

Search-Based Planning with Provable Suboptimality Bounds

for Continuous State Spaces

 Juan Pablo Gonzalez Maxim Likhachev
 Autonomous Perception Research Robotics Institute
 General Dynamics Robotic Systems Carnegie Mellon University
 Pittsburgh, PA 15221 Pittsburgh, PA 15213
 jpgonzal@gdrs.com maxim@cs.cmu.edu

Abstract

Search-based planning is widely used for mobile robot
motion planning because of its guarantees of optimality and
completeness. In continuous state-spaces, however, most
existing approaches have significant limitations in terms of
optimality and completeness because of the underlying grid
used. We propose an approach that eliminates the
dependency on grids by using more general equivalence
classes to quickly find an initial solution and instead of
pruning states that fall within an equivalence class and have
higher cost, we use an inflated heuristic to lower the priority
of these states in the search. In further iterations, we reduce
the inflated heuristic in a principled way, thus providing fast
solutions with provable suboptimality bounds that can be
improved as time allows. The proposed approach produces
smooth paths with the resolution dictated by the action set.
Finer action sets produce higher resolution paths that are
more computationally intensive to calculate and coarser
action sets produce lower resolution paths that are faster to
compute. To the best of our knowledge, this is the first
algorithm that is able to plan in continuous state-spaces with
provable guarantees on completeness and bounds on
suboptimality for a given action set. Experimental results on
3D (x,y,) path planning show that, on average, this
approach is able to find paths in less than two seconds that
are within 2% of the optimal path cost in worlds of up to
1000x1000 m with a minimum step size of one meter.

Introduction

Search-based planning is widely used for mobile robot

motion planning because of its guarantees of optimality

and completeness. In continuous state-spaces, however,

most existing approaches have significant limitations in

terms of optimality and completeness. Existing approaches

to search-based planning in continuous state-spaces

generally belong to two categories: grid-based planners

and lattice-based planners. Grid-based planners for

planning in continuous state-spaces were first introduced

by Barraquand and Latombe (Barraquand and Latombe

Copyright © 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1993). Their approach uses a fixed-cell decomposition that

defines implicit grid-like equivalence classes. States are

generated as part of an A* search driven by a forward

simulation through an action set. States that fall within

cells with states that have already been expanded

(CLOSED) are pruned. This approach produces high-

quality paths and is relatively fast. However, it can prune

states that are needed to find optimal solutions in

constrained environments, as can be seen in Figure 1.

Lattice-based planners (Pivtoraiko and Kelly 2005;

Figure 1. Comparison of grid-based planning (top left), lattice-based

planning (top right) and our approach (bottom). Dashed transitions with

cross at the end correspond to pruned transitions. In grid-based planning,

states that are within an existing equivalence class and have higher cost

are pruned. In lattice-based planning the action set is modified to always

land on the center of grid locations. Our approach overcomes both

limitations and plans with provable guarantees on suboptimality, allowing

the path to the goal to be found independently of the characteristics of the

equivalence classes

Likhachev and Ferguson 2009) use state lattices, a

discretization of the configuration space into a set of states

that represent configurations and connections between

these states, and where every connection represents a

feasible path. They guarantee feasibility of the paths while

allowing search-based planning on the resulting graph. The

main drawback of lattice-based planners is that they need

to convert the desired action set into an action set that

always starts and ends on a node in the grid. This

requirement increases the design complexity of the

planners and artificially restricts the paths to go through a

series of specific points. Figure 1 also shows an example

where the constraints in the location of the path points

prevents the planner from finding a solution. In this

example, in order to find a path to the goal using a lattice-

based planner, a higher resolution would be needed for the

lattice since the obstacles in the world are not aligned with

the cell centers.

Sampling-based planners (Kavraki et al 1996; LaValle

1998) use forward search in continuous coordinates and are

able to find smooth paths in high-dimensional spaces

without the need for an underlying grid. Sampling based

approaches are probabilistic-complete, but usually produce

highly suboptimal paths that require post-processing to

find locally-optimal solutions, and cannot optimize

continuous cost functions. RRT* (Karaman and Frazzoli

2010) is a unique variant of sampling-based planners that

reconnects vertices within a d-dimensional ball whose

radius shrinks as the search progresses. RRT* guarantees

asymptotic optimality, but does not provide any

deterministic suboptimality bounds if the search terminates

before finding an optimal path.

We propose an approach that improves upon grid-based

planners by using equivalence classes to find an initial

solution, but instead of pruning states that fall within an

equivalence class and have higher cost, we use an inflated

heuristic to lower the priority of these states in the search.

In further iterations, we use ARA* (Likhachev, Gordon,

and Thrun 2003b) to reduce the inflated heuristic in a

principled way. This allows us to provide fast solutions

with provable suboptimality bounds that can be improved

as time allows. The proposed approach produces smooth

paths with the resolution dictated by the action set. Finer

action sets produce higher resolution paths that are more

computationally intensive to calculate and coarser action

sets produce lower resolution paths that are faster to

compute. To the best of our knowledge, this is the first

algorithm that is able to plan in continuous state-spaces

with provable guarantees on suboptimality for a given

action set.

Experimental results on 3D (x,y,) path planning show

that, on average, this approach is able to find paths in less

than two seconds that are within 2% of the optimal path

cost in worlds of up to 1000x1000 m with a minimum step

size of 1m.

Outline

To simplify the presentation we present three variants of

the algorithm in order of complexity. The first one, A*

with equivalence classes, prunes higher-cost states that are

already represented in an equivalence class (equivalence-

class state dominance). It is somewhat similar to the

Barraquand-Latombe approach, although it does not use

the grid to define equivalence classes. This version does

not have explicit guarantees on suboptimality bounds. The

second version, -optimal A* with equivalence classes,

does not prune states and instead uses an inflated heuristic

 >1 to penalize dominated states. This algorithm is

guaranteed to find a solution that is within  of the optimal

solution for the given action set. The final version,

Anytime Repairing A* with equivalence classes, combines

the previous two versions in an anytime fashion to quickly

obtain an initial solution with large  and then reduces 
while reusing previous results in order to achieve the

minimum  possible within the time and space available.

The solution found is also guaranteed to be within  of the

optimal solution for the given action set.

Anytime Repairing A* with Equivalence

Classes

A* with Equivalence Classes – AE*

In order to plan paths that don’t depend on a grid, we use a

dynamically generated graph created by applying an action

set to each state expanded. As in regular A*, we use two

lists, OPEN and CLOSED. The OPEN list contains states

that are candidates for expansion, ordered by their f value

f(s) = g(s) + h(s), where g(s) is the accumulated cost from

the start, and h(s) is an admissible heuristic that

underestimates the cost to the goal. The CLOSED list

contains states that have already been expanded. The nodes

of the graph are made up of the states belonging to the

OPEN and CLOSED lists together, and the edges are

created as nodes are generated.

 Initially sstart is placed in the OPEN list (Figure 2, line

02) with f(sstart) = h(sstart). The state with the lowest f value

is popped off the OPEN list, put in the CLOSED list, and

expanded, with its successors s’ generated and determined

by the action set (lines 04 to 06). A state s’ can lie

anywhere in the state space (as determined by the action

set) and therefore it is not discretized. We calculate the

cost to transition from s to s’ and update g(s’) if the state s’

has not been generated before or if its g value can be

improved (lines 07 to 09). Then, out of all the states in the

graph G that we have constructed so far, we look for the

nearest neighbor snearest within the equivalence class of s’

according to a given distance function D(s,s’).

 We define the equivalence relationship between two

states as

 ~ ' (, ')s s D s s   (1)

where D is the same distance function used to evaluate the

nearest neighbor, and δ defines the size of the equivalence

class. If there are no neighbors within the same

equivalence class, then s’ is considered a new state and it’s

placed in the OPEN list with f(s’) = g(s’) + h(s’) (lines 11

and 12). If there is a neighbor within the same equivalence

class, then s’ is only added to the open list (and to the

graph) if its g value is lower than that of the nearest

neighbor (lines 13 to 16). Figure 3 illustrates this process.

Every time a state is placed in the OPEN list, backpointers

representing connecting edges to its parent are also stored

with it. Lines 03 to 16 are repeated until a state in the same

equivalence class as the goal state is expanded or until the

OPEN list is empty. The size of the equivalence class

together with the action set determines the resolution of the

solution. Smaller equivalence classes achieve higher

resolution at the expense of computation time and space.

The upper bound on the size of the equivalence class is

determined by the action set since the successors of a node

need to belong to a separate equivalence class than its

parent

 (, ').D s s  (2)

Equivalence classes affect the quality of the solution in

an indirect way (Gonzalez and Stentz 2009). Within an

equivalence class states are dominated based on their g

value (total cost from the start). If there is a state with a

higher g value within the same equivalence class that

would be needed to achieve a better solution later in the

search, then this state would be pruned, and the better

solution would not be achieved. The likelihood of this

event depends on the topology of the problem and the size

of the equivalence class. As the equivalence class gets

smaller, this is less likely to occur and in the limit (if the

size of the equivalence class is zero), it will never happen.

In practice we usually set the size of the equivalence

classes at the upper bound determined by the action set, as

the resulting paths are of high quality and this reduces

planning time.

For example, if we are planning paths in {x,y,θ} for a

car-like robot moving forward with velocity v and

minimum turning radius min (Dubins car), the action set U

in { ,v  } is

  min minU ,0,/ /v vv t      (3)

where Δt is the time step in the action set. The longitudinal

motion determines the maximum size of the equivalence

class in xy (δxy = v t ) and the heading change determines

the maximum size of the equivalence class in θ

(min/v t   ). For a given speed and turning radius,

increasing Δt increases the size of the equivalence class

and produces a coarser solution in (x,y, θ). However, since

the successors are generated based on a feasible action set

and there is no quantization, the resulting path is always

continuous in all variables.

Figure 4 shows the resulting paths for v = 1m/s and Δt =

1s and Δt = 5s, as well as a path using A* on a grid in xy.

For Δt =1, each motion on the xy plane is 1 meter long, and

the maximum change of heading in the action set

corresponds to approximately 6 degrees. For Δt = 5s, each

motion on the xy plane is 5 meters long, and the maximum

change in heading in the action set is 30 degrees. Although

a quantization in heading is not imposed, the action set

selected effectively limits the possible angles to multiples

of 6 degrees for Δt = 1s and to multiples of 30 degrees for

Δt = 5s. The xy values are not quantized by the action set

selected.

This approach is similar to the approach proposed by

Barraquand and Latombe, but it uses a more general

definition of equivalence classes. Where their approach

was defined for grid-like equivalence classes, the approach

presented here is not restricted in the shape of the

equivalence class. Like the Barranquand-Latombe

approach, this approach lacks completeness guarantees and

01 g(sstart) = 0; OPEN =  ; CLOSED = 

02 insert sstart into OPEN with f(sstart) = h(sstart)

03 while sgoal is not expanded

04 remove s with the smallest f value from OPEN

05 CLOSED =CLOSED {s}

06 for each succesor s’ of s

07 if (s’ hasn’t been generated) OR

08 (g(s) + c(s,s’) < g(s’))

09 g(s’) = g(s) + c(s,s’)

10 snearest=Nearest(OPEN CLOSED, s’)

11 if (snearest = {  })

12 insert s’ into OPEN with f(s’) = g(s’) + h(s’)

13 else if g(s’) < g(snearest)

14 if snearest  OPEN

15 remove snearest from OPEN

16 insert s’ into OPEN with f(s’) = g(s’) + h(s’)

Figure 2. Algorithm 1: A* with equivalence classes

Figure 3. Using equivalence classes, states are allowed to lie where the

action set dictates. The solid gray circles show the equivalence classes for

θ = 0o
, and dashed circles show the equivalence classes for other angles.

The red “x” shows a state that is dominated (pruned) because it is within
an existing equivalence class and has a higher g value.

provable suboptimality bounds, as it prunes states within

equivalence classes that could be necessary later on in the

search.

-optimal A* with Equivalence Classes

Equivalence class state-dominance can prune states that are

necessary to achieve truly optimal paths. In order to obtain

provable suboptimality bounds and to allow the solution to

be improved beyond the limits of the equivalence class

defined, we modify it as follows.

 Instead of pruning states that are dominated within the

equivalence class, we put them in the OPEN list with an

inflated heuristic such that f(s) = g(s) + ·h(s), with  ≥1.
This is similar to implementing A* with a weighted

heuristic, but only the dominated nodes are weighted.

Figure 5 shows the modified algorithm, highlighting the

changes that implement the inflated heuristic. Since the

heuristic is at most  times the admissible heuristic h(s),

the solution will be at most  times the optimal solution

(Likhachev, Gordon, and Thrun 2003a). With large  the

solution is the same as that found with algorithm 1. With

smaller  more states will be considered in the solution,

overcoming the limitations imposed by the equivalence

classes but also requiring more time and space.

In order to implement weighted A* with equivalence

classes, a number of additional changes are required. We

create a new list NOTDOM to contain all the non-

dominated states generated so far. Each non-dominated

state defines an equivalence class, and has lower g value

than any other states within the same equivalence class. As

such, in line 10, we only check for the nearest neighbor

within NOTDOM. We maintain this list by adding new

states that don’t have a non-dominated state nearby (line

12) and by checking each generated state against its nearest

non-dominated neighbor. If a successor s’ has a lower g

value than the nearest non-dominated neighbor within its

equivalence class, then the nearest neighbor is removed

from NOTDOM and s’ inserted instead (lines 15 and 16). If

snearest was in the OPEN list, then its f value changed to that

of dominated states (lines 19 and 20). If a successor s’ has

a greater or equal g value than snearest then s’ is put in the

OPEN list as a dominated state (line 24), unless, s’ is

equal to snearest. If s’ is equal to snearest. then s’ is non-

dominated and its g value was updated to a better value in

line 09. In such case, s’ is put in the OPEN list as a non-

dominated state (line 26).

Theorem: If there exists a finite-cost path for the

given action set, then the algorithm is guaranteed to

terminate and to return a path whose cost is no more

than  times the cost of the least-cost path for the given

action set.

We prove termination by contradiction. Let us consider

a least-cost path from sstart to s, and in particular the state s'

on it that has never been expanded and is closest to sstart. s'

was generated and inserted into OPEN with a finite

priority. Given a finite set of actions for each state and

strictly positive costs, there is only a finite number of states

whose g values will be smaller than any finite g value

including the g value of s'. Thus, s' must have been

selected for expansion, which is a contradiction.

According to the theoretical analysis of weighted A*

(Likhachev, Gordon, and Thrun 2003a), inflating h values

of states with  1 guarantees that whenever a state s is

expanded, the cost of the found path from sstart to s is

bounded from above by the g value of s, which in turn is

no more than  times the cost of an optimal path from sstart

to s. This means that the cost of the path returned by our

algorithm is no more than  times the cost of a least-cost

path.

Anytime Repairing A* with Equivalence Classes

Since different environments have very different values of

 that can be solved in a given amount of time and space, it

is desirable to have an approach that explores different

values of  in an efficient manner. Anytime Repairing A*

(ARA*, Likhachev, Gordon, and Thrun 2003b) is an

anytime algorithm similar to weighted A*, but rather than

having a fixed value of , it starts with a large  and it

decreases it while reusing previous search results. In

Figure 6 we introduce ARAE*, which extends ARA* to

use equivalence classes. The procedure ImprovePath() is

very similar to -optimal A* with equivalence classes,

except for the differences highlighted. Like ARA*,

ARAE* uses local inconsistencies to propagate

improvements in the solution in an efficient manner.

ARAE* uses three mutually exclusive lists: OPEN,

CLOSED and INCONS. OPEN contains all the states that

have never been expanded within the current iteration of

ImprovePath. These states have been discovered for the

first time within the current search iteration or had their g-

position, meters

p
o
s
it
io

n
,

m
e
te

rs
T: 0.0 s, cost = 1639.20, dt 1.05, dt

LR
: 5.24, dtheta: 6.00, dtheta

LR
: 30.00

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

dt = 5

dt = 1

grid = 1

position, meters
p
o
s
it
io

n
,

m
e
te

rs

T: 0.0 s, cost = 1639.20, dt 1.05, dt
LR

: 5.24, dtheta: 6.00, dtheta
LR

: 30.00

10 15 20 25

16

18

20

22

24

26

28

30

32

34

36

Figure 4. Comparison of A* with equivalence classes in (x,y,θ) for a car-

like robot with v=1, ρnin=10 and Δt=1 s (dots) and Δt=5 s (circles) as well

as A* in (x,y) with a 1-meter grid (squares). The robot starts in the lower

left corner, heading east. Light gray areas are low cost, dark dray areas

are higher cost and green areas are non-traversable. Notice the smaller

steps and smaller heading changes for Δt=1. For Δt=5 steps and heading
changes are larger, but the path is still continuous.

values decreased within the current search iteration-.

CLOSED contains all states that have been expanded

within the current iteration of ImprovePath and whose g-

values have not decreased after their last expansion.

INCONS contains all the states that have been expanded

within the current search iteration and whose g-values did

decrease after the expansion (lines 22, 26 and 31)

The main difference between ARA* and weighted A* is

the use of the INCONS list. ARA* postpones the expansion

of any inconsistent states until the next iteration of

ImprovePath. By doing this ARA* prevents states from

expanding more than once during each iteration, which

usually produces a faster initial solution. In ARAE* we

generalize this idea to equivalence classes by using an -
inflated f value for states s’ with lower g value than snearest

if snearest has already been expanded in the current iteration

(line 25). The termination condition of ImprovePath() is

also different from that of weighted A*. Since the goal

node may not become inconsistent, ARAE* terminates

when the f value of sgoal is equal to the minimum f value of

the states in the OPEN list.

 The main loop calls ImprovePath repeatedly, decreasing

 between calls. Before each call to ImprovePath, the states

in INCONS are added to the OPEN list. Then the OPEN

list is re-ordered using the new  (line 10). Unlike ARA*,

ARAE* differentiates dominated and non-dominated states

by only inflating the heuristics of the dominated states in

fvalue(s). Also notice that states that had a lower g value

than snearest when snearest had already been expanded will

change their priority to that of non-dominated states,

therefore no longer discouraging their expansion.

01 g(sstart) = 0; OPEN =  ; CLOSED = 

02 insert sstart into OPEN with f(sstart) = h(sstart)

03 while sgoal is not expanded

04 remove s with the smallest f value from OPEN

05 CLOSED =CLOSED {s}

06 for each succesor s’ of s

07 if (s’ hasn’t been generated) OR

08 (g(s) + c(s,s’) < g(s’))

09 g(s’) = g(s) + c(s,s’)

10 snearest = Nearest(NOTDOM, s’)

11 if (snearest = {  })

12 NOTDOM = NOTDOM {s’}

13 insert s’ into OPEN with f(s’) = g(s’) + h(s’)

14 else if g(s’) < g(snearest)

15 remove snearest from NOTDOM

16 NOTDOM = NOTDOM {s’}

17 if snearest  OPEN

18 remove snearest from OPEN

19 insert snearest into OPEN with

20 f(snearest) = g(snearest) + ·h(snearest)

21 insert s’ into OPEN with f(s’) = g(s’) + h(s’)

22 else // g(s’) ≥ g(snearest)

23 if (s’  snearest)

24 insert s’ into OPEN with f(s’) = g(s’) + ·h(s’)

25 else

26 insert s’ into OPEN with f(s’) = g(s’) + h(s’)

Figure 5. Algorithm 2: -optimal A* with equivalence classes. Lines

in gray are functionally equivalent to the previous algorithm, while

lines in black are unique to this algorithm.

Procedure fvalue(s)

01 if s  NOTDOM

02 return g(s) + ·h(s)

03 else

04 return g(s) + h(s)

Procedure: ImprovePath()

01 CLOSED =  ; INCONS = 

02 while () min (())
goal

s OPEN

fvalue s fvalue s




03 remove s with the smallest fvalue(s) from OPEN

04 CLOSED =CLOSED {s}

05 for each succesor s’ of s

06 snearest = Nearest(NOTDOM, s’)

07 if (s’ hasn’t been generated) OR (g(s) + c(s,s’) < g(s’))

08 g(s’) = g(s) + c(s,s’)

09 if (snearest ={ })

10 NOTDOM = NOTDOM {s’}

11 insert s’ into OPEN with f(s’) = g(s’) + h(s’)

12 else if (g(s’) < g(snearest))

13 remove snearest from NOTDOM

14 NOTDOM = NOTDOM {s’}

15 if snearest  CLOSED

16 if (snearest in OPEN)

17 re-insert snearest into OPEN with

18 f(snearest) = g(snearest) + ·h(snearest)

19 if (s’ CLOSED)

20 insert s’ into OPEN with

21 f(s’) = g(s’) + h(s’)

22 else INCONS =INCONS {s’}

23 else //snearest was CLOSED

24 if (s’  CLOSED)

25 insert s’ into OPEN with f(s’) = g(s’) + ·h(s’)

26 else INCONS =INCONS {s’}

27 else // g(s’) >= g(snearest)

28 if (s’  CLOSED)

29 insert s’ into OPEN with f(s’) = fvalue(s’)

30 else //s’ was CLOSED

31 INCONS =INCONS {s’}

Procedure: Main()

01 g(sstart) = 0; OPEN = 

02 NOTDOM = 

03 insert sstart into OPEN with f(sstart) = h(sstart)

04 improvePath()

05 ' (, () / (() ()))
goal s OPEN INCONS

min g s min g s h s 
 

 

06 publish current ' -suboptimal solution

07 while ' > 1

08 decrease 

09 OPEN= OPEN INCONS

10 update priorities for all s  OPEN according to fvalue(s)

11 ImprovePath()

12 ' (, () / (() ()))
goal s OPEN INCONS

min g s min g s h s 
 

 

13 publish current ' suboptimal solution

Figure 6. Algorithm 3: ARA* with equivalence classes

ARAE* then updates the suboptimality bound ' after

each iteration of ImprovePath according to

()

' ,
(() ())

goal

s OPEN INCONS

g s
min

min g s h s
 

 

 
  

 
 (4)

which is the minimum between  and the ratio between

the best solution found so far and the best uninflated f

value in the nodes that have yet to be expanded (OPEN

INCONS) (Hansen and Zhou 2007; Zhou and Hansen

2002).

For non-holonomic motion planning in (x,y,) we have

found that in most scenarios the initial solution found is

within 10% of the optimal solution. However, there are

cases where the difference can be arbitrarily large. Figure 7

shows one scenario in which the solution found by ARAE*

is significantly better than the one found by AE*. Because

ARAE* is not limited to the equivalence classes it is able

to find a solution that could only be found using a much

smaller equivalence class. Figure 8 shows the difference in

cost between both solutions.

Case Study: Non-holonomic Global Planning

in Large Outdoor Environments

One of the most relevant applications of search-based

planning using equivalence classes is long range non-

holonomic global planning. Typically, global planning for

large, outdoor environments is performed using a 2D

planner that is unable to model the kinematic constraints of

the vehicle. This planner is usually coupled with a local

planner that does model the kinematic constraints of the

vehicle and that ensures that the paths the vehicle drives

are safe. While this approach performs well in many

scenarios, it often fails in complex terrain due to the large

disparity between the local and global planners. In order to

improve autonomous navigation in outdoor environments,

it is therefore important to have more complex global

planners that are able to model more of the kinematic

constraints of the vehicle while still being fast enough to be

updated regularly.

Lattice-based planners are some of the few existing

approaches that are able to plan long feasible global routes

in a timely manner. Their main drawback is that they need

to convert the desired action set into an action set that

always starts and ends on a node in the grid. This

requirement increases the design complexity of the

planners and artificially restricts the action set in ways that

introduce artifacts in the resulting paths.

ARAE* is a promising alternative since it is not limited

by a grid. The action set selection becomes much simpler,

and no artifacts are introduced by making the actions

terminate in grid nodes.

 Experimental Setup

In order to evaluate the suitability of this approach for

long-range planning in outdoor environments we

performed 400 simulations in simulated environments,

assuming a forward moving robot with minimum turning

radius of 10 m. The following describes the experimental

setup and its results.

Action Set

The action set used was the one described by equation (3),

with min =10m, v =1 and t = 3.14, plus a straight

segment with v =1 and t = 1. The size of the

equivalence class was set to the maximum allowed by this

action set, xy = 1 m and  = 18 degrees. The action set

is the same for all headings, as can be seen in Figure 9.

-5 0 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

Figure 9. Action set used for experiment (red) and rotated versions for all

possible angles given the action set (blue)

position, meters

p
o
s
it
io

n
,

m
e
te

rs

T: 0.0 s, cost = 533.00, dt 0.98, dt
LR

: 1.96, dtheta: 5.63, dtheta
LR

: 11.25

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

Figure 7. Left: comparison between A* with equivalence classes (circles)

and ARA* with equivalence classes (dots) for a more extreme scenario.

2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4

x 10
4

0

2

4

6

8

10

12

expansions

b
o
u
n
d

suboptimality factor

theoretical bound (')

Figure 8. ARAE* showing the error bound ' (dashed line) and the

actual suboptimality factor (solid line). The first solution found by

ARAE* is the same solution found by AE*. The final solution is better by
a large margin.

AE*

ARAE*

Simulated Worlds

We created fractal worlds that resemble outdoor

environments with sizes from 100x100 to 1000x1000

meters, at 1 m resolution. Ten different random seeds were

used for each world size. For each world, we ran four

experiments, each with a different initial heading for the

robot. Figure 10 shows one of the simulated worlds with

the paths found at different initial headings plus the 2D

path found by A* on the grid (for reference). The non-

holonomic paths for the selected headings (-90 and 180

degrees) don’t match the 2D path for more than 300

meters, and would have caused a significant mismatch

between a 2D global planner and the local planner.

Heuristic

We used the cost-to-goal calculated by a 2-D grid search as

the heuristic for the 3-D planner. This heuristic provides an

improvement in performance of at least two orders of

magnitude compared to the Euclidean distance,

independently of which 3-D planner is used.

For our planner, the choice of heuristic also influences

the space requirements and the bounds reported. States in

the planner are allocated when they are generated, and as

such the space requirements of the planner vary greatly

with the number of states generated. At least two orders of

magnitude fewer states are generated when using the 2-D

cost heuristic compared to the Euclidean distance.

The bounds reported by our planner are affected by the

heuristic in two ways. The bound from equation (4) is the

minimum between  and the ratio between the best

solution found so far and the best uninflated f value in the

nodes that have yet to be expanded. Since a more informed

heuristic has a higher f value for these nodes, the bound

found is a tighter one. Furthermore, since a more informed

heuristic expands fewer nodes, it is possible to decrease

further the value of  for a given time or space allowance.

Results

The following figures summarize the results obtained after

running the simulations for the different worlds and initial

headings. The computing hardware used was an Intel

Core2 Duo CPU 2.5GHz, with 4GB of memory, without

parallelization or hyperthreading for the planner.

The planner was allowed up to 2.5 seconds to refine a

solution, allowing extra time if a solution was not found by

that time. Figure 11 (top) shows the planning time until the

first solution was found, and the error bounds for that

solution. Planning times were on average much smaller

than one second for worlds up to 600x600, and about one

second for worlds up to 1000x1000 (less than 2 seconds

95% of the time). The error bounds for smaller worlds are

on average less than 10% (1.10), but can be as high as 40%

(1.40). For larger worlds the initial error bound is on

average less than 2% (1.02), and it is less than 10% (1.10)

95% of the time.

Figure 11 (bottom) shows the planning time until the

last solution allowed within the allocated time. Planning

times are on average about 1 second, and less than 2.5

seconds 95% of the time. The error bounds have been

significantly reduced for the smaller worlds, with the

average errors bound at about 2% (1.02) and the 95%

confidence interval around 5% (1.05). Planning times do

not include the time required to calculate the heuristic for

the first time, as this time is a one-time cost at the

beginning of a mission and the heuristic can be quickly

repaired during the mission using D*Lite (Koenig and

Likhachev 2002).

position, meters

p
o
s
it
io

n
,

m
e
te

rs

T: 0.0 s, cost = 146099.30, dt 1.05, dt
LR

: 3.14, dtheta: 6.00, dtheta
LR

: 18.00

100 200 300 400 500 600 700 800 900

100

200

300

400

500

600

700

800

900

position, meters

p
o
s
it
io

n
,

m
e
te

rs

T: 0.0 s, cost = 146099.30, dt 1.05, dt
LR

: 3.14, dtheta: 6.00, dtheta
LR

: 18.00

50 100 150 200 250 300

100

150

200

250

300

350

Figure 10. Top: Fractal world used to test long-range planning. Black

squares (a) are 2D path (holonomic), yellow circles (b) and cyan dots (c)

are the non-holonomic 3-D paths found for initial headings of -90 and 180

degrees respectively. Bottom: detail of previous figure near start location.

Notice how different the holonomic and non-holonomic paths are for the
selected headings.

(b)

(a)

(c)

(b)

(a)

(c)

Conclusions and Future Work

We have presented a novel approach to search-based

planning that improves upon grid-based planners by using

equivalence classes to find an initial solution, but instead

of pruning states that fall within an equivalence class and

have higher cost, it uses an inflated heuristic to lower the

priority of these states in the search. In further iterations,

the algorithm uses ARA* to reduce the inflated heuristic in

a principled way. This allows us to provide fast solutions

with provable suboptimality bounds that can be improved

as time allows. The proposed approach produces smooth

paths with the resolution dictated by the action set. Finer

action sets produce higher resolution paths that are more

computationally intensive to calculate and coarser action

sets produce lower resolution paths that are faster to

compute. To the best of our knowledge, this is the first

algorithm that is able to plan in continuous state-spaces

with provable guarantees on suboptimality for a given

action set

The experimental results show that at least for long

range non-holonomic path planning this approach is

promising. It produces high quality feasible paths for

worlds up to 1000x1000 meters in less than 2 seconds. The

error bound on these paths is well under 5%, and it is often

as low as 1 or 2%. We still have to perform field

experiments to evaluate how planning times and error

bounds are affected by position errors and noisy sensor

data, and to evaluate the impact of the non-holonomic

global planner on mission performance.

We would like to explore the applicability of this

approach to other domains as well. Since the state space is

not explicitly instantiated, this approach may be useful for

higher dimensional planning when only a few of the

dimensions are relevant

Acknowledgements

This work was supported by the U.S. Army Research

Laboratory under the Robotics Collaborative Technology

Alliance program, Cooperative Agreement W911NF-10-2-

0016. The views and conclusions contained in this

document do not represent the official policies or

endorsements of the U.S. Government.

References

Barraquand, J. & Latombe, J. 1993. Nonholonomic Multibody Mobile

Robots: Controllability and Motion Planning in the Presence of Obstacles.
Algorithmica, 10 (2-4) , 121-155.

Gonzalez, J. & Stentz, A. 2009. Using linear landmarks for path planning
with uncertainty in outdoor environments. Intelligent Robots and Systems,

2009. IROS 2009. IEEE/RSJ International Conference on, , 1203 -1210.

Hansen, E. A. & Zhou, R. 2007. Anytime heuristic search. Journal of
Artificial Intelligence Research (JAIR), 28 , 267-297.

Karaman, S. & Frazzoli, E. 2010. Incremental Sampling-based

Algorithms for Optimal Motion Planning. Proceedings of Robotics:
Science and Systems.

Kavraki, L. E.; Svestka, P.; Kavraki, L. E.; Latombe, J. & Overmars, M.

H. 1996. Probabilistic Roadmaps for Path Planning in High-Dimensional
Configuration Spaces. IEEE Transactions on Robotics and Automation,

12 , 566-580.

Koenig, S. & Likhachev, M. 2002. D*lite. Eighteenth national conference
on Artificial intelligence, American Association for Artificial Intelligence,

476-483.

LaValle, S. 1998. Rapidly-exploring random trees: A new tool for path
planning. TR 98-11, Computer Science Dept., Iowa State University.

Likhachev, M. & Ferguson, D. 2009. Planning Long Dynamically
Feasible Maneuvers for Autonomous Vehicles. Int. J. Rob. Res., Sage

Publications, Inc., 28 , 933-945.

Likhachev, M.; Gordon, G. & Thrun, S. 2003. ARA*: Formal Analysis.
Tech. Rep. CMU-. CS-03-148, Carnegie Mellon University, Pittsburgh,

PA.

Likhachev, M.; Gordon, G. & Thrun, S. 2003. ARA*: Anytime A* with

provable bounds on sub-optimality. Advances in Neural Information

Processing Systems (NIPS).

Pivtoraiko, M. & Kelly, A. 2005. Generating Near-Minimal Spanning

Control Sets for Constrained Motion Planning in Discrete State Spaces.

Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems, 3231-3237.

Zhou, R. & Hansen, E. A. 2002. Multiple sequence alignment using

anytime A*. Eighteenth national conference on Artificial intelligence,
American Association for Artificial Intelligence, 975-976.

0 200 400 600 800 1000 1200
0

1

2

3

world size

p
la

n
n
in

g
 t

im
e

0 200 400 600 800 1000 1200
1

1.1

1.2

1.3

1.4

world size

'

0 200 400 600 800 1000 1200
0

1

2

3

world size

p
la

n
n
in

g
 t

im
e

0 200 400 600 800 1000 1200
1

1.05

1.1

1.15

world size

'

Figure 11. Planning time and error bound for the first solution found(top

two images) and last solution found (bottom two images). Squares

indicate mean value, with bars for 95% confidence intervals. “x” indicate
the actual results for each run.

