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Abstract—In many robotic domains such as flexible auto-
mated manufacturing or personal assistance, a fundamental
perception task is that of identifying and localizing objects
whose 3D models are known. Canonical approaches to this
problem include discriminative methods that find correspon-
dences between feature descriptors computed over the model
and observed data. While these methods have been employed
successfully, they can be unreliable when the feature descriptors
fail to capture variations in observed data; a classic cause
being occlusion. As a step towards deliberative reasoning, we
present PERCH: PErception via SeaRCH, an algorithm that
seeks to find the best explanation of the observed sensor data
by hypothesizing possible scenes in a generative fashion. Our
contributions are: i) formulating the multi-object recognition
and localization task as an optimization problem over the
space of hypothesized scenes, ii) exploiting structure in the
optimization to cast it as a combinatorial search problem on
what we call the Monotone Scene Generation Tree, and iii)
leveraging parallelization and recent advances in multi-heuristic
search in making combinatorial search tractable. We prove that
our system can guaranteedly produce the best explanation of the
scene under the chosen cost function, and validate our claims on
real world RGB-D test data. Our experimental results show that
we can identify and localize objects under heavy occlusion—
cases where state-of-the-art methods struggle.

I. INTRODUCTION

A ubiquitous robot perception task is that of identifying
and localizing objects whose 3D models are known ahead
of time: examples include robots operating in flexible au-
tomation factory settings, and domestic robots manipulating
common household objects. Traditional methods for identi-
fying and localizing objects rely on a two-step procedure:
i) precompute a set of feature descriptors on the 3D models
and match them to observed features, and ii) estimate the
rigid transform between the set of found correspondences.
In more recent methods, global descriptors jointly encoding
object pose and viewpoint information are computed over
different training instances, and a lookup is performed at
test time. While such discriminative methods have been
used successfully, they are limited by the ability of the
feature descriptors to capture variations in observed data.
For illustration, consider a scene with two objects, one
almost completely occluding the other. Methods that employ
feature correspondence matching fare poorly as key feature
descriptors could be lost due to occlusion (Fig. 1), whereas
learning-based methods could suffer as they might have not
seen a similar training instance where the object is only
partially visible.
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Fig. 1: Identifying and localizing the pose of multiple objects
simultaneously is challenging due to inter-object occlusions. (a) A
scene showing multiple chess pieces occluding each other. (b) Top:
The depth image from a Kinect sensor, colored by range. Bottom:
The best-match depth image produced by our algorithm PERCH
through searching over possible poses of the chess pieces.

We introduce an orthogonal approach to tackle this prob-
lem: Perception via Search (PERCH), which exploits the fact
that the full 6 DoF sensor pose is available for most robotic
systems. PERCH is a generative approach that attempts to
simulate or render the scene which best explains the observed
data. Our hypothesis is that if 3D models and sensor pose are
available, we could perform deliberative reasoning: “under
this configuration of objects in the scene for the given sensor
pose, we would expect to see only this specific portion of
that object”. The ability to reason deliberatively paves the
way for an exhaustive search over possible configurations of
objects.

While exhaustive search provides optimal solutions, it is
often impractical owing to the size of the state space that
grows exponentially with the number of objects in the scene.
A key insight in this work is that the exhaustive search
over possible scene configurations can be formulated as a
tree search problem for a specific choice of an ‘explanation
cost’. The formulation involves breaking down the scene
explanation cost into additive components over individual
objects in the scene, which in turn manifest as edge costs
in a tree called the Monotone Scene Generation Tree. This
allows us to use state-of-the-art heuristic search techniques
for determining the configuration of objects that best explains
the observed scene. We summarize our contributions below:

o Perception via Search (PERCH), an algorithm for si-
multaneously localizing multiple objects in 2.5D or
3D sensor data when 3D models of those objects are
available along with the camera pose.

o Formulating the multi-object localization problem as
the minimization of an ‘explanation cost’ that captures
the difference between the observed scene and the
hypothesized scene.



o Exploiting structure in the explanation cost to cast it
as a combinatorial search problem on a tree which
we call the Monotone Scene Generation Tree. This
alleviates the need to exhaustively generate/synthesize
every possible scene while still returning solutions are
that are provably optimal or bounded suboptimal.

o Incorporating parallelism in the search procedure,
thereby allowing the algorithm to scale with the avail-
ability of computation.

In our experiments, we show how PERCH can localize
objects even under heavy occlusion—a result which would
be hard to obtain without explicit deliberative reasoning.

II. RELATED WORK

While model-based recognition and pose estimation of
objects has been an active area of research for decades in
the computer vision community [1-3], the proliferation of
low-cost depth sensors such as the Microsoft Kinect has
introduced a plethora of opportunities and challenges. We
describe approaches in vogue for object recognition and lo-
calization from 3D sensor data, their limitations, inspirations
from early research in vision that motivate our work, and the
potential role of contemporary learning-based systems.

A. Local and Global 3D Feature Descriptors

Model-based object recognition and localization in the
present 3D era falls broadly under two approaches: local
and global recognition systems. The former class of algo-
rithms operate in a two step procedure: i) compute and find
correspondences between a set of local shape-preserving 3D
feature descriptors on the model and the observed scene and
ii) estimate the rigid transform between a set of geometrically
consistent correspondences. A final, optional and often used
step is to perform a fine-grained local optimization to align
the model to the scene and obtain the pose. Examples of local
3D feature descriptors range from Spin Images [4] to Fast
Point Feature Histograms (FPFH) [5], whereas final align-
ment procedures include Iterative Closest Point (ICP) [6] and
Bingham Procrustrean Alignment (BPA) [7]. The survey pa-
per by Aldoma et al. [8] provides a comprehensive overview
of other local approaches.

The second, global recognition systems employ a single-
shot process for identifying object type and pose jointly.
Global feature descriptors encode the notion of an object
and capture shape and viewpoint information jointly in
the descriptor. These approaches employ a training phase
to build a library of global descriptors corresponding to
different observed instances (e.g., each object viewed from
different viewpoints) and attempt to match the descriptor
computed at observation time to the closest one in the
library. Additionally, global methods unlike the local ones,
require points in the observed scene to be segmented into
different clusters, so that descriptors can be computed on
each object cluster separately. Some of the global recognition
systems include Viewpoint Feature Histogram (VFH) [9],
Clustered Viewpoint Feature Histogram (CVFH) [10], OUR-
CVFH [11], Ensemble of Shape Functions (ESF) [12],

and Global Radius-based Surface Descriptors (GRSD) [13].
Other approaches to estimating object pose include local
voting schemes [14] or template matching [15] to first detect
objects, and then using global descriptor matching or ICP for
pose refinement.

Although both local and global feature-based approaches
have enjoyed popularity owing to their speed and intuitive
appeal, they suffer when used for identifying and localizing
multiple objects in the scene. The limitation is perhaps best
described by the following lines from the book by Stevens
and Beveridge [16]: “Searching for individual objects in
isolation precludes explicit reasoning about occlusion. Al-
though the absence of a model feature can be detected
(i.e., no corresponding data feature), the absence cannot be
explained (why is there no corresponding data feature?).
As the number of missing features increase, recognition
performance degrades”. Global verification [17, 18] and
filtering [19] approaches somewhat attempt to address the
occlusion problems faced by feature-based methods through
a joint optimization procedure over candidate object poses,
but are restricted by the fact that initial predictions for
object poses are provided by a system that does not model
occlusion. In this work, we aim to explicity reason about the
interactions between multiple objects in the observed data by
hypothesizing or rendering scenes, and using combinatorial
search to control the number of scenes generated.

B. Search and Rendering-based Approaches

The idea of using search to ‘explain’ scenes was popular in
the early years of 2D computer vision: Goad [20] promoted
the idea of treating feature matching between the observed
scene and 3D model as a constrained search while Lowe [21]
developed and implemented a viewpoint-constrained feature
matching system. Grimson [22] introduced the Interpretation
Tree to systematically search for geometrically-consistent
matches between scene and model features, while using
various heuristics to speed up search. Our work is also based
on a search system, but it differs from the aforementioned
works in that the search is over the space of full hy-
pothesized/rendered scenes and not feature correspondences.
In fact, our proposed algorithm does not employ feature
descriptors at all.

The philosophy of the Render, Match and Refine (RMR)
approach proposed by Stevens and Beveridge [23] motivates
our work. RMR explicitly models interaction between objects
by rendering the scene and uses occlusion data to inform
measurement of similarity between the rendered and ob-
served scenes. It then uses a global optimization procedure to
iteratively improve the rendered scene to match the observed
one. PERCH, our proposed algorithm, operates on a similar
philosophy but differs in several details. The ‘explanation
cost” we use to compare the rendered and observed scene
is based purely on 3D sensor data, as opposed to the 2D
edge-feature and per-pixel depth differences used in RMR
that make it vulnerable to offset errors between the rendered
and observed 2D scenes. Moreover, the explanation cost we
propose can be decomposed over the objects in the scene,



thereby obviating the need for exhaustive search over the
joint object poses.

Finally, an emerging trend for object recognition and pose
estimation in RGB-D data is the use of deep neural networks
trained on synthetic data generated using 3D models [24, 25].
As promising as deep learning methods are, they would re-
quire sufficient training data to capture invariances to multi-
object interaction and occlusion, the generation of which is
a combinatorial problem by itself. On the other hand, these
methods could be incorporated in PERCH as heuristics for
guiding deliberative search as discussed in Sec. IV-C.

III. PROBLEM FORMULATION

The problem we consider is that of localizing tabletop
objects in a point cloud or 2.5D data such as from a
Kinect sensor. The problem statement is as follows: given
3D models of N unique objects, a point cloud (I) of a scene
containing K > N objects (possibly containing replicates of
the NV unique objects), and the 6 DoF pose of the sensor, we
are required to find the 3 DoF pose (x,y, ) of each of the
K objects in the scene.

We make the following assumptions:

e The number (K) and type of objects in the scene
are known ahead of time (but not the correspondences
themselves).

« The objects in the scene vary only in position (z, y) and
yaw (6)—3 DoF, with respect to their 3D models.

o The input point cloud can be preprocessed (table plane,
background filtered etc.) such that the points in it only
belong to objects of interest.

« We have access to the intrinsic parameters of the sensor,
so that we can render scenes using the available 3D
models.

We specifically note that we do not make any assumptions
about the ability to ‘cluster’ points into different object
groups as is done by most global 3D object recognition
methods such as the Viewpoint Feature Histogram (VFH) [9].

A. Notation

Throughout the paper, we will use the following notation:

e O: An object state characterized by (ID,x,y,6), the
unique object ID, position and yaw.

o I: The input/observed point cloud from the depth sensor.

e R;: A point cloud generated by rendering a scene
containing objects O1,0s, ..., 0;.

e p: A point (z,y,2) in any point cloud.

e AR; = R; — R;_1, the point cloud containing points
in ; but not in Z;_;. In other words, the set of points
belonging to object O; that would be visible given the
presence of objects O1,03,...,0;_1.

e V(O;): The set of all points in the volume occupied
by object O;. When it is not possible to compute
this in closed form, this can be replaced by an ad-
missible/conservative approximation, for example, the
volume of an inscribed cylinder.

e V; = U/_,V(0;), the union of volumes occupied by
objects O1,03,...,0;.

Fig. 2: Ilustration showing the computation of the explanation cost.
The figure on the left shows the superposition of the observed
point cloud (in blue) and the rendered point cloud (in yellow) of a
cylindrical object. Object boundaries and volumes are shown merely
for illustration. The total explanation cost (see figure on the right)
is the number of unexplained points in the observed point cloud

(Jo) and the number of unexplained points in the rendered point
cloud (J,).

B. Explanation Cost Function

We formulate the problem of identifying and obtaining the
3 DoF poses of objects 01,04, ...,Ok as that of finding
the minimizer of the following ‘explanation cost’:

J(OlzK) - Jobserved(Ol:K) + Jrendered(Ol:K)

Jobserved(OlzK) = § ]l[p is unexplained by R
pel

Jrendered(OlzK) = Z ]l[p is unexplained by I]
pPERK
in which the indicator function 1y, is unexplained by ¢] for a
point cloud C' and point p is defined as follows:

1 if min,, f—pll >4
if minyec ||p’ - pl 0

]l[p is unexplained by C] — {0 otherwise

for some sensor noise threshold §. We will use the notation
J, and J,. to refer to the observed and rendered explanation
costs respectively.

The explanation cost essentially counts the number of
points in the observed scene that are not explained by the
rendered scene and the number of points in the rendered
scene that cannot be explained by the observed scene. While
it looks simplistic, the cost function forces the rendering of a
scene that as closely explains the observed scene as possible,
from both a ‘filled’ (occupied) and ‘empty’ (negative space)
perspective. Figure 2 illustrates the computation of the ‘ex-
planation cost’. Another interpretation for the explanation
cost is to treat it as an approximation of the difference
between the union volume and intersection volume of the
objects in the observed and rendered scenes.

In the ideal scenario where there is no noise in the
observed scene and where we have access to a perfect
renderer, we could do an exhaustive search over the joint
object poses to obtain a solution with zero cost. However, this
naive approach is a recipe for computational disaster: even
when we have only 3 objects in the scene and discretize our
positions to 100 grid locations and 10 different orientations,
we would have to synthesize/render 10° scenes to find
the global optimum. This immediately calls for a better
optimization scheme, which we derive next.



IV. PERCH: PERCEPTION VIA SEARCH
A. Monotone Scene Generation Tree

The crux of our algorithm exploits the insight that the
explanation cost function can be decomposed over the set of
objects in the scene. To see this, we first note that the ren-
dered scene containing K objects, Rx can be incrementally
constructed:

Rk = UiKzlARi s.t. Ri_1 CR;

where AR, = R; — R;_1 and Ry is assumed to be an
empty point cloud. The constraint R;_; C R; translates to
saying that the addition of a new object to the scene does not
‘occlude’ the existing scene, thereby guaranteeing that every
point in R;_; exists in R; as well. In other words, the number
of points in the rendered point cloud can only increase with
the addition of a new object. The above constraint implicity
assumes that the scene does not contain objects which can
simultaneously occlude an object and also be occluded by
another object, such as horseshoe-shaped objects'. Using the
above, we can write the rendered explanation cost as follows:

Jr = Z ]l[p is unexplained by I]
PERK
K
= Z E IL[p is unexplained by I] s.t. R,_1 CR;
i=1 peEAR;

We then similarly decompose the observed explanation cost:

Jo = § ]l[p is unexplained by Rk]

pel
K
= E H ]l[p is unexplained by AR;] st. Ry C Ry
pel i=1
K
= E E ]l[p is unexplained by AR;]
i=1 pe{INV(0;)}
+ E 11 is unexplained by Rx] st. Ri_1 CR;

pe{I-Vk}

With the above decompositions, we can re-write the over-
all optimization objective as:

S.t. Ri,1 Q Rl

K
J(O1k) => AT 2
i=1

K
= ZAJ} + AJZ s.t. R;_1 CR;
=1

where
IV SR T
pEAR;
AJé = Z ]l[p is unexplained by AR;] + reSiduaKi)
pe{INV(0;)}
residual(i) = Z[)E{I—VK} ]l[l) is unexplained by R | ifi = K
0 otherwise

'In theory, we could still handle such objects by decomposing them
into multiple surfaces that satisfy the non-occlusion constraint. We omit
the details for simplicity of explanation.

Fig. 3: Portion of a Monotone Scene Generation Tree (MSGT):
the root of the tree is the empty scene, and new objects are added
progressively as we traverse down the tree. Notice how child states
never introduce an object that occludes objects already in the parent
state. A counter-example (marked by the red cross) is also shown.
Any state on the K™ level of the tree is a goal state, and the task is
to find the one that has the lowest cost path from the root—marked
by a green bounding box in this example.

Equation 2 defines a pairwise-constrained optimization
problem, the constraint being that the assignment of the
i" object does not occlude the scene generated by the
assignment of the previous objects 1 through i —1. A natural
way to solve this problem is to construct a tree that satisifies
the required constraint, and assigns the object poses in a
sequential order. This is precisely our approach and the
resulting tree we construct is called the Monotone Scene
Generation Tree (MSGT), with ‘monotone’ emphasizing that
as we go down the tree, newly added objects cannot occlude
the scene generated thus far (Fig. 3). We note that while
a particular configuration of objects can be generated by
choosing different assignment orders, only one is sufficient to
retain as all those configurations have identical explanation
costs. Thus, we obtain a tree structure instead of a Directed
Acyclic Graph (DAG). Formally, any vertex/state in the
MSGT is a partial assignment of object states: s = {O1.;},
with 7 < K. For a MSGT state s with an assignment of j
objects, the implicit successor generation function and the
associated cost are defined as follows:

SUCC(S) = {S/‘Sl =sU Oj+1 A Rj - Rj+1} 3)
C(s,s') = AJITL = AJIHE 4 AJIH 4)

The root node of the tree s, 1S an empty state containing



Fig. 4: A subset of all the states ‘generated’ during the tree search for the scene in Fig. 3. This figure is best viewed with digital zoom.

no object assignments, while a goal state is any state s
that has an assignment for all objects. Given the MSGT
construction, the multi-object localization problem reduces
to that of finding the cheapest cost path in the tree from the
root state to any goal state.

B. Tree Search

Although we have replaced exhaustive search with tree
search, the problem still remains daunting owing to its
branching factor. Assume that we have d possible configura-
tions (x, y, ) for each object. Then, the worst case branching
factor for the MSGT is d¥ for all levels if we allow repetition
of objects in the scene, or d¥ =% for level i if there is no
repetition. Figure 4 illustrates this by showing a subset of
the states generated during the tree search corresponding to
the scene in Fig. 3. While heuristic search techniques such as
A* are often a good choice for such problems, they require
an admissible heuristic that provides a conservative estimate
of the remaining cost-to-go. Usual heuristic search methods
are limited by the following: i) admissible heuristics are
non-trivial to obtain for this problem, and ii) they cannot
support multiple heuristics, each of which could be useful
on their own—for e.g, different feature-based and learning-
based methods could serve as a heuristic each. Fortunately,
recent work in heuristic search [26, 27] allows us to use mul-
tiple, inadmissible heuristics to find solutions with bounded
suboptimality guarantees.

The particular multi-heuristic search we use is the Focal-
MHA* [26] algorithm, and its choice is motivated by the
fact that it permits the use of inadmissible heuristics that
have no connection with the cost structure of the problem.
This necessity will become clear in Sec. IV-C. At a high
level, Focal-MHA* operates much like A* search. Like A*,
it maintains a priority list of states ordered by an estimate of
the path cost through that state and repeatedly ‘expands’ the
most promising states until a goal is found. The difference
from A* is in that Focal-MHA* interleaves this process with
expansion of states chosen greedily by other heuristics [26].
Finally, Focal-MHA* guarantees that the solution found will
have a cost which is bounded by w - OPT, where OPT
is the optimal solution cost and w(> 1) is a user-chosen
suboptimality bound. Algorithm 1 shows an instantiation of
Focal-MHA* in the context of PERCH.

Algorithm 1 PERCH

Inputs:
The implicit MSGT construction (Eq. 3 and Eq. 4).
Suboptimality bound factor w (> 1).
1 admissible heuristic h and n arbitrary, possibly inadmissible,
heuristics A1, ho, ..., hn.

Output:
An assignment of object poses Sgoar With |Sgeal| = K whose cost
is within w - OPT.

1: procedure MAIN()
2: Sroot < {}

3: planner < Focal-MHA *-Planner()

4 planner.SETIMPLICITTREE(SUCC(s), c(s, "))
5: planner.SETSUBOPTIMALITYFACTOR (w)

6: planner.SETSTART S TATE ( Sroot )

7: planner.SETHEURISTICS (h, h1, . . ., hy)

8 planner. SETGOALCONDITION(return true if |s| = K)
9 {Sroots S1, 82, - - - , Sgoa } — planner. COMPUTEPATH()

0 return Sgoq

—

C. Heuristics

Focal-MHA* requires one admissible and multiple inad-
missible heuristics. Constructing an informative admissible
heuristic is non-trivial for this setting, and thus we set our
admissible heuristic to the trivial heuristic that returns O for
all states. We next describe our inadmissible heuristics.

The large branching factor of the MSGT might result in
the search ‘expanding’ or opening every node in a level
before moving on to the next. To guide the search towards
the goal, a natural heuristic would be a depth-first heuristic
that encourages expansion of states further down in the tree.
Consquently, our first inadmissible heuristic for Focal-MHA*
is the depth heuristic that returns the number of assignments
left to make:

hdepth(s) =K - ‘8‘

As a reminder, states with smaller heuristic values are
expanded ahead of those with larger values. Next, it would
be useful to encourage the search to expand states that have
maximum overlap with the observed point cloud I so far,
rather than states with little overlap with the observed scene.
Our second heuristic is therefore the overlap heuristic that



counts the number of points in I that do not fall within the
volume of assigned objects:

hovertap(s) = 11 = 3 Tpers)
pel

where j = |s| and Vj is the union of the volumes occupied
by the j assigned objects. Another interpretation for this
heuristic is the number of points in the observed scene that
are outside the space carved by objects assigned thus far.

While we use only the above two heuristics in this work,
we note that there is a possibility of using a wide class of
heuristics derived from feature and learning-based methods.
For instance, if an algorithm like VFH [9] produced a pose
estimate O;,j =1,2,..., K for each of the K objects in
the scene, then a heuristic for s with |s| = j could resemble

7_1 |0; — Ol]| for some appropriate choice of the norm.
More generally, the multi-heuristic approach we use provides
a framework to plug in various discriminative algorithms
each with their own strengths and weaknesses.

D. Theoretical Properties

PERCH inherits all the theoretical properties of Focal-
MHA* [26]. We state those here without proof:

Theorem 1: PERCH is complete with respect to the con-
struction of the graph, i.e, if a solution (feasible assignment
of all object poses) exists in the MSGT, it will be found.

Theorem 2: The returned solution has an explanation cost

which is no more than w times the cost of the best possible
solution under the chosen graph construction.
As a disclaimer, we note that bounded suboptimal solutions
with regard to the explanation cost do not translate to any
bounded suboptimal properties with respect to the true object
poses in the observed scene.

E. Implementation Details

1) Compensating for Discretization: The most compu-
tationally complex part of PERCH is that of generating
successor states for a given state in the MSGT. This in-
volves generating and rendering every state that contains
one more object than the number in the present state, in
every possible configuration. Several elements influence this
branching factor: the number of objects in the scene, the
chosen discretization for object poses, whether objects are
rotationally symmetric (in which case only (x,y) is of
interest) etc. In our implementation, we limit the complexity
by favoring coarse discretization and compensating with a
local alignment technique such as ICP [6]. Specifically, every
time we render a state with a new object, we take the
non-occluded portion and perform an ICP alignment in the
local vicinity of the observed point cloud. This allows us
to obtain accurate pose estimates while retaining a coarse
discretization. We do note that the underlying MSGT now
becomes a function of the observed point cloud due to the
ICP adjustment.

2) Parallelization: The generation of successor states is
an embarassingly parallel process. We exploit this in our
implementation by using multiple processes to generate
successors in parallel. Theoretically, with sufficient number

(b)

(@

Fig. 5: (a) A subset of the objects in the RGB-D occlusion dataset.
(b) An example scene from the dataset. (c) Another example from
the dataset and (d) the corresponding depth image (mapped to jet
color) obtained after preprocessing. In this example, portion of the
occluded glass is missing due to sensor noise, making it challenging
for methods that rely on segmenting the scene into cohesive object
point clouds.

of cores, the time to expand a state would simply be the time
to render a single scene.

V. EXPERIMENTS
A. Occlusion Dataset

To evaluate the performance of PERCH for multi-object
recognition and pose estimation in challenging scenarios
where objects could be occluding each other, we pick the
occlusion dataset described by Aldoma et al. [8] that contains
objects partially touching and occluding each other. The
dataset contains 3D CAD models of 36 common household
objects, and 23 RGB-D tabletop scenes with 82 object
instances in total. All scenes except one contain objects only
varying in translation and yaw, with some objects flipped
up-side down. Since PERCH is designed only for 3D pose
estimation, we drop the one non-compatible scene from the
dataset, and preprocess the 3D CAD models such that they
vary only in translation and yaw with respect to the ground
truth poses. Figure 5 shows some examples from the dataset.

B. PERCH Setup

Since PERCH requires that points in the scene only belong
to objects of interest, we first preprocess the scene to remove
the tabletop and background. Then, based on the RANSAC-
estimated table plane, we compute a transform that aligns
the point cloud from the camera frame to a gravity aligned
frame, to simplify construction of the MSGT. PERCH has
two parameters to set: the sensor noise threshold § for
determining whether a point is ‘explained’ (Eq. 1), and the
suboptimality factor w for the Focal-MHA* algorithm. In our
experiments, we set 4 to 3 mm to account for uncertainty in
the depth measurement from the Kinect sensor, as well as
inaccuracies in estimating the table height using RANSAC.
For the suboptimality factor w, we use a value of 3. While
this results in solutions that can be suboptimal by a factor
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Fig. 6: Number of objects whose poses were correctly classified by the baseline methods (BFw/oR, OUR-CVFH) and PERCH, for different

definitions of ‘correct pose’.

of upto 3, it greatly speeds up the search since computing
the optimal solution typically takes much more time [28]. For
Focal-MHA*, we use the two heuristics described in Sec. I'V-
C. Finally, for defining the MSGT we pick a discretization
resolution of 4 cm for both x and y and 22.5 degrees for
yaw. The adaptive ICP alignment (Sec. IV-E.1) is constrained
to find correspondences within 2 cm, which is half the
discretization resolution.

C. Baselines

Our first baseline is the OUR-CVFH global descrip-
tor [11], a state-of-the-art global descriptor designed to
be robust to occlusions. By clustering object surfaces into
separate smooth regions and computing descriptors for each
portion, OUR-CVFH can handle occlusions better than de-
scriptors such VFH and FPFH. Furthermore, it has the added
advantage of directly encoding the full pose of the object,
with no ambiguity in camera roll. We build the training
database by rendering 642 views of every 3D CAD model
from viewpoints sampled around the object. Then, for com-
puting the training descriptors we use moving least squares
to upsample every training view to a common resolution
followed by downsampling to the Kinect resolution of 3
mm as suggested in the OUR-CVFH paper [11]. Since the
number and type of models in the test scene is assumed to
be known for PERCH, we use the following pipeline for fair
comparison: for the K largest clusters in the test scene we
obtain the histogram distance to each of the models we know
that are in the scene. Then, we solve a min-cost matching
problem to assign a particular model (and associated pose)
to each cluster and obtain a feasible solution. Finally, we
constrain the full 6 DoF poses returned by OUR-CVFH to
vary only in translation and yaw and perform a local ICP
alignment for each object pose.

The second baseline is an ICP-based optimization one,
which we will refer to as Brute Force without Rendering
(BFw/oR). Here, we slide the 3D model of every object
in the scene over the observed point cloud (at the same
discretization used for PERCH), and perform a local ICP-
alignment at every step. The location (z,y, ) that has the
best ICP fitness score is chosen as the final pose for that
model and made unavailable for other objects that have not
yet been considered. Since the order in which the models
are chosen for sliding can influence the solution, we try all
permutations of the ordering (K'!) and take the overall best

Fig. 7: Examples showing the output of PERCH on the occlusion
dataset. Left: RGB-D scenes in the dataset. Middle: Depth images
of the corresponding input RGB-D scenes, Right: The depth image
reconstructed by PERCH through rendering object poses.

solution based on the total ICP fitness score.

D. Evaluation

To evaluate the accuracy of object localization, we use
the following criterion: a predicted pose (x,y,f) for an
object is considered correct if ||(z,y) — (ZTuue, Yirue) |2 < At
and SHORTESTANGULARDIFFERENCE (0, Oye) < Af. We
then compute the number of correct poses produced by
each method for different combinations of At and A6.
Figure 6 compares the performance of PERCH with BFw/oR
and OUR-CVFH. Immediately obvious is the significant
performance of PERCH over the baseline methods for At =
0.01m. PERCH is able to correctly estimate the pose of over
20 objects with translation error under 1 cm and rotation
error under 5 degrees. While the baseline methods have
comparable recall for higher thresholds, they are unable to
provide as many precise poses as PERCH does. Further,
PERCH consistently dominates the baseline methods for all
definition of ‘correct pose’. Among all methods, BFw/oR
performs the worst. This is mainly due to the fact that it
uses the point cloud corresponding to the complete object
model for ICP refinement, rather than the point cloud cor-
responding to the unoccluded portion of the object. Again,
this showcases the necessity to explicity reason about self-
occlusions as well as inter-object occlusions.



The last column of the histogram in Fig. 6¢ (corresponding
to At = 0.1, A = 180) is essentially a measure of
recognition alone—PERCH can correctly identify 69 of the
80 object instances, where ‘identified’ is defined as obtaining
a translation error under 10 cm. Figure 7 shows some qual-
itative examples of PERCH’s peformance on the occlusion
dataset. Further examples and illustrations are provided in
the supplementary video.

E. Computation Time and Scalability

Unlike global descriptor approaches such as OUR-CVFH
which require an elaborate training phase to build a his-
togram library, PERCH does not require any precomputa-
tion. Consequently, the run time cost is high owing to the
numerous scenes that need to be rendered. However, as
mentioned earlier, the parallel nature of the problem and
the easy availability of cluster computing makes this less
daunting. For our experiments, we used the MPI framework
to parallelize the implementation and ran the tests on a
cluster of 2 Amazon AWS m4.10x machines, each having
a 40-core virtual CPU. For each scene, we used a maximum
time limit of 15 minutes and took the best solution obtained
within that time. Overall, the mean planning time was 6.5
minutes, and the mean number of hypotheses rendered (i.e,
states generated) was 15564.

Finally, to demonstrate that PERCH can be used for scenes
containing several objects, we conducted a test on a chess-
board scene (Fig. 1a). We captured a Kinect depth image
of the scene containing 12 pieces, of which 6 are unique
and 4 are rotationally symmetric. We ran PERCH with
suboptimality bound factor w = 15 and sensor resolution
6 = 7.5 mm, and took the best solution found within a time
limit of 20 minutes. The solution found (i.e., the depth image
corresponding to the goal state) is shown in Fig. 1b.

VI. CONCLUSIONS

In his lecture on computer heuristics in 1985 [29], Richard
Feynman notes that if one had access to all the generative pa-
rameters of a scene (lighting, model etc.), one could possibly
generate every single scene and take the best match to the
observed data. We presented PERCH as a first step towards
this deliberative reasoning. The key contributions were the
formulation of multi-object recognition and localization as
an optimization problem and designing an efficient combi-
natorial search algorithm for the same. We demonstrated how
PERCH can robustly localize objects under occlusion, and
handle scenes containing several objects.

While our results look promising on the accuracy front,
much work remains to be done in making the algorithm
suitable for real-time use. Our future work involves exploring
optimizations and heuristics for the search to obtain faster
yet high quality solutions. Specifically, we are interested in
leveraging state-of-the-art discriminative learning to provide
guidance for the search. Other directions include general-
izing PERCH to a variety of perception tasks that require
deliberative reasoning.
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