If assumption C holds and INCONS = ∅ before the execution
of ComputePath, then during the execution of ComputePath, at line 9, OPEN
and INCONS are disjoint and INCONS contains exactly all the inconsistent
states which are also in CLOSED.

Proof: We will prove the theorem by assuming that assumption C holds
and INCONS = ∅ before the execution of ComputePath. Thus, the first
time line 9 is executed OPEN contains exactly all inconsistent states and
CLOSED = ∅ according to assumption C.3 and INCONS = ∅. Therefore,
the statement of the theorem is not violated at this point.

Let us now examine all the lines where we change v- or g-values of states
or their set membership during the following execution of ComputePath. On
line 10 we remove a state s from OPEN . This operation by itself cannot
violate the theorem. On line 12 we insert the state s into CLOSED but
since we set v(s) = g(s) on the same line, the state is consistent and still
cannot violate the theorem. On all the other lines of ComputePath where we
modify either v- or g-values of states except for state initialization (lines 15
and 23) we also call UpdateSetMembership function. The state initialization
code leaves a state consistent but since the state was never visited before
it correctly does not belong to any set. We thus only need to show that
UpdateSetMembership function correctly updates the set membership of a
state.

In UpdateSetMembership function if a state s is inconsistent and is not
in CLOSED it is inserted into OPEN , otherwise it is inserted into INCONS
(unless it is already there). Combined with Lemma 27 that states that OPEN
and CLOSED are disjoint, this procedure ensures that an inconsistent state
s does not appear in both OPEN and INCONS and does appear in INCONS
if it also belongs to CLOSED . If a state s is consistent and belongs to OPEN ,

110 CHAPTER 4. ANYTIME D*

then it does not belong to CLOSED (since these sets are disjoint according
to Lemma 27) and consequently does not belong to INCONS . If a state s is
consistent and does not belong to OPEN , then it may potentially belong to
INCONS . We check this and remove s from INCONS if it is there on line 7.

Theorem 48 Key function satisfies the key-requirement in assumption C.1.

Consider first case C.1(a): two arbitrary states s′ and s such that
c∗(s′, sgoal) < ∞, v(s′) ≥ g(s′), v(s) > g(s) and g(s′) > g(s) + ε ∗ c∗(s, s′).
We need to show that these conditions imply key(s′) > key(s). Given
the definition of the key function in figure 4.9 we need to show that
[g(s′) + ε ∗ h(s′); g(s′)] > [g(s) + ε ∗ h(s); g(s)]. We examine the inequal-
ity g(s′) > g(s)+ ε∗ c∗(s, s′) and add ε∗h(s′), which is finite since c∗(s′, sgoal)
is finite and heuristics are consistent. We thus have g(s′)+ε∗h(s′) > g(s)+ε∗
c∗(s, s′)+ε∗h(s′) and from Lemma 46 we obtain g(s′)+ε∗h(s′) > g(s)+ε∗h(s)
that guarantees that the desired inequality holds.

Consider now case C.1(b): two arbitrary states s′ and s such that
c∗(s′, sgoal) < ∞, v(s′) ≥ g(s′), v(s) < g(s) and g(s′) ≥ v(s) + c∗(s, s′).
We need to show that these conditions imply key(s′) > key(s). Given
the definition of the key function in figure 4.9 we need to show that
[g(s′) + ε ∗ h(s′); g(s′)] > [v(s) + h(s); v(s)]. Since v(s) < g(s), v(s) is fi-
nite. Consider now the inequality g(s′) ≥ v(s) + c∗(s, s′). Because v(s) < ∞
and costs are positive we can conclude that g(s′) > v(s). We now add ε∗h(s′)
to both sides of the inequality and use the consistency of heuristics as follows
g(s′)+ε∗h(s′) ≥ v(s)+c∗(s, s′)+ε∗h(s′) ≥ v(s)+c∗(s, s′)+h(s′) ≥ v(s)+h(s).
Hence, we have g(s′) + ε ∗ h(s′) ≥ v(s) + h(s) and g(s′) > v(s). These in-
equalities guarantee that [g(s′) + ε ∗ h(s′); g(s′)] > [v(s) + h(s); v(s)].

Theorem 49 Every time the ComputePath function is called from the
Main() function of AD*, assumption C is fully satisfied prior to the exe-
cution of ComputePath.

We have already proven that assumption C.1 is satisfied in Theorem 48.
Before we prove assumptions C.2 and C.3 let us first prove the following
statement denoted by (*): every time the ComputePath function is called
INCONS = ∅. This is true the first time ComputePath is called since IN-
CONS is reset to empty on line 8. Then the statement holds because before

4.2. PROOFS FOR ANYTIME D* 111

each subsequent call to ComputePath all the states in INCONS are moved
into OPEN on line 26.

We are now ready to prove that assumptions C.2 and C.3 hold before
each execution of ComputePath by induction. Consider the first call to
the ComputePath function. At that point the g- and v-values of all states
except for sstart are infinite, and v(sstart) = ∞ and g(sstart) = 0. Also, the
bp-values of all states are equal to null. Thus, for every state s 6= sstart,
bp(s) = null and v(s) = g(s) = ∞, and for s = sstart, bp(s) = null, g(s) = 0
and v(s) = ∞. Consequently, assumption C.2 holds. Additionally, the only
inconsistent state is sstart which is inserted into OPEN at line 9. OPEN does
not contain any other states and CLOSED is empty. Hence, assumption C.3
is also satisfied.

Suppose now that the assumptions C.2 and C.3 held during the previous
calls to the ComputePath functions. We will now show that the assumptions
C.2 and C.3 continue to hold the next time ComputePath is called and thus
hold every time ComputePath is called by induction.

Since assumption C held before ComputePath started, after Com-
putePath exits, according to Lemma 26, all the v-values are non-negative,
for every state s 6= sstart, bp(s) = arg mins′∈pred(s)(v(s′) + c(s′, s)) and
g(s) = v(bp(s)) + c(bp(s), s) and for s = sstart bp(s) = null and g(s) = 0.
The assumption C.2 therefore continues to hold when ComputePath exits.
After ComputePath exits, costs may change on line 16. The bp- and g-values,
though, are updated correctly on the following lines 20 and 21. The assump-
tion C.2 therefore continues to hold the next time the ComputePath function
is called.

Since assumption C holds and INCONS = ∅ (statement (*)) right before
the call to ComputePath Theorem 47 applies and we conclude that at the
time ComputePath exits INCONS contains exactly all inconsistent states
that are in CLOSED . Combined with the Lemma 27 it implies that INCONS
contains all and only inconsistent states that are not in OPEN .

We then may introduce new inconsistent states or make some inconsistent
consistent by changing g-values of states on line 21. Their set membership,
however, is updated by UpdateSetMembership function on the same line.
In this function if a state s is inconsistent and is not in CLOSED it is in-
serted into OPEN , otherwise it is inserted into INCONS (unless it is already
there). Because OPEN and CLOSED are disjoint at this point, this pro-
cedure ensures that an inconsistent state s does not appear in both OPEN
and INCONS and does appear in INCONS if it also belongs to CLOSED .

112 CHAPTER 4. ANYTIME D*

If a state s is consistent and belongs to OPEN , then it does not belong to
CLOSED (since these sets are disjoint) and consequently does not belong
to INCONS . If a state s is consistent and does not belong to OPEN , then
it may potentially belong to INCONS . We check this and remove s from
INCONS if it is there in UpdateSetMembership (figure 4.8). Thus, after
UpdateSetMembership function exits INCONS continues to contain all and
only inconsistent states that are not in OPEN .

By moving states from INCONS into OPEN on line 26 we make OPEN
to contain exactly all inconsistent states. Thus, the next time ComputePath
is executed, OPEN contains exactly all inconsistent states while CLOSED
is empty (due to line 28). Hence, assumption C.3 holds the next time Com-
putePath is executed.

4.3 Summary

In this chapter we have presented an anytime incremental heuristic search al-
gorithm called Anytime D*. To the best of our knowledge, it is currently the
only search to combine both anytime and incremental properties together.
Similarly to the algorithms presented in the previous chapters, Anytime D*
is also a repetitive execution of A*-like searches. In between the searches,
however, now both the desired suboptimality bounds on the solutions as well
an arbitrary number of edge costs can change. The anytime property of the
algorithm is achieved by initially setting the desired suboptimality bound
large and thus finding a solution quickly, and then slowly decreasing the de-
sired suboptimality bound and finding new improved solutions until planning
time runs out. The incremental property of the algorithm is achieved by up-
dating edge costs and replanning in the updated graphs. Anytime D* is thus
suitable to solving complex dynamic or partially known environments that
cannot be solved optimally quickly enough and require frequent replanning.

Independently of whether the desired suboptimality bound alone or
whether edge costs alone or both have been changed in between search it-
erations, each search in Anytime D* gains efficiency by reusing the results
of its previous executions. Once again, similarly to ARA* and LPA* algo-
rithms, it is based on the observation that A* can be viewed as a repetitive
expansion of overconsistent states. Since edge cost increases can introduce
underconsistent states the search in Anytime D* deals with them efficiently
in the same manner it was done in LPA*.

Chapter 5

Application to Outdoor Robot
Navigation

5.1 Problem

The motivation for the planning algorithms in this thesis was in part the
development of more efficient path-planning for mobile robots, such as the
ones in figure 5.1. Robots often operate in open, large and poorly modelled
environments. In open environments, optimal trajectories involve fast mo-
tion and sweeping turns at speed. So, it is particularly important to take
advantage of the robot’s momentum and find dynamic rather than static
plans.

To address this we decided to use 4D state space for planning, where each

(a) segbot robot (b) ATRV robot (c) 3D Map constructed by ATRV

Figure 5.1: Robotic platforms that used AD* for planning

113

114 CHAPTER 5. OUTDOOR ROBOT NAVIGATION

state was characterized by xy-position, the orientation of the robot, and the
translational velocity of the robot. The task of the planner is to generate a
plan that minimizes execution time under the dynamics constraints of the
robot. For example, the robot inertia constraints restrict the planner from
coming up with plans where a robot slows down faster than its maximum de-
celeration permits. The 2D planners that only take into account xy-position
of the robot usually don’t take into account these constrains in a general and
systematic way. Perhaps more importantly, the constraints on the rotational
velocity of the robot limit how much the robot can turn given its current
translational velocity. The 2D planners assume that the robot can make ar-
bitrary sharp turns, and therefore in practice a robot controller that executes
a plan generated by such planner must drive the robot slowly and often even
stop it when it has to turn.

As an example, figure 5.2(a) shows the optimal 2D plan, and figure 5.2(b)
shows the optimal 4D plan for the same environment. The map of the envi-
ronment was constructed from a scan gathered by an ATRV 3D laser scan [32]
shown in figure 5.1(c). In black are shown what a 2D mapping algorithm
labeled as obstacles. The size of the environment is 91.2 by 94.4 meters dis-
cretized into cells of 0.4 by 0.4 meters. The robot’s initial state is the circle
to the left, while its goal is the circle to the right. To ensure the safe oper-
ation of the robot we created a buffer zone around each obstacle with high
costs. The squares in the upper-right corners of the figures show a magnified
fragment of the map with grayscale proportional to cost. As the fragments
show, the optimal 2D plan makes a 90 degree turn when going around the
obstacles, requiring the robot to come to a complete stop. The optimal 4D
plan, on the other hand, results in a wider turn, and the velocity of the robot
remains high throughout the whole trajectory.

Unfortunately, higher dimensionality combined with large environments
results in very large state spaces for the 4D planner. Moreover, in poorly
modelled environments, the planning problem changes often as we discover
new obstacles or as modelling errors push us off of our planned trajectory.
So, the robot needs to re-plan its trajectory many times on its way to the
goal, and it needs to do it fast while moving. Anytime D* is a well-suited
planning solution for this task.

5.2. OUR APPROACH 115

(a) optimal 2D search with A* (b) optimal 4D search with A*

Figure 5.2: The comparison of optimal 2D plan with optimal 4D plan.

5.2 Our Approach

To solve the problem we built a two-level planner: a 4D planner that uses
Anytime D*, and a 2D (x and y) planner that performs A* search and
whose results are used to initialize the heuristics for the 4D planner. The
4D planner searches backward, from the goal state to the robot state, while
the 2D planner searches forward. This way the 4D planner does not have
to discard the search tree every time the robot moves. The 2D planner, on
the other hand, is very fast and can be re-run on every move of the robot
without slowing it down.

The 4D planner continuously runs Anytime D* until the robot reaches
its goal. Initially, Anytime D* sets ε to a high value (to be specific, 2.5)
and comes up with a plan very fast. While the robot executes it, on the
next iteration of ComputePath the plan is improved and repaired if new
information about the environment is gathered. The plan is then sent to the
robot as a new plan. Thus, at any point of time, the robot has access to a
4D plan and does not have to stop. Between each call to ComputePath the
goal state of the search, sgoal, is set to the current robot state, so that the
plan corresponds correctly to the position of the robot.

When no new information about the environment is observed, then Any-
time D* just decreases ε to have a better bound on the suboptimality of
the solution the next time it calls ComputePath. When new information
about the environment is gathered, Anytime D* has to re-plan. As discussed
in section 4.1.1, before calling the ComputePath function, however, it has
to decide whether to continue improving the solution (i.e., to decrease ε),
whether to quickly re-compute a new solution with a looser suboptimality

116 CHAPTER 5. OUTDOOR ROBOT NAVIGATION

bound (i.e., to increase ε) or whether to plan from scratch by discarding all
search efforts so far and resetting ε to its initial, large value. The strategy
that we have chosen was to decide based on the solution computed by the
2D planner. If the cost of the 2D path remained the same or changed little
after the 2D planner finished its execution, then the 4D planner decreased ε
before the new call to ComputePath. In cases when the cost of the 2D path
changed substantially, on the other hand, the 4D planner always re-planned
from scratch by clearing all the memory and resetting ε. In our implementa-
tion we have never chosen to increase ε without discarding the current search
tree. The reason was that the robot moved and a large number of previously
computed states were often becoming irrelevant. By clearing the memory,
we made sure it was not getting full with these irrelevant states.

Using our approach we were able to build a real robot system that can
plan/re-plan in outdoor environments while navigating at relatively high
speed. The system was deployed on two real robotic platforms: the Seg-
way Robotic Mobility Platform shown in figure 5.1(a) and the ATRV vehicle
shown in figure 5.1(b). Both used laser range finders (one on the Segway
and two on the ATRV) for mapping and inertial measurement unit combined
with global positioning system for position estimation.

5.3 Examples

As mentioned before, the size of the environment in the example in figure 5.2
is 91.2 by 94.4 meters and the map is discretized into cells of 0.4 by 0.4
meters. Thus, the 2D state space consists of 53,808 states and the 4D state
space has over 20 million states. As a result, the 4D state space becomes too
large for planning and re-planning optimally by a moving robot. In figure 5.3
we show the advantage of using our approach that performs 4D planning with
Anytime D*.

Figure 5.3(b) shows the initial plan computed by the 4D Planner that
runs Anytime D* starting at ε = 2.5. In this suboptimal plan, the trajectory
is much smoother and therefore can be traversed much faster than the 2D
plan (figure 5.2(a)). It is, however, somewhat less smooth than the optimal
4D plan (figure 5.3(a)). The time required for the optimal 4D planner was
11.196s, whereas the time required for the 4D planner that runs Anytime D*
to generate the shown plan was 556 ms. (The planning for all experiments
was done on a 1GHz Pentium processor.) As a result, the robot that runs

5.3. EXAMPLES 117

(a) optimal 4D search with A* (b) 4D search with AD* (c) 4D search with AD*
after 25 secs after 0.6 secs (ε = 2.5) after 25 secs (ε = 1.0)

Figure 5.3: The comparison of planning with A* and Anytime D* for outdoor
robot navigation (cross shows the position of the robot). Both 4D searches
used 2D search to compute heuristics when necessary as described in the text.
In this example no information inconsistent with initial map was observed
during execution (i.e., no cost changes).

(a) cumulative number of expansions vs. 1/ε (b) solution cost vs. 1/ε

Figure 5.4: The performance of AD* planner in the same environment as
in figure 5.3 but for a different configuration of goal and start locations (a
harder scenario) and for a fixed robot position (i.e., the robot does not move).

118 CHAPTER 5. OUTDOOR ROBOT NAVIGATION

(a) ATRV while navigating (b) initial map and plan (c) current map and plan

(d) current map and plan (e) current map and plan (f) ATRV at its goal

Figure 5.5: A run by an ATRV robot in an initially unknown environment.
Figure (a) shows ATRV navigating in the environment which is a parking
lot full of cars. Figure (b) shows initial map as known by the robot and the
initial plan AD* constructs. Figures (c-e) show the map constructed by the
robot and a plan generated by AD* at different time points. Figure (f) shows
the map constructed by the robot by the time it reaches its goal.

Anytime D* can start executing a plan much earlier. The cross in figure 5.3(a)
(close to the initial robot location) shows the location of the robot after 25
seconds from the time it receives a goal location. In contrast, figure 5.3(c)
shows the position of the robot running Anytime D* after 25 seconds from
the time a goal location was given to it. The Anytime D* robot has advanced
much further, and its plan by now has converged to optimal and thus is no
different from the one in figure 5.3(a).

In figure 5.4(a) and figure 5.4(b) we show the cumulative number of states

5.3. EXAMPLES 119

expanded and the cost of the path found so far, as a function of 1/ε. This
experiment was done in the same environment as before but for a different
configuration of start and goal states, so that the optimal path is longer and
harder to find. We also kept the start state fixed while Anytime D* was
executed until convergence. We did this for the sake of easier analysis of the
algorithm. Initially, the number of states expanded is small (about 76 thou-
sand). The resulting path is about 10% suboptimal. For each subsequent
call to ComputePath the number of states expanded continues to be small
(sometimes less than ten thousand) until one particular invocation of Com-
putePath. During that iteration, over 952 thousand states are expanded. At
exactly this iteration the solution drastically changes and becomes optimal.
There are no states expanded during the rest of the iterations despite ε de-
creasing. The overall number of states expanded over all iterations is about
1,334 thousand. To compare, the number of states expanded by the optimal
planner would have been over 953 thousand. Thus, over all iterations about
30 percent extra states are expanded but a solution that is suboptimal by
about ten percent was obtained very fast.

In the example we have just seen the environment was consistent with the
map constructed initially and thus during the agent execution there were no
edge cost changes. In contrast, in the example in figure 5.5 the ATRV robot
navigates to its goal location in initially completely unknown environment
(figure 5.5(b)). The experiment was done in a different environment from
the one used previously. In particular, in this experiment the robot navi-
gates a parking lot full of cars (figure 5.5(a)). The robot assumes that all
unknown area is traversable (the assumption commonly known as a freespace
assumption). Under this assumption the robot performs a 4D planning us-
ing Anytime D*. While executing the plan it uses its two laser range finders
to gather new information about the environment, updates the map accord-
ingly and fixes and improves the plan. Figures 5.5(b) through (f) show how
the robot progresses towards its goal while building the map. This process
involves a substantial amount of re-planning as the map updates are often
substantial. Nevertheless, the Anytime D* based planner was able to pro-
vide the robot with safe 4D plans at any point in time that allowed the robot
to navigate unknown and partially known environments at speeds up to 1.5
meters/sec.

120 CHAPTER 5. OUTDOOR ROBOT NAVIGATION

Chapter 6

A Brief Guide to Usage

The algorithms presented in this thesis are all suited better to some domains
and worse to others. They can also benefit from certain optimizations in
some cases. The main purpose of this chapter is to give some intuition
as to when the presented algorithms might be useful and when they might
not. We will only consider the class of problems in which we are given a
start state and one or more goal states and the task is to find a sequence
of actions that lead to the goal state while minimizing the cumulative cost
of action executions. Such problems are search-based planning problems.
Our algorithms have not been designed to be useful for the problems where
one is only concerned with finding a state that meets certain goal criteria
(for example, graph coloring problems, task scheduling problems, or Boolean
satisfiability problems). These problems differ from the ones we are concerned
with in this thesis in that the costs of all actions on the path to the final
state are zero and only the degree to which the final state meets the goal
criteria is important.

In section 6.1 we will try to describe the advantages and disadvantages of
few commonly used approaches that do not fall into the category of search-
based planning. In section 6.2, on the other hand, we will try to provide
some insights into what the factors are that can make the application of one
of our algorithms successful. In that section we will also point out some of the
existing optimizations described elsewhere that might benefit the algorithms
in certain domains. For additional discussion on these topics please refer
to [21,49].

121

122 CHAPTER 6. A BRIEF GUIDE TO USAGE

6.1 Search-based Planning versus Other

Planning Approaches

The planning algorithms presented in this thesis fall into the class of search-
based planning algorithms, whereas there exist a number of other classes
of planning algorithms (a thorough description of many of these alterna-
tives can be found in [55]). For example, for high-dimensional state spaces,
sampling-based algorithms are a popular class of planning algorithms. This
class includes such planners as the Probabilistic RoadMap (PRM) [41], the
Probabilistic Roadmap of Trees (PRT) [67], the Rapidly-exploring Random
Tree (RRT) [53], the Expansive-Spaces Tree (EST) [36], and a number of
similar approaches. They are all based on the high-level idea of generating
samples of valid configurations and using local controllers to connect these
samples to their neighbors. A planner can then search for a solution in the
resulting graph, provided there is a sample that corresponds to the start state
and at least one sample that satisfies the goal conditions. Some planners,
such as PRMs, construct the graph first and then search it for a solution;
others, such as RRTs, simultaneously construct the graph and search for a
solution.

Most of the sampling-based planning algorithms are complete provided
the sampling is done infinitely long. The algorithms are well-suited to solv-
ing high-dimensional problems as the size of a graph they construct is not
explicitly exponential in the number of dimensions. They are, however, re-
stricted to solving problems for which good local controllers are available.
A common type of problem to which they are applied is motion planning
in high-dimensional continuous state spaces; the robot arm motion planning
domain from chapter 2 is an example of such a problem. It is hard, however,
to develop good local controllers for arbitrary discrete domains or for contin-
uous domains that are cluttered with obstacles and have narrow passages (see
figure 6.1(a) for an example). Without good local controllers, the complexity
of constructing a graph using samples becomes too large since many of the
generated samples cannot be connected to any of their neighbors and are
therefore rejected. In contrast, the algorithms presented in this thesis search
general graphs and can therefore handle arbitrary domains, including discrete
ones. There are other properties, though, that affect the performance of our
algorithms as discussed in the next section. Most sampling-based planning
algorithms also provide no bounds on their suboptimality due to the random

6.1. PLANNING APPROACHES 123

construction of the graph. For the solutions to lower dimensional planning
problems such as robot navigation, however, it is usually important to main-
tain the quality close to optimal. It is therefore quite common to discretize a
low-dimensional space of the problem in some consistent manner and then use
search-based planning algorithms such as A* and the algorithms presented
in this thesis to find solutions with known bounds on suboptimality.

More generally, the searches that we have presented take as an input an
arbitrarily generated graph. Therefore even some sampling-based planning
methods can take advantage of our algorithms for planning and replanning as
long as they generate graphs a priori and as long as an informative heuristic
function is available. (The latter requirement can potentially be difficult
to satisfy, however, considering the fact that the graphs are generated at
random.) Some work has already been done in this direction [20,39].

Some of other currently popular classes of planning algorithms include
Roadmap algorithms (e.g., [10]) and cell decomposition based algorithms
(e.g., [1]). These approaches deterministically pre-compute a sparse graph
representation of the environment, taking into account its geometrical prop-
erties, and then search for a solution in the graph. They differ substantially
in how the graphs are constructed but both use searches to find solutions in
the graphs. Similarly to sampling-based planning algorithms, however, these
approaches typically do not provide bounds on the suboptimality of their
solutions.

A very different class of planning approaches builds on the symbolic rep-
resentation of problems [75]. Such approaches are well-suited for discrete
problems. They use logical representations of states and actions to avoid the
instantiation of every possible state and to direct planning in a potentially
more effective way than search-based planning algorithms. A drawback of
these approaches is that they usually provide no bounds on the suboptimality
of their solutions. There has been recent interest, however, in using heuristic
searches to solve symbolically represented problems (e.g., [8,16,38]). And in
fact, the LPA* algorithm has been successfully implemented as a symbolic
replanner [46].

Since we have applied our algorithms to robot navigation problems, it is
important to mention that there exist a vast number of popular algorithms
for robot navigation that abandon the idea of planning altogether. These
algorithms try to move the robot towards the goal greedily and apply different
methods of dealing with obstacles on the way. The Bug algorithm [61] and its
variants, for example, will make the robot follow the boundary of an obstacle

124 CHAPTER 6. A BRIEF GUIDE TO USAGE

when encountered. Potential fields methods [7, 42] assign repulsive forces
to obstacles and attractive forces to goal locations, and the robot always
moves in the direction given by the sum of all of these forces. A number of
other algorithms have been successfully applied to robot navigation including
schema-based navigation [4], vector field histograms [9] and numerous others.
These greedy algorithms are very simple to implement and work well in
environments with sparse obstacles. Perhaps even more importantly they
are well-suited for very large environments since the size of an environment
does not have an effect on their complexity. The trajectories generated by
these approaches, however, can be drastically inefficient with no non-trivial
bounds on suboptimality and can even result in failures in domains with
irreversible actions. Many of these approaches also have a hard time dealing
with local minima created by obstacles in the environment.

6.2 Applying ARA*, LPA* or AD*

In this section, we will elaborate on the conditions under which the anytime
and incremental properties of our algorithms are effective. The anytime
behavior of ARA* and AD* strongly relies on the properties of the heuristics
they use. In particular, it relies on the assumption that a sufficiently large
inflation factor ε substantially expedites the planning process. While in many
domains this assumption is true, this is not guaranteed. In fact, it is possible
to construct pathological examples where the best-first nature of searching
with a large ε can result in much longer processing times. In general, the key
to obtaining anytime behavior in ARA* is finding heuristics for which the
difference between the heuristic values and the true distances these heuristics
estimate is a function with only shallow local minima. Note that this is not
the same as just the magnitude of the differences between the heuristic values
and the true distances. Instead, the difference will have shallow local minima
if the heuristic function has a shape similar to the shape of the true distance
function. For example, in the case of robot navigation a local minimum can
be a U-shaped obstacle placed on the straight line connecting a robot to
its goal (assuming the heuristic function is Euclidean distance). The size
of the obstacle determines how many states weighted A*, and consequently
ARA* and AD*, will have to visit before getting out of the minimum. For
example, in figure 6.1(a), where there are only small U-shaped obstacles, all
local minima that the search can encounter will be small, and it will not take

6.2. APPLYING ARA*, LPA* OR AD* 125

(a) a “good” example domain for ARA*

(b) a “bad” example domain for ARA*

Figure 6.1: Domain examples where ARA* and AD* work well (a) and where
they do not (b) (assuming the heuristics are Euclidean distances). In con-
trast, sampling-based methods like PRMs are likely to work well in the do-
mains with sparse obstacles such as (b) and to have a harder time solving
cluttered domains such as (a).

126 CHAPTER 6. A BRIEF GUIDE TO USAGE

long to expand all the states within these minima. Thus, ARA* and AD*
will quickly find good paths to the goal. In contrast, figure 6.1(b) has a single
large local minimum created by the large U-shaped obstacle. Even the first
search of ARA* or AD* will have to expand quite a few states before it can
get out of the minimum and proceed with the search.

The conclusion is that with ARA* (and AD*), the task of developing an
anytime (re-)planner for various hard planning domains becomes the problem
of designing a heuristic function which results in shallow local minima. In
many cases (although not always) the design of such a heuristic function
can be a much simpler task than the task of designing a whole new anytime
(re-)planning algorithm for solving the problem at hand.1

Both LPA* and AD* are very effective for replanning in the context of
mobile robot navigation. Typically, in such scenarios the changes to the
graph are happening close to the robot (through its observations). Their
effects are therefore usually limited and much of the previous search efforts
can be reused if the search is done backwards: from the goal state towards
the state of the robot. Using an incremental replanner such as LPA* and
AD*, in such cases, will be far more efficient than planning from scratch.
However, this is not universally true. If the areas of the graph being changed
are not necessarily close to the goal of the search (the state of the robot in the
robot navigation problem), it is possible for LPA* to be even less efficient
than A*. Mainly, this is because it is possible for LPA* to process every
state in the environment twice: once as an underconsistent state and once
as an overconsistent state. A*, on the other hand, will only ever process
each state once. The worst-case scenario for LPA*, and one that illustrates
this possibility, is when changes are being made to the graph in the vicinity
of the start of the search. Similarly, LPA* can also be less efficient than
A* if there are a lot of edge cost changes. It is thus common for systems
using LPA* to abort the replanning process and plan from scratch whenever
either major edge cost changes are detected or some predefined threshold of
replanning effort is reached. The discussion in section 5.2 gives a particular
way for deciding when to plan from scratch, at least in the domain of robot

1It would also be interesting to extend AD* to be able to search for partial paths
(in the same way that agent-centered searches only search few steps ahead). This would
guarantee that the algorithm can provide a plan at any point in time in any domain, no
matter how hard it is to find a complete plan for it. This property, though, would come
at the expense of not being able to provide bounds, other than polynomial in the total
number of states [50], on the suboptimality of the solution found.

6.2. APPLYING ARA*, LPA* OR AD* 127

navigation using 4D planning.2

In general, it is important to note that planning from scratch every so
often has the benefit of freeing up memory from the states that are no longer
relevant. This is especially so in cases when the agent moves and the regions
where it was before are no longer relevant to its current plan. If, however,
replanning from scratch needs to be minimized as much as possible then one
might consider limiting the expense of re-ordering OPEN as well as inserting
and deleting states from it by splitting OPEN into a priority queue and one
or more unordered lists containing only the states with large priorities. The
states from these lists need only be considered if the priority of the goal
state becomes sufficiently large. Therefore, we only need to maintain the
minimum priority among states on the unordered lists (or even some lower
bound on it) which can be much cheaper than leaving them on the priority
queue. Another more sophisticated and potentially more effective idea that
avoids the re-order operation altogether is based on adding a bias to newly
inconsistent states [78]. Its implementation for LPA* is discussed in [47] and
for ARA* and AD* in [56].

There also exist a few other optimizations to the algorithms presented
here. For example, Delayed D* [22] tries to postpone the expansion of un-
derconsistent states in LPA*. This seems to be quite beneficial in the domains
where edge cost changes can occur in arbitrary locations rather than close
to the agent. As another example, in domains with a very high branching
factor, ARA* and AD* can be sped up using the idea in [84] that prunes
from OPEN the states that are guaranteed not to be useful for improving a
current plan. These and other potentially useful optimizations are described
more thoroughly in [21].

A series of other optimizations concern the key() functions in LPA* and
AD*. The key() function we give in this thesis is a two dimensional key
function presented in figure 3.7. A number of other key functions, how-
ever, can also be designed that satisfy the restrictions on the key (the first
assumption in figure 3.5) and are therefore perfectly valid. Some of them
are suited better for certain domains. For example, it is usually desirable
to decrease the expense of maintaining OPEN as much as possible. While
in general OPEN can be implemented as a heap, it can be quite expen-
sive to maintain it as such. In cases when the number of distinct prior-

2In the future, it would certainly be interesting to see a theoretical analysis of when
algorithms such as LPA* and AD* should give up re-planning and plan from scratch.

128 CHAPTER 6. A BRIEF GUIDE TO USAGE

ities is small, OPEN can be implemented using buckets instead. To this
end, one can achieve a significant decrease in the number of distinct pri-
orities by setting key(s) = [g(s) + ε ∗ h(s); 1] if s is not underconsistent
and key(s) = [v(s) + h(s); 0] otherwise. In some domains this key function
can decrease the number of distinct priorities to a number small enough for
the OPEN to be implemented using buckets. [59] presents a number of other
valid key() functions including the one that breaks ties among the candidates
for expansions with the same f -values towards the states with the larger g-
values. This tie breaking criteria is important in domains where numerous
optimal solutions exist and we want to avoid exploring all of them.

Chapter 7

Summary of Contributions

Planners used by agents operating in the real world must often be able to
provide plans under conditions where time is critical. In addition, the world
is dynamic and the world models used for planning are often imperfect and
are only partially known. Consequently, planners are called to re-plan every
time the model is updated based on the incoming agent’s sensor information.
These conditions make planning for real world tasks a hard problem.

In this thesis we contribute to the research on planning in the following
ways. We first present a novel formulation of the well-known and widely-
used A* search algorithm as a search that expands inconsistent states. This
formulation provides the basis for incremental execution of an A* search: it
can be executed with an arbitrary initialization of states as long as all incon-
sistent states in the graph are identified beforehand. The search will then
only work on correcting the inconsistent states and will reuse the consistent
states whose values are already correct.

We used our formulation of A* search to construct several variants of
A*. First, we constructed an anytime heuristic search, ARA*, that provides
provable bounds on the suboptimality of any solution it outputs. As an
anytime algorithm it finds a feasible solution quickly and then continually
works on improving it until the time available for planning runs out. While
improving the solution, ARA* reuses previous search efforts and, as a result,
is significantly more efficient than other anytime search methods. ARA*
is an algorithm well-suited for operation under time constraints in different
domains. We showed this with experiments on a simulated high-dimensional
robot arm and a dynamic path planning problem for an outdoor rover.

We then used our novel formulation of A* search to develop an incremen-

129

130 CHAPTER 7. SUMMARY OF CONTRIBUTIONS

tal heuristic search algorithm called LPA*. To the best of our knowledge,
LPA* is the first incremental heuristic search that is able to operate for
a specified solution suboptimality, and when planning for an optimal path
LPA* seems to have about the same efficiency as another commonly used
incremental heuristic search algorithm, called D* [78]. LPA*, however, has
the benefit of being substantially simpler and more closely related to the
well-studied A* algorithm. Experimentally, we showed that LPA* speeds up
the process of re-planning substantially.

Finally, based on our formulation of A* search, we also developed an al-
gorithm, called Anytime D*, that is both anytime and incremental. The al-
gorithm produces solutions of bounded suboptimality in an anytime fashion.
It improves the quality of its solution until the available search time expires,
at every step reusing previous search efforts. When updated information re-
garding the underlying graph is received, the algorithm can simultaneously
improve and repair its previous solution. The algorithm thus combines the
benefits of anytime and incremental planners and provides efficient solutions
to complex, dynamic search problems under time constraints. We demon-
strated this on a simulated robot arm and the problem of dynamic path
planning for a rover navigating in unknown and partially known outdoor en-
vironments. To the best of our knowledge, Anytime D* is the only heuristic
search algorithm to combine the anytime and incremental properties.

Bibliography

[1] E.U. Acar, H. Choset, A.A. Rizzi, P. Atkar, and D. Hull. Morse decom-
positions for coverage tasks. International Journal of Robotics Research,
21:331–344, 2002.

[2] R. Alterman. Adaptive planning. Cognitive Science, 12(3):393–421,
1988.

[3] J. Ambite and C. Knoblock. Planning by rewriting: Efficiently gener-
ating high-quality plans. In Proceedings of the National Conference on
Artificial Intelligence (AAAI), 1997.

[4] R. C. Arkin. Motor schema-based mobile robot navigation. The Inter-
national Journal of Robotics Research, pages 92–112, 1989.

[5] G. Ausiello, G. Italiano, A. Marchetti-Spaccamela, and U. Nanni. In-
cremental algorithms for minimal length paths. Journal of Algorithms,
12(4):615–638, 1991.

[6] A. Bagchi and P. K. Srimani. Weighted heuristic search in networks.
Journal of Algorithms, 6:550–576, 1985.

[7] J. Barraquand, B. Langlois, and J. Latombe. Numerical potential field
techniques for robot path planning. IEEE Trans. on Systems, Man, and
Cybernetics, 22(2):224–241, 1992.

[8] B. Bonet and H. Geffner. Planning as heuristic search. Artificial Intel-
ligence, 129(1-2):5–33, 2001.

[9] J. Borenstein and Y. Koren. The vector field histogram - fast obsta-
cle avoidance for mobile robots. IEEE Transactions on Robotics and
Automation, 7(3):278–288, 1991.

131

132 BIBLIOGRAPHY

[10] J. Canny. Constructing roadmaps of semi-algebraic sets I: Completeness.
Artificial Intelligence, 37:203–222, 1988.

[11] P. P. Chakrabarti, S. Ghosh, and S. C. DeSarkar. Admissibility of AO*
when heuristics overestimate. Artificial Intelligence, 34:97–113, 1988.

[12] S. Chien, R. Knight, A. Stechert, R. Sherwood, and G. Rabideau. Using
iterative repair to improve the responsiveness of planning and schedul-
ing. In Proceedings of the International Conference on Artificial Intelli-
gence Planning and Scheduling (AIPS), 2000.

[13] P. Dasgupta, P. Chakrabarti, and S. DeSarkar. Agent searching in a
tree and the optimality of iterative deepening. Artificial Intelligence,
71:195–208, 1994.

[14] T. L. Dean and M. Boddy. An analysis of time-dependent planning.
In Proceedings of the National Conference on Artificial Intelligence
(AAAI), 1988.

[15] S. Edelkamp. Updating shortest paths. In Proceedings of the European
Conference on Artificial Intelligence, 1998.

[16] S. Edelkamp. Heuristic search planning with BDDs. In Proceedings
of the Workshop ”New Results in Planning, Scheduling and Design”
(PuK), 2000.

[17] S. Edelkamp. Planning with pattern databases. In Proceedings of the
European Conference on Planning (ECP), 2001.

[18] S. Even and H. Gazit. Updating distances in dynamic graphs. Methods
of Operations Research, 49:371–387, 1985.

[19] S. Even and Y. Shiloach. An on-line edge deletion problem. Journal of
the ACM, 28(1):1–4, 1981.

[20] D. Ferguson. Personal communication, 2005.

[21] D. Ferguson, M. Likhachev, and A. Stentz. A guide to heuristic-based
path planning. In Proceedings of the Workshop on Planning under Un-
certainty for Autonomous Systems at The International Conference on
Automated Planning and Scheduling (ICAPS), 2005.

BIBLIOGRAPHY 133

[22] D. Ferguson and A. Stentz. The delayed D* algorithm for efficient path
replanning. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), 2005.

[23] G. J. Ferrer. Anytime Replanning Using Local Subplan Replacement.
PhD thesis, University of Virginia, 2002.

[24] E. Feuerstein and A. Marchetti-Spaccamela. Dynamic algorithms
for shortest paths in planar graphs. Theoretical Computer Science,
116(2):359–371, 1993.

[25] P. Franciosa, D. Frigioni, and R. Giaccio. Semi-dynamic breadth-first
search in digraphs. Theoretical Computer Science, 250(1–2):201–217,
2001.

[26] D. Frigioni, A. Marchetti-Spaccamela, and U. Nanni. Fully dynamic
output bounded single source shortest path problem. In Proceedings of
the Symposium on Discrete Algorithms, 1996.

[27] D. Frigioni, A. Marchetti-Spaccamela, and U. Nanni. Semidynamic al-
gorithms for maintaining single source shortest path trees. Algorithmica,
22(3):250–274, 1998.

[28] D. Frigioni, A. Marchetti-Spaccamela, and U. Nanni. Fully dynamic
algorithms for maintaining shortest paths trees. Journal of Algorithms,
34(2):251–281, 2000.

[29] D. Furcy. Chapter 5 of Speeding Up the Convergence of Online Heuristic
Search and Scaling Up Offline Heuristic Search. PhD thesis, Georgia
Institute of Technology, 2004.

[30] A. Gerevini and I. Serina. Fast plan adaptation through planning graphs:
Local and systematic search techniques. In Proceedings of the Inter-
national Conference on Artificial Intelligence Planning and Scheduling
(AIPS), pages 112–121, 2000.

[31] S. Goto and A. Sangiovanni-Vincentelli. A new shortest path updating
algorithm. Networks, 8(4):341–372, 1978.

[32] D. Haehnel. Personal communication, 2003.

134 BIBLIOGRAPHY

[33] K. Hammond. Explaining and repairing plans that fail. Artificial Intel-
ligence, 45:173–228, 1990.

[34] S. Hanks and D. Weld. A domain-independent algorithm for plan adap-
tation. Journal of Artificial Intelligence Research, 2:319–360, 1995.

[35] N. Hawes. An anytime planning agent for computer game worlds. In
Proceedings of the Workshop on Agents in Computer Games at The 3rd
International Conference on Computers and Games (CG’02), 2002.

[36] D. Hsu, J.-C. Latombe, and R. Motwani. Path planning in expansive
configuration spaces. In Proceedings of the IEEE International Confer-
ence on Robotics and Automation (ICRA), 1997.

[37] G. Italiano. Finding paths and deleting edges in directed acyclic graphs.
Information Processing Letters, 28(1):5–11, 1988.

[38] R. M. Jensen, R. E. Bryant, and M. M. Veloso. SetA*: An efficient
BDD-based heuristic search algorithm. In Proceedings of the National
Conference on Artificial Intelligence (AAAI), pages 668–673, 2002.

[39] F. Kabanza, R. Nkambou, and K. Belghith. Path-planning for au-
tonomous training on robot manipulators in space. In Proceedings of
the International Joint Conference on Artificial Intelligence (IJCAI),
pages 1729–1731, 2005. Poster Paper.

[40] S. Kambhampati and J. Hendler. A validation-structure-based theory
of plan modification and reuse. Artificial Intelligence, 55:193–258, 1992.

[41] L. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars. Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces. IEEE Transactions on Robotics and Automation, 12(4):566–580,
1996.

[42] O. Khatib. Real-time obstacle avoidance for manipulators and mobile
robots. International Journal of Robotics Research, 5(1):90–98, 1986.

[43] P. Klein and S. Subramanian. Fully dynamic approximation schemes for
shortest path problems in planar graphs. In Proceedings of the Inter-
national Workshop on Algorithms and Data Structures, pages 443–451,
1993.

BIBLIOGRAPHY 135

[44] J. Koehler. Flexible plan reuse in a formal framework. In C. Bäckström
and E. Sandewall, editors, Current Trends in AI Planning, pages 171–
184. IOS Press, 1994.

[45] S. Koenig. Chapter 2 of Goal-Directed Acting with Incomplete Informa-
tion: Acting with Agent-Centered Search. PhD thesis, Carnegie Mellon
University, 1997.

[46] S. Koenig, D. Furcy, and C. Bauer. Heuristic search-based replanning.
In Proceedings of the International Conference on Artificial Intelligence
Planning and Scheduling, pages 294–301, 2002.

[47] S. Koenig and M. Likhachev. D* Lite. In Proceedings of the Eighteenth
National Conference on Artificial Intelligence (AAAI), 2002.

[48] S. Koenig and M. Likhachev. Incremental A*. In T. G. Dietterich,
S. Becker, and Z. Ghahramani, editors, Advances in Neural Information
Processing Systems (NIPS) 14. Cambridge, MA: MIT Press, 2002.

[49] S. Koenig, M. Likhachev, and D. Furcy. Lifelong planning A*. Artificial
Intelligence Journal, accepted with minor revisions.

[50] S. Koenig and R.G. Simmons. Easy and hard testbeds for real-time
search algorithms. In Proceedings of the National Conference on Artifi-
cial Intelligence (AAAI), 1996.

[51] S. Koenig and Y. Smirnov. Sensor-based planning with the freespace
assumption. In Proceedings of the International Conference on Robotics
and Automation (ICRA), 1997.

[52] R. E. Korf. Linear-space best-first search. Artificial Intelligence, 62:41–
78, 1993.

[53] J.J. Kuffner and S.M. LaValle. RRT-connect: An efficient approach to
single-query path planning. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), 2000.

[54] V. Kumar. Branch-and-bound search. In S. C. Shapiro, editor, En-
cyclopedia of Artificial Intelligence, pages 1468–1472. New York, NY:
Wiley-Interscience, 1992.

136 BIBLIOGRAPHY

[55] J.-C. Latombe. Robot Motion Planning. Boston, MA: Kluwer Academic
Publishers, 1991.

[56] M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun. Any-
time dynamic A*: An anytime, replanning algorithm. In Proceedings
of the International Conference on Automated Planning and Scheduling
(ICAPS), pages 262–271, 2005.

[57] M. Likhachev, G. Gordon, and S. Thrun. ARA*: Anytime A* with
provable bounds on sub-optimality. In Advances in Neural Information
Processing Systems (NIPS) 16. Cambridge, MA: MIT Press, 2003.

[58] M. Likhachev and S. Koenig. Speeding up the parti-game algorithm. In
S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural In-
formation Processing Systems (NIPS) 15. Cambridge, MA: MIT Press,
2002.

[59] M. Likhachev and S. Koenig. A generalized framework for lifelong plan-
ning A*. In Proceedings of the International Conference on Automated
Planning and Scheduling (ICAPS), pages 99–108, 2005.

[60] C. Lin and R. Chang. On the dynamic shortest path problem. Journal
of Information Processing, 13(4):470–476, 1990.

[61] V. Lumelsky and A. Stepanov. Path planning strategies for point mo-
bile automation moving amidst unknown obstacles of arbitrary shape.
Algorithmica, 2:403–430, 1987.

[62] A. Moore and C. Atkeson. The parti-game algorithm for variable resolu-
tion reinforcement learning in multidimensional state-spaces. Machine
Learning, 21(3):199–233, 1995.

[63] H. Moravec. Certainty grids for mobile robots. In Proceedings of the
NASA/JPL Space Telerobotics Workshop, 1987.

[64] N. Nilsson. Problem-Solving Methods in Artificial Intelligence. McGraw-
Hill, 1971.

[65] D. K. Pai and L.-M. Reissell. Multiresolution rough terrain motion
planning. IEEE Transactions on Robotics and Automation, 14 (1):19–
33, 1998.

BIBLIOGRAPHY 137

[66] J. Pearl. Heuristics: Intelligent Search Strategies for Computer Problem
Solving. Addison-Wesley, 1984.

[67] E. Plaku, K. E. Bekris, B.Y. Chen, A.M. Ladd, and L. Kavraki.
Sampling-based roadmap of trees for parallel motion planning. IEEE
Transactions on Robotics, 21(4):597–608, 2005.

[68] L. Podsedkowski, J. Nowakowski, M. Idzikowski, and I. Vizvary. A new
solution for path planning in partially known or unknown environment
for nonholonomic mobile robots. Robotics and Autonomous Systems,
34:145–152, 2001.

[69] H. Prendinger and M. Ishizuka. APS, a prolog-based anytime planning
system. In Proceedings 11th International Conference on Applications
of Prolog (INAP), 1998.

[70] F. Preparata and M.I. Shamos. Computational Geometry: An Introduc-
tion. Springer-Verlag, 1985.

[71] S. Rabin. A* speed optimizations. In M. DeLoura, editor, Game Pro-
gramming Gems, pages 272–287, Rockland, MA, 2000. Charles River
Media.

[72] G. Ramalingam and T. Reps. An incremental algorithm for a general-
ization of the shortest-path problem. Journal of Algorithms, 21:267–305,
1996.

[73] G. Ramalingam and T. Reps. On the computational complexity of dy-
namic graph problems. Theoretical Computer Science, 158(1–2):233–
277, 1996.

[74] H. Rohnert. A dynamization of the all pairs least cost path problem.
In Proceedings of the Symposium on Theoretical Aspects of Computer
Science, pages 279–286, 1985.

[75] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach.
Englewood Cliffs, NJ: Prentice-Hall, 1995.

[76] R. Simmons. A theory of debugging plans and interpretations. In Pro-
ceedings of the National Conference on Artificial Intelligence (AAAI),
pages 94–99, 1988.

138 BIBLIOGRAPHY

[77] P. Spira and A. Pan. On finding and updating spanning trees and
shortest paths. SIAM Journal on Computing, 4:375–380, 1975.

[78] A. Stentz. The focussed D* algorithm for real-time replanning. In Pro-
ceedings of the International Joint Conference on Artificial Intelligence
(IJCAI), 1995.

[79] A. Stentz. Map-based strategies for robot navigation in unknown en-
vironments. In AAAI Spring Symposium on Planning with Incomplete
Information for Robot Problems, 1996.

[80] K. Trovato. Differential A*: An adaptive search method illustrated with
robot path planning for moving obstacles and goals, and an uncertain
environment. Journal of Pattern Recognition and Artificial Intelligence,
4(2), 1990.

[81] M. Veloso. Planning and Learning by Analogical Reasoning. Springer,
1994.

[82] A. Yahja, A. Stentz, S. Singh, and B. L. Brumitt. Framed-quadtree path
planning for mobile robots operating in sparse environments. In Proceed-
ings of the IEEE International Conference on Robotics and Automation
(ICRA), pages 650–655, 1998.

[83] W. Zhang. Complete anytime beam search. In Proceedings of the
National Conference on Artificial Intelligence (AAAI), pages 425–430,
1998.

[84] R. Zhou and E. A. Hansen. Multiple sequence alignment using A*.
In Proceedings of the National Conference on Artificial Intelligence
(AAAI), 2002. Student abstract.

[85] R. Zhou and E. A. Hansen. Beam-stack search: Integrating backtracking
with beam search. In Proceedings of the International Conference on
Automated Planning and Scheduling (ICAPS), pages 90–98, 2005.

[86] S. Zilberstein and S. Russell. Anytime sensing, planning and action: A
practical model for robot control. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI), pages 1402–1407,
1993.

BIBLIOGRAPHY 139

[87] S. Zilberstein and S. Russell. Approximate reasoning using anytime algo-
rithms. In Imprecise and Approximate Computation. Kluwer Academic
Publishers, 1995.

