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Abstract— Robots are increasingly being used in situations
such as search and rescue that require robust navigation
capabilities, potentially in areas with little or no GPS or other
high-quality localization information. As more robots are used
in these scenarios, it becomes viable to collaborate between
heterogeneous types of robots to leverage their individual
strengths while minimizing their weaknesses. More specifically,
in a scenario involving unmanned ground and aerial vehicles
(UGV, UAV), the ground robot can contribute its high payload
capacity to provide computational resources and high accuracy
sensors while the aerial robot can bring its high mobility and
capability to traverse obstacles to the team. However, in order
for the team to benefit from these capabilities, it must be
capable of generating a plan for both robots that allows them
to collaboratively localize when necessary. Our approach to this
problem is to combine a recently developed state lattice planner
using controller-based motion primitives (SLC) with planning
using adaptive dimensionality (PAD). The SLC planner allows
for robust navigation using a wide variety of sensors including
in areas with no or limited high-quality localization information
while the PAD planner allows us to expand beyond a single
robot and generate plans for a team of robots operating in a
high dimensional space. We present our results to this combined
approach for a UGV/UAV team operating indoors in areas with
limited visual features.

I. INTRODUCTION

Robots are being turned to in an increasing number and
variety of situations. With this proliferation come many
opportunities to collaborate between robots in different ways.
Robots can provide computational or sensing resources for
each other, they can act as transports, provide communication
relays, or provide other support. For these types of tasks, the
robots need to be able to generate plans that take into ac-
count the differences in movement, sensing, and localization
abilities of the team members in order to take full advantage
of the teams capabilities.

In some scenarios, these differences within the team can
be significant. Teams composed of a ground vehicle and an
aerial vehicle differ in many important ways. They have
drastically different on-station endurance times, different
payload capacities (which impact the number and types of
sensors), and can traverse different types of terrain. However,
these differences can be used to make the team more capable
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Fig. 1: (a) Segway-based UGV. 2 scanning laser range finders, high
gain antenna, webcam, general purpose server. (b) Pixhawk-based
quadcopter UAV. Laser Altimeter, 6 IR range sensors, standard
webcam.

than they are individually. An example is tasks such as search
and rescue where both the high endurance of the unmanned
ground vehicle (UGV) and the capability to traverse debris
strewn environments typical of unmanned aerial vehicles
(UAV) are important. In this scenario, the UAV’s limited
payload places limits on the sensors it can carry while the
environment places external limitations on the availability of
common localization methods such as GPS. It is important
that the planner is capable of generating trajectories that use
all of the capability of both vehicles including the ability to
gain information from each other. In this paper we propose a
novel method of generating trajectories for ground-air teams
of robots that allow the team to collaboratively localize.

Our approach is based on the recently developed state
lattice planner using controller-based motion primitives
(SLC)[1] to allow plans to incorporate multiple different
modes of localization that a robot has available along with
the associated collaboration constraints into a unified plan-
ning framework. Additionally, our planner is based on the
Planning with Adaptive Dimensionality (PAD) framework[2]
to ensure that planning in the six-dimensional1 combined
state space of a ground-air robot team can be performed in
reasonable times.

A state lattice-based planner uses a regular lattice con-
structed from motion primitives [3] to form the search
graph, G = (S, E). In a typical planner, the edges, E , are
formed by applying fixed motion primitives at each state,
s ∈ S. These metric motion primitives carry the implicit
assumption that the robot has sufficient localization ability to

1The combined state space is nine-dimensional, however, as discussed in
Section IV-D, we can independently determine three of the states, leaving
only six for the planning problem.



be able to execute the motion and to determine the stopping
point. However, in cases that this does not hold true, we
can instead turn to controller-based motion primitives. By
adding additional directed edges to the search graph based on
forward simulating different types of controllers, the planner
is capable of finding trajectories through areas that were
impassable using only metric-based motion primitives. These
controller-based motions rely solely on the capabilities of the
controller independent of the robots ability to localize. For
example, a wall following controller may not at any point
during its trajectory know where in the environment it is
with any degree of precision, however, by executing this
controller to its natural stopping point (i.e. the end of the
wall) the robot ends up in a known (and repeatable) position.
Our implementation of SLC is detailed in Section III.

The second component to our collaborative planner is the
use of the planning with adaptive dimensionality framework
(PAD). With a free flying aerial robot the state space has
six degrees of freedom, 〈x, y, z, φ, θ, ψ〉. When the aerial
robot is combined with the ground robot the overall state
space increases to 9 states - position and orientation of the
UGV, 〈x, y, ψ〉, plus the six UAV states. Some of these states
can be determined independently from the planning problem
(roll, pitch, and yaw of the UAV) leaving a six-dimensional
state space. It is well known that this high dimensionality
coupled with a large environment greatly increases planning
times to the point that they become infeasible for on-the-
fly computation. By planning with adaptive dimensionality,
we can plan in only those dimensions that are critical at a
given point. For example, consider moving a piano across a
driveway and into a large room in a house. While the piano
and the movers are transiting the driveway, the orientation of
the piano is of no consequence - all orientations are equally
valid. The same holds true once the piano is inside the
large room. However, while the piano is moving through the
narrow doorway, its orientation matters immensely - most
orientations are incapable of getting through and in fact,
a carefully orchestrated sequence of orientations is often
required for success. In this example, the planner can plan
using just the 〈x, y〉 translational states for the first and last
portions of the plan, and only plan in the full six-dimensional
state space in the vicinity of the doorway. In Section IV we
describe our implementation of PAD.

We will discuss the history and alternative approaches
to solving these problems in Section II, and present our
experimental results in Section V.

II. RELATED WORK

Collaborative localization has been a goal of robotics
research for many years[4]. A lot of this work has been
directed at making the detection of the other robots of
a team more reliable and accurate[5] even for chains of
robots where the farthest ones have no direct knowledge or
sensor measurements regarding any known landmarks and
instead must rely entirely on their neighboring robots[6].
Other approaches have focused on the sensor integration
from the data fusion side ensuring that the data is used

more effectively[7]. Our approach keeps the localization
scheme simple, we use only fiducial markers and a simple
camera to determine the estimated pose of the UGV from
the UAV and then, knowing the UGV position, we can
estimate the position of the UAV. While we do not use these
advanced techniques in this work, our algorithm is capable of
incorporating this improved data into its planning framework.

With the recent increase in the availability of small, low
cost UAV’s, in particular easy to use quadcopters, more
research effort has been directed at teams of air-ground
robots[8] including work on exploration[9], and collaborative
localization between the team members[10]. Communica-
tions in a variety of forms has been the focus of several works
in this area[11], [12], although frequently these include high-
quality localization of all robots, including the use of GPS on
both the UGV and UAV’s even with vision augmentation[13].
However, some approaches rely purely on well-localized
UGVs[14], forcing the UAV to update its position estimate
only by visually extracting the pose of the UGV. Our work
differs from all of these by incorporating the collaborative
localization element into a larger planning framework.

An in-depth look at multi-robot localization and planning
for air-ground teams of robots is found in [15]. This planner
uses a simplified topological approach to planning and is
not sufficient to be used directly by the UGV and UAV for
navigation through a complex 3-dimensional environment.

The state lattice with controller-based motion primitive
planner is based on standard graph search algorithms such
as A? [16] and ARA? [17] but allow the execution of
controllers similar to the sequential composition of controller
approaches[18], [19], [20]. The SLC planner also includes
the functionality of switching between controllers based on
external perceptual triggers similar to the Linear Temporal
Logics[21].

Planning in a high-dimensional configuration space, such
as a team of robots, is a challenging task. A variety of
techniques have been developed in order to improve plan-
ning times in high-dimensional configuration spaces. Many
approaches involve a two layer planning scheme with a low-
dimensional global planner that provides input to a high-
dimensional local planner [22], [23], [24]. However, these
approaches can result in highly sub-optimal trajectories and
even trajectories that are infeasible due to mismatches in the
assumptions made by the global and local planners. Another
way to reduce the dimensionality of planning problems is
through the use of hierarchical planners and state abstraction
techniques, such as the approaches taken in [25], [26]. These
approaches aim to compute very accurate heuristics in order
to improve the performance of searches through the high-
dimensional state-space [27]. The heuristics are derived by
solving a relaxed lower-dimensional representation of the
original planning problem. The PAD planning algorithm
used in this work differs from the approaches above in
several aspects. It does not explicitly split the planning
in two levels, but rather mixes low- and high-dimensional
states within a single planning process. PAD can also make
effective use of a very accurate heuristic, but it does not



rely on the heuristic alone to improve performance. Thus,
it is more robust to handling local minima in the heuristic
function. Additionally, the PAD algorithm provides strong
theoretical guarantees, such as completeness with respect
to the underlying graph, and bounds on solution cost sub-
optimality.

The key features that distinguish our work from the
prior work in the field is that we include the collaborative
localization element directly in our planning process. This
allows the robots to go on separate trajectories and only
meet up when required rather than travel in a fixed formation
or conversely, operate completely independently. In addition,
our planner provides guarantees on path quality and resolu-
tion completeness.

III. STATE LATTICE-BASED PLANNING WITH
CONTROLLER-BASED MOTION PRIMITIVES FOR

GROUND-AIR TEAMS

A. State Lattice Planners with Controller-based Motion
Primitives

A state lattice planner uses predefined motion primitives
to generate, as required, a graph, G = (S, E) spanning
the environment. Motion primitives are short kinematically
feasible motions that are designed to connect one state with
another nearby state and form the set of edges, E , of the
search graph [3]. This graph is traversed by a graph search
algorithm such as A? in order to find the minimal cost path
from the start state sS to the goal state sG, sS , sG ∈ S.
During the planning cycle, the graph generation and planning
process are interleaved so that only those elements of the
graph that are required for the search algorithm are explicitly
constructed. The SLC planner[1] modifies this construct by
adding additional directed edges to G that correspond to
executing a controller c from a given set of controllers C, at
a given start state. These new edges are formed by forward
simulating the desired controller from a given state, si, in
order to determine the end state, sj , and thus forming a new
edge, e(si, sj), which is added to the set of states in the
search graph, E ′ = E

⋃n
en, then G = (S, E ′).

Formally, SLC requires three functions to be defined to
generate the graph G, C(s), T(c), and Φ(s, c, τ). The first
function, C(s) defines the available controllers at a given
state, s ∈ S:

C(s) : S → P(C)

The result is a set of available controllers, C , from the
powerset of all controllers, P(C), i.e. C(s) provides all of
the controllers which can be executed at state s. These
controllers can be simple, such as a wall following controller
using two range measurements, or complex, such as a full
visual odometry system to navigate to a particular key-frame.

The SLC algorithm also allows controllers to be stopped
in the middle of execution through the use of perceptual
triggers. A trigger can be setup to halt a controller based
on any perceptual signal, such as sighting a new landmark.
In addition, each controller has an intrinsic trigger that is
the default stopping point for that controller. For example, a

wall following controller has an intrinsic trigger that stops
execution when the robot reaches the end of the wall. An
example of various controllers and triggers is shown in Fig. 2.

The second required function maps the controllers onto
available triggers:

T(c) : C → P(T )

returning a set of available triggers, T , based on the given
controller, c ∈ C. T is the set of all triggers available to the
robot.

The last required function is the actual controller logic
defined as:

Φ(s, c, τ) : S × C(s)× T(c)→ S

For a given state s, an allowable controller c for that state,
and an allowable trigger τ for that controller, function Φ
simulates the execution of the controller c starting at state
s until either trigger τ or an intrinsic trigger is detected
(whichever comes first). The resulting state s′ is returned
by the function.

The problem is thus formally a 6-tuple,

G = {S, C, T ,C(·),T(·),Φ(·, ·, ·)}

used to produce the graph, G. Further details on the algorithm
can be found in [1].
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Fig. 2: (a) Environment and (b) segment
of graph G based on controllers C =
{FOLLOWLEFTWALL(fL), FOLLOWRIGHTWALL(fR)} and
triggers T = {COMPLETION(End), OPENINGLEFT(oL),
OPENINGRIGHT(oR)}.

As an example, suppose we are given a set of con-
trollers2 C = {FOLLOWLEFTWALL, FOLLOWRIGHTWALL}
with an intrinsic trigger of COMPLETION corresponding
to the end of the wall, and a set of extrinsic triggers
T = {OPENINGLEFT,OPENINGRIGHT}. Given an example
environment as shown in Fig. 2a we can see how the graph,
G, is constructed in Fig. 2b. Consider a state S, indicated
by the square in the lower right corner and suppose both
controllers are available at S. From state S there is an edge
to A corresponding to the controller FOLLOWLEFTWALL,
fL, and trigger COMPLETION, End, as shown in the portion
of G. Likewise, with controller FOLLOWRIGHTWALL, fR,
and trigger End, the edge goes from S to D. However, if

2For the sake of illustration, it does not include metric motion primitives.



the trigger were OPENINGLEFT, oL, then the edge would
have been from S to C. Note, it is possible for multiple
controller/trigger combinations to connect two nodes. For
example, B → C is formed by the (fL,End) pair in
the graph, however B → C is also connected by the pair
(fR, oL) (which is not depicted).

B. Controllers and Triggers Implemented for Ground-Air
Teams

In order to use the SLC planner, a set of available
controllers and triggers were constructed. For the UAV, we
implemented WALLFOLLOWING, GOTOLANDMARK, MET-
RICTURN, and METRICSTEP3 controllers. The UGV had
high-quality localization data from its two scanning laser
range finders and so was only given a METRICMOTION
controller.

The WALLFOLLOWING controller on the UAV used two
IR range sensors mounted on each side of the UAV in order
to maintain a flight path parallel to, and a specified distance
from, any given wall in the environment. It was given the
ability to trigger when the wall ended (COMPLETION) and
when an obstacle was within a certain distance of the front
or back of the UAV (OBSTACLE). This sensing system
was noisy and the associated controller was very simplistic
resulting in only marginally stable flight. However, it should
be noted that our overall architecture works in spite of the
poor implementation of the controllers - a better controller
would only improve the overall performance.

We used two different instantiations of the GOTOLAND-
MARK controller. The first (GOTOLANDMARKSTAT) used
static landmarks in the environment that the UAV could
detect with its onboard camera system and knowing the
position and orientation of the landmark, could determine its
own position. The second controller (GOTOLANDMARKDYN)
used fiducial markers on the ground robot for the same
purpose. However, this then requires that during the planning
cycle the UAV and UGV positions are both considered simul-
taneously in order for the collaborative localization to occur
(see Section IV-D). In other words, GOTOLANDMARKDYN

could only be exercised while the UGV was close enough
and within line-of-sight of the UAV.

Since the UAV does have an IMU and optical flow system
there are locations within the environment that it is capable
of generating short range metric motions. We used two such
motions, an ability to yaw to a desired heading, and the
ability to move a set distance forward. The accuracy of the
IMU and optical flow system did not allow for continuous
metric motion without receiving some external sensor infor-
mation so the planner limited the allowable locations during
planning time by imposing a high cost on these motions.

IV. PLANNING WITH ADAPTIVE DIMENSIONALITY

The search-based planning framework for Planning with
Adaptive Dimensionality builds on the fact that many high-
dimensional path planning problems have lower-dimensional

3The two metric controllers were always used in groups to turn corners:
METRICSTEP(0.5m) → METRICTURN(±90°) → METRICSTEP(1.0m)

projections that represent the problem very well in most
areas. For example, path planning for a non-holonomic
vehicle needs to consider the planar position of the vehicle
〈x, y〉, but also the heading angle, ψ, to ensure that system
constraints, such as minimum turning radius, are obeyed.
However, a two-dimensional representation of the problem,
only considering the planar position of the vehicle 〈x, y〉,
can work well in many areas of the state-space (Fig. 3).
For our work, the high-dimensional states will be the full
planning state space 〈(x, y, z)uav, (x, y, ψ)ugv〉 while the low-
dimensional states will be just the UAV position, 〈x, y, z〉uav.

Fig. 3: Example trajectory for a non-holonomic vehicle with min-
imum turning radius constraints. Planning for the heading of the
vehicle is needed in areas that require turning in order to ensure
constraints are satisfied (light red circles). Planning for the heading
of the vehicle is unnecessary for areas that can be traversed in
a straight line. A: start location; B: goal location; gray boxes:
obstacles.

In this section we will provide a brief overview of the PAD
algorithm. For a more detailed explanation of the algorithm,
we refer the reader to the original work [2], [28]. We will
use the notation πG(si, sj) to denote a path from state si to
state sj in a graph4 G = (S, E) with a vertex set S and edge
set E . The cost of a path π will be denoted by c(π). We
will use π∗G(si, sj) to denote a least-cost path and πεG(si, sj)
for ε ≥ 1 to denote a path of bounded cost sub-optimality:
c(πεG(si, sj)) ≤ ε · c(π∗G(si, sj)).

A. Overview

The PAD algorithm considers two graphs as defined by
their corresponding state-spaces and transition sets—a high-
dimensional Ghd = (Shd, Ehd) with dimensionality h, and
a low-dimensional Gld = (Sld, E ld) with dimensionality l,
where Sld is a projection of Shd onto a lower dimensional
manifold (h > l, |Shd| > |Sld|) through a projection function
λ.

λ : Shd → Sld

The projection function λ−1 maps low-dimensional states to
their high-dimensional pre-images:

λ−1 : Sld → P(Shd)

and is defined as

λ−1(X ld) = {X ∈ Shd|λ(X) = X ld}

where P(Shd) denotes the power set of Shd.

4The SLC output is a graph, however, since the graph con-
struction and planning are interleaved, E is generated online from
{C, T ,C(·),T(·),Φ(·, ·, ·)} as defined in Section III-A



Each of the two state-spaces may have its own transition
set. However, in order to provide path cost sub-optimality
guarantees, the algorithm requires that the costs of the
transitions be such that for every pair of states si and sj
in Shd,

c (π∗Ghd (si, sj)) ≥ c (π∗Gld (λ(si), λ(sj))) (1)

In other words, it is required that the costs of least-cost paths
in the low-dimensional state-space always underestimate the
costs of the least-cost paths between the corresponding states
in the high-dimensional state-space.

B. Algorithm

The PAD algorithm iteratively constructs and searches
a hybrid graph Gad = (Sad, Ead) consisting mainly of
low-dimensional states and transitions. The algorithm only
introduces regions of high-dimensional states and transitions
into the hybrid graph where it is necessary in order to ensure
the feasibility of the resulting path and maintain path cost
sub-optimality guarantees. Each iteration of the algorithm
consists of two phases: planning phase and tracking phase.

In the planning phase, the current instance of the hybrid
graph Gad is searched for a path π

εplan
Gad (sS , sG). Any graph

search algorithm that provides a bound on path cost sub-
optimality can be used to compute π

εplan
Gad . Similar to the orig-

inal implementation of the algorithm, we used the weighted
A? graph-search algorithm [2], [28].

In the tracking phase, a high-dimensional tunnel τ (a
subgraph of Ghd) is constructed around the path found in the
planning phase. Then τ is searched for a path πτ (sS , sG)

from start to goal. If c(πτ ) ≤ εtrack · c(π
εplan
Gad ), then πτ is

returned as the path computed by the algorithm. If no path
through τ is found or c(πτ ) does not satisfy the above con-
straint, the algorithm identifies locations in Gad, where the
search through τ got stuck or where large cost discrepancies
between π

εplan
Gad and πτ are observed. The algorithm then

introduces new high-dimensional regions in Gad centered at
the identified locations. For more details on how the locations
of new high-dimensional regions are computed and how
high-dimensional regions are introduced in Gad, please refer
to [2], [28]. The algorithm then proceeds to the next iteration.

C. Theoretical Properties

If the high-dimensional state-space Shd is finite, the PAD
algorithm is complete with respect to the underlying graph
Ghd encoding the search problem and is guaranteed to
terminate. If a path π is found by the algorithm, then π
satisfies

c(π) ≤ εplan · εtrack · π∗Ghd(sS , sG)

In other words, the cost of a path returned by the algorithm
is bounded by εplan · εtrack times the cost of an optimal path
from sS to sG in the high-dimensional graph Ghd, where
εplan and εtrack are user-specified parameters. These theoretical
properties are proven in [2].

D. Application to Multi-Robot State-Lattice Planning

In the particular application considered in this work, the
task is to navigate a UAV with limited self-localization
capabilities to a desired target location with the assistance of
a UGV with good localization capability. The aerial vehicle is
able to localize itself relative to the ground vehicle, when the
ground vehicle is visible from the UAV’s position. The full-
dimensional system state is represented by 6-dimensional
state-vectors: 〈(x, y, z)uav, (x, y, ψ)ugv〉 The transitions avail-
able for each state consist of pre-computed motion primitives
(metric motions) for both vehicles, and state-lattice controller
actions for the aerial vehicle. The cost of each transition
is proportional to the cumulative distance traveled by each
vehicle during the transition. The roll and pitch of the UAV,
φ and θ, are derived variables from the desired velocity and
error and are calculated by the controllers to meet the desired
trajectory points. The heading (yaw), ψ, of the aerial vehicle
is also not a free variable and is determined by the specific
controller used in a transition. For example, when executing
a WALLFOLLOWING transition, the heading is kept parallel
to the direction of the wall, and for transitions using the
ground vehicle for localization (GOTOLANDMARKDYN), the
heading is kept facing the ground vehicle. We assume that in
many areas of the environment the aerial vehicle is capable of
autonomous navigation by using the state-lattice controllers
(following walls or going around corners, for example), and
the localization assistance of the ground vehicle is needed
only in rare occasions, when no state-lattice controllers
are available to the UAV and metric motions need to be
performed. Thus, the low-dimensional representation of the
system used for Planning with Adaptive Dimensionality is a
3-dimensional state-vector 〈x, y, z〉uav, only considering the
position of the aerial vehicle. The costs of transitions in
the low-dimensional space satisfies (1) as only the cost of
moving the aerial vehicle is considered. High-dimensional
regions are introduced in the hybrid graph only in areas of
the environment where ground vehicle localization assistance
is needed.

E. The Output of the Planner

A state lattice with controller-based motion primitive
planner generates trajectories that are defined as a series
of controllers to execute. For this collaborative planner we
expand that to include at each time step the appropriate
controller for all robots in the team. When the robots are
operating independently, the trajectory execution finite state
machine of each robot independently tracks where it is in
the plan. When a robot reaches a planner step that requires
another robot to be at a specific location, the first robot
will pause and hold position until the other one finishes its
controller sequences preceding that point. When the two are
back in sync, both will be allowed to continue executing
their controllers. In practice, the UAV rarely has to wait
for the UGV with the one common occurrence being using
GOTOLANDMARKDYN motion that went behind a pillar. The
UAV would move as far as it could and still see the UGV,



which would then make a quick motion to the side to allow
the UAV to continue on.

V. EXPERIMENTAL SYSTEM

A. Robots

For our testing we used two robots: a Segway-based
ground robot named Melvin (Fig. 1a), and a Pixhawk/DJI-
based aerial robot (Fig. 1b). All of the computers ran
Kubuntu 12.04 and ROS Groovy with the exception of the
computer on the aerial vehicle which runs Xubuntu 14.04
and ROS Indigo.

Melvin the UGV is a relatively large indoor robot with
a significant payload capacity and high endurance. With a
normal operating load, Melvin is capable of operating for
3+ hours running two independent computer systems, and
carrying all required communications infrastructure. The first
computer system is used as the low level controller and
consists of an i3 3.4GHz processor with 8GB of RAM. This
system is used for all navigation, sensing, and interfacing
with the Segway base. The second system is a general
purpose computer equipped with a dual processor Xeon with
8 physical cores and 16GB of RAM. The planner and plan
execution agent are both run on this computer. In addition,
this computer is used to run the processor intensive tasks
of the UAV such as AR marker detection/extraction and all
of the mid-level controllers (the wall following controller,
the metric motion controllers, and the landmark controllers).
Melvin is also equipped with two Hokuyo scanning laser
sensors mounted on tilt mounts for a full 3-dimensional
scanning capability, and a web camera for visual sensing.
To assist the UAV with collaborative localization, the UGV
has six AR markers arranged in a horizontally aligned
hexagon so that the UAV can detect and accurately determine
orientation of the UGV even in the presence of some low
obstacles.

Fig. 4: Block diagram of the system. The server was physically
located on the ground robot and performed most of the processing
of the UAV camera data.

Unlike the UGV, the UAV is relatively spartan in terms of
sensing and computing power. The airframe itself is a DJI
Flamewheel 450 with a Pixhawk flight control computer and
an ODROID XU3 supplemental computer. A standard web
camera is used for landmark detection, while 6 Sharp IR
sensors with 1.5m range are arranged around the perimeter
to provide obstacle detection and wall following capabilities.

The ODROID captures the images and transmits them to the
UGV for processing, then receives the output from the mid-
level controllers and translates them into the required format
for the Pixhawk to execute.

B. Environment

Our test environments are meant to replicate a standard
indoor office environment (see Fig. 5). We used one area
that consisted of two large conference rooms, an outdoor
patio area, and a few hallways with small offices. The
other test area was comprised of a cluster of cubicles,
boxes, equipment, and office furniture in half the area,
while the other half is a set of featureless hallways. For
our experiments, we restricted the UGV to operate only in
the room portions of the environments by placing obstacles
at each hallway entrance. The UAV was free to operate
throughout the map with different areas performing better
with different controllers. For example, since the hallways
had no features and the UGV was unable to enter them,
the GOTOLANDMARK controllers were not usable (for both
static and dynamic landmarks). On the other hand, the
crowded, erratically configured cubicle area did not feature
any navigable straight walls and thus required cooperation
between the UGV and UAV in order to successfully navigate
to a desired location. In addition, since the UAV only had
a very limited set of available controllers, it required the
collaborative localization capability to get to any goal that
was not located at the terminus of a wall.

(a) Conference Rooms and Patio (b) Cubicles and Hallways

Fig. 5: Maps of two testing environments.

C. Test Setup

To test our planner’s performance in real-world scenarios,
we randomly selected start and goal points throughout the
environment for the UAV and start points only for the UGV.
This allowed us to construct plans where the two robots
started near each other but allowed the UAV to operate
independently if required. The planner would allow the UGV
to move as necessary to support the UAV motion to get to
the goal.

The cost function used for these experiments was propor-
tional to the time and distance traversed for each motion.

D. Test Results

Overall the system is able to generate plans that would
not be solvable without using the controller-based motion



TABLE I: Experimental Results Conference Room Fig. 5a

Algorithm Planning Time (s) Num. Iter. Num. Expansions Path Cost Final Eps. Success Rate (%)
Avg. Std. Dev. Min Max Avg. Avg. Avg. Avg. @3min

PAD MR SLC 20.05 22.00 1.19 91.58 1.59 7348 24401 1.36 100
Full-D ARA? MR SLC 9.37 20.32 0.08 128.04 n/a 1385 23960 1.30 82

TABLE II: Experimental Results Cubicles Fig. 5b

Algorithm Planning Time (s) Num. Iter. Num. Expansions Path Cost Final Eps. Success Rate (%)
Avg. Std. Dev. Min Max Avg. Avg. Avg. Avg. @3min

PAD MR SLC 12.74 9.95 1.19 40.00 1.26 2736 36112 1.31 100
Full-D ARA? MR SLC 12.33 22.23 0.01 88.65 n/a 960 38083 1.38 38

primitives due to the lack of an adequate localization capa-
bility of the UAV operating alone. In addition, the adaptive
dimensionality planner played a key role in making these
plans computationally feasible given the high dimension-
ality of the combined state space. Planning times for 100
randomly generated start-goal pairs on two different indoor
environments are shown in Table I and Table II (50 on each).
The performance of our collaborative localization algorithm
(labeled PAD MR SLC) is compared against a full six-
dimensional ARA? algorithm running on the multi-robot
SLC. The results shown in Table I and Table II are averaged
over the scenarios that both planners were able to solve
successfully. Each planner was timed until it reached the
first solution, plus up to 5s to improve the solution quality.
The full-dimensional ARA? planner was unable to solve the
40 most difficult scenarios within 3 minutes, which was
considered a planning failure, whereas the maximum time
that our approach took to solve a scenario was 125.3s (for
a case that the full-dimensional planner was unable to find
a solution). In several of the cases that the full-dimensional
planner was able to solve, the heuristic allowed it to find the
optimal solution in very few expansions. For environments
where this is common, the overhead from our adaptive
dimensionality approach may not be beneficial. However,
for harder problems, the adaptive dimensionality extension
allows solutions to be found when the full-dimensional
planner is unable to find any solution within the alloted time.
As can be seen, using adaptive dimensionality reduction we
are able to produce solutions for even the hardest problems
while still remaining competetive in time and solution quality
for the easier problems.

An example of a generated plan is shown in Fig. 6 and
in our attached video5. This particular plan initially has both
robots near each other in the open portion of the operating
area. The UAV is tasked to move to a location at the end
of one of the hallways, then to return the cubicles and land
(the second portion is not shown in the figure for clarity).
Other testing used random start and goal locations on the
two environments shown in Fig. 5.

We did discover that our existing controllers were insuf-
ficient to reliably pass through a standard doorway (which
provides less than 20cm clearance total around our UAV)

5https://youtu.be/BVhR-Bv09q0

Fig. 6: Portion of plan showing the UAV starting at the lower left
and using GOTOLANDMARKDYN motions to get into the hallway.
Once in the hallway, the UAV uses WALLFOLLOWING and metric
motions to reach the goal position in the upper right. The UGV
is the magenta rectangle near the UAV start. The start and goal
configurations have a blue circle around them.

and this remains an area for further development.

VI. CONCLUSION

State lattice-based planning using controller-based motion
primitives combined with an adaptive dimensionality planner
provides a method of solving complex, high-dimensional
navigation problems that cannot be solved using typical ex-
isting methods. This is due to the computation requirements
of planning in a high-dimensional space and the inherently
limiting assumption that most planners make on the existence
of sufficient localization ability of the target robots.

In our future work we will explore the limits of scalability
for this algorithm. While our setup works well with two
robots, additional work is required to determine how well,
in terms of planning times, communications constraints, etc.,
this approach will work for larger teams. In addition, we
are also looking at relaxing the known map requirement to
incorporate the ability to learn the map in an online fashion.
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