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In military scenarios, agents (i.e., troops of soldiers, con-
voys, and unmanned vehicles) may often have to traverse
environments with only a limited intelligence about the lo-
cations of adversaries. We study a particular instance of
this problem that we refer to as Path Clearance problem.
In Path Clearance, an agent has to navigate to its goal as
quickly as possible without being detected by an adversary.
When picking a path to follow, the agent does not know
the precise locations of adversaries. Instead, it has a list
of their possible locations, each associated with the prob-
ability of containing an adversary. Any of these locations
can be sensed by either the agent itself at close enough
distance (provided the agent has a capability of long-range
sensing) or by one of the scouts (if they are available). If
no adversary is present at a sensed location, the agent can
then safely traverse through it. Otherwise, the agent has
to take a detour.

The challenge in solving the Path Clearance problem is
to figure out what path should the agent pick, when should
the agent sense for adversaries and, finally, what adver-
saries should scouts sense in order to minimize the overall
cost such as time and risk before the agent reaches its goal.
This translates into a well-defined but challenging planning
with incomplete information problem.

The example in figure 1 demonstrates the path clearance
problem. In this example, there are no scouts. Figure 1(b)
shows the traversability map of the satellite image of a
3.5km by 3km area shown in figure 1(a). The traversabil-
ity map is obtained by converting the image into a dis-
cretized 2D map where each cell is of size 5 by 5 meters
and can either be traversable (shown in light grey color) or
not (shown in dark grey color). The large circles (e.g., A,
B, C, D, and others) are possible adversary locations and
their radii represent the sensor range of adversaries (100
meters in this example). The radii can vary from one loca-
tion to another. The locations can be specified either man-
ually or automatically in places such as narrow passages.
Each location also comes with a probability of containing
an adversary (50% for each location in this example): the
likelihood that the location contains an adversary. The
probabilities can vary from one location to another.

The path the agent follows may change any time the
agent senses a possible adversary location (the sensor range
of the agent is 105 meters in our example). A planner,
therefore, needs to reason about possible outcomes of sens-
ing and generate a plan (policy) that dictates which path
the agent should take as a function of the outcome of

(a) 3.5 by 3.0 km satellite image (b) traversability map

Fig. 1. Path Clearance without scouts

each sensing. For the agent to act efficiently (on average),
the generated policy should minimize the expected cost
such as traversal distance. Unfortunately, such planning
problem falls into the category of planning with incom-
plete information about the environment and with sensing
and more generally falls into a broader category of plan-
ning for Partially Observable Markov Decision Processes
(POMDPs) [4]. Planning optimally for POMDPs, in gen-
eral, and planning with incomplete information and with
sensing, in particular, is known to be intractable [16], [2].
In addition, the size of a typical environment is several kilo-
meters wide while its traversability is highly non-uniform
making the size of the problem large and cost function com-
plex. Finally, the Path Clearance problem becomes even
more challenging to solve when there are multiple scouts
available. Planning in this case involves both large-scale
planning under uncertainty as well as coordination of mul-
tiple scouts.

This article presents a survey of our work on scalable
and suitable for real-time use approaches to solving the
Path Clearance problem. In particular, in the first part
of the article, we show that the Path Clearance problem
exhibits clear preferences on uncertainty. It turns out that
these clear preferences can be used to develop an efficient
algorithm, called PPCP (Probabilistic Planning with Clear
Preferences) [14]. The algorithm is anytime, converges to
an optimal solution under certain conditions and scales well
to large-scale problems. We briefly describe the PPCP al-
gorithm and show how it can be used to solve the Path
Clearance problem when no scouts are present [12]. In the
second part of the article, we show several strategies for
how to use the PPCP algorithm in case multiple scouting
UAVs are available [10], [13]. The experimental analysis
shows that planning with PPCP results in a substantially
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(a) planned path (b) actual path of the agent

Fig. 2. Solving the Path Clearance problem with freespace assump-
tion

smaller execution cost than when ignoring uncertainty, and
employing scouts can decrease this execution cost even fur-
ther.

Related Research

The Path Clearance problem is closely related to the
problem of planning for a robot navigating in a partially-
known (or unknown) environment: the robot needs to reach
its goal but it is initially uncertain about the traversabil-
ity of some (or all) of the areas of the environment. The
difference is that in the path clearance problem, detecting
an adversary blocks a large area resulting in a long detour.
An adversary location has also a tendency to be placed in
such places that it blocks the whole path and the agent
has to backup and choose a totally different route. As a
result, the detours can be much costlier than in the case
of navigation in a partially-known environment, even when
the amount of uncertainty is much less. Finally, there may
also be penalty for discovering an adversary by the agent,
because it involves approaching the adversary and therefore
increases the risk of being discovered itself. Nevertheless,
approaches to planning for a robot navigating a partially-
known environment are also applicable to planning for the
Path Clearance problem.

Assumptive planning. To avoid the computational
complexity, a robot operating in a partially-known envi-
ronment often performs assumptive planning [15], [9], [22].
In particular, it often just follows a shortest path under the
assumption that all unknown areas in the environment are
free unless the robot has already sensed them otherwise.
This is known as a freespace assumption [9]. The robot
follows such path until it either reaches its goal or senses
new information about the environment. In the latter case,
the robot re-computes and starts following a new shortest
path under the freespace assumption.

The freespace assumption is also applicable to the Path
Clearance problem when no scouts are present. The agent
can always plan a path under the assumption that no ad-
versary is present unless sensed otherwise. This makes
the Path Clearance problem a deterministic planning prob-
lem. It can therefore be solved efficiently. The fact that
the agent ignores the uncertainty about the adversaries,
however, means that it risks having to take long detours,
and the detours in the Path Clearance problem tend to

(a) generated plan (b) actual path of the agent

Fig. 3. Solving the Path Clearance problem with PPCP

be longer than in the problem of navigation in a partially-
known environment as we have just explained.

For example, figure 2(a) shows the path computed by the
agent that uses the freespace assumption. According to the
path, the agent tries to go through the possible adversary
location A (shown in figure 1(b)) as it is on the shortest
route to the goal. As the agent senses the location A,
however, it discovers that the adversary is present in there
(the circle becomes black after sensing). As a result, the
agent has to take a very long detour. Figure 2(b) shows
the actual path traversed by the agent before it reaches its
goal.

In order to avoid these situations, one may also try to
set a cost function that penalizes the traversal of possible
adversary locations. While it typically reduces the num-
ber of times the path requires the agent to try to traverse
through a possible adversary location, it still does not avoid
the situations with long detours, and moreover, may gen-
erate paths with long detours that are not even necessary.

To deal with this problem properly, the planner needs
to find a plan that minimizes the expected cost. Thus,
figure 3(a) shows the plan returned by PPCP after it con-
verged in about 30 seconds for our example. Every place
where the plan branches out corresponds to where the
agent senses a possible adversary location and chooses to go
through it if no adversary is detected, or take a detour oth-
erwise. In contrast to planning with freespace assumption,
the plan produced by PPCP makes the agent go through
the area on its left since there are a number of ways to get
to the goal there and therefore there is a high chance that
one of them will be available. The length of the actual path
traversed by the agent (figure 3(b)) is 4,123 meters while
the length of the path traversed by the agent that makes
the freespace assumption (figure 2(b)) is 4,922 meters.

Planning with Incomplete Information and Sens-
ing. Both planning for Path Clearance and planning for
a robot navigating a partially-known environment are in-
stances of planning with incomplete information about the
environment and with sensing and fall into a broader cat-
egory of planning for Partially Observable Markov De-
cision Processes (POMDPs) [4]. Planning optimally for
POMDPs, in general, and planning with incomplete infor-
mation and with sensing, in particular, is known to be in-
tractable [16], [2]. Various approximations techniques have
been recently proposed instead [5], [6], [1], [8], [18], [19],



3

[17], [21], [3], [24], [20].
The problem of planning for Path Clearance (as well as

navigation in partially-known environments) is a narrower
one than solving a general POMDP. For one, it assumes
that the only uncertainty is the uncertainty about the ac-
tual location of adversaries. There is no uncertainty in the
actions of the agent. It also assumes that sensing is per-
fect. We can therefore develop planning algorithms that
take advantage of these special properties.

Perhaps, the most relevant approach to planning with
incomplete information and sensing is the algorithm in [7],
developed specifically for the problem of robot navigation
in a partially-known terrain. Similarly to our definition
of clear preferences, their planner has taken advantage of
the idea that the cost of the plan if a cell is free can not
be larger than the cost of the plan if the cell is occupied.
Based on this idea, they proposed a clever planner that is
capable of finding optimal policies much faster than other
optimal approaches. It is not clear, however, how this ap-
proach can be generalized to the Path Clearance problem.
Most importantly, the approach to solving the Path Clear-
ance problem we present in this article avoids dealing with
the exponentially large belief state-spaces altogether. This
allows us to solve very efficiently and without running out
of memory large environments with a large number of ad-
versaries.

Path Clearance without Scouts

PPCP Algorithm

While in general, decision-theoretic planning that takes
into account the uncertainty about the environment is very
hard to solve, it turns out that many such problems exhibit
a special property: one can clearly identify beforehand the
best (called clearly preferred) values for the variables that
represent the unknowns in the environment. For example,
in the problem of navigation in partially-known environ-
ments, it is always preferred to find out that an initially
unknown location is traversable rather than not. In a very
similar problem of robot navigation in office-like environ-
ments with uncertainty about whether some doors are open
or not, it is always preferred to find out that a door is open.
The same property holds for the path clearance problem:
there are also clear preferences for the values of unknowns.
The unknowns are m binary variables, one for each of the
m possible adversary locations. The preference for each
of these variables is to have a value false: no adversary is
present.

Mathematically, clear preferences can be defined as fol-
lows. A clearly preferred value b (“best”) of an unknown
variable u is such a value that for any belief state X - a
state that includes the current state of the agent as well
as its current probability distribution over the values of
unknowns variables - and action a that senses (directly or
indirectly) the value of some unknown variable u, there ex-
ists a successor belief state X ′ at which the value of u is
known to be a clearly preferred value (i.e., u = b) and:

X ′ = argminY ∈succ(X,a)c(X, a, Y ) + v∗(Y ), (1)

c(X, a, Y ) is the cost of executing action a at state X and
ending up at state Y , and v∗(Y ) is the expected cost of exe-
cuting an optimal policy at the belief state Y . In the Path
Clearance problem, a belief state is composed of an x, y
position of the agent and m probability values, each rep-
resenting the probability of a possible adversary location
containing an adversary. Since sensing is assumed to be
perfect, each of these probabilities can either be an initial
probability of containing an adversary, or 0 (if sensing of
the location indicated no adversary), or 1 (if sensing of the
location indicated that an adversary was present). Every
time an agent senses some location u, a clearly preferred
value is for the location not to contain an adversary. The
corresponding successor belief state will have P (u = b) = 1
and will satisfy equation 1.

PPCP (Probabilistic Planning with Clear Prefer-
ences) [11] is a recently developed algorithm that scales
to large problems with a significant amount of uncertainty
by exploiting a prior knowledge of clear preferences. It con-
structs and refines until convergence a policy by running a
series of A*-like deterministic searches. By making a cer-
tain approximating assumption about the problem, PPCP
keeps the complexity of each search low and independent
of the amount of the missing information. Each search is
extremely fast, and running a series of fast low-dimensional
searches turns out to be much faster than solving the full
problem at once since the memory requirements are much
lower. While the assumption the algorithm makes does not
need to hold for the found policy to be valid, it is guaran-
teed to be optimal if the assumption holds. In the prob-
lem of robot navigation in a partially-known environment,
PPCP was also shown to nearly always return an opti-
mal policy in the environments small enough to be solved
with methods guaranteed to converge to an optimal solu-
tion [11].

Figure 4 shows a simple example of PPCP planning a
policy for a robot navigating in a partially-known environ-
ment. Initially, the robot is in cell A4 and its goal is cell
F4. The status of cells B5 and E4 (shaded in grey) is ini-
tially unknown to the robot. For each of these cells though,
the probability of containing an obstacle is 0.5. In this ex-
ample, we restrict the robot to move only in four compass
directions. Whenever the robot attempts to enter an un-
known cell, we assume that the robot moves towards the
cell, senses it and enters it if it is free and returns back
otherwise. The cost of each move is 1, the cost of mov-
ing towards an unknown cell, sensing it and then returning
back is 2. The goal of the planner is to construct a policy
that makes the robot reach the cell R = F4 with a minimal
expected cost. Figure 4(h) shows the policy generated by
PPCP. It specifies the path the robot should follow after
each outcome of sensing operation.

During each iteration PPCP assumes some configuration
of unknowns (unknown cells in this example) and performs
search in the corresponding deterministic graph. Thus, the
first search in figure 4 assumes that both unknown cells
are free and finds a path that goes straight to the goal
(figure 4(a)). (The shown g- and h-values are equivalent to
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iteration 1

(a) search for a path from (b) PPCP policy after update

[R = A4; E4 = u, B5 = u]

iteration 2

(c) search for a path from (d) PPCP policy after update

[R = D4; E4 = 1, B5 = u]

iteration 3

(e) search for a path from (f) PPCP policy after update

[R = A4; E4 = u, B5 = u]

. . . . . .
iteration 7

(g) search for a path from (h) final PPCP policy

[R = A4; E4 = u, B5 = u]

Fig. 4. Example of how PPCP operates

the g- and h-values maintained by the A* search.) PPCP
takes this path and uses it as an initial policy for the robot
(figure 4(b)). One of the actions on this policy, however,
is move east from cell D4. The current policy has only
computed a path from the preferred outcome state, the
one that corresponds to cell D4 being free. The state [R =
D4;E4 = 1, B5 = u], on the other hand, has not been
explored yet. The second search executed by PPCP, shown
in figure 4(c), explores this state by finding a path from it
to the goal. During this search cell E4 is assumed to be
blocked, same as in the state [R = D4;E4 = 1, B5 = u].
The found path is incorporated into the policy maintained
by PPCP (figure 4(d)).

In the third iteration, PPCP tries to find a path from
the start state to the goal again (figure 4(e)). Now, how-
ever, it no longer generates the same path as initially (fig-
ure 4(a)). The reason for this is that it has learned that
the cost of trying to traverse cell E4 is higher than what
it initially thought to be. The cost of the cheapest detour
in case cell E4 is blocked (found in figure 4(c)) is rather
high. Consequently, in the current iteration PPCP finds
another alternative policy that goes through cell B5. This

(a) the first policy (b) the second policy

(c) after 5 secs (d) after 15 secs

(e) after 30 secs (f) actual path of the agent
(PPCP converged)

Fig. 5. Applying PPCP to Path Clearance

now becomes the new policy in PPCP (figure 4(f)). This
policy, however, has an unexplored outcome state again,
namely, state [R = B4;E4 = u,B5 = 1]. This will become
the state to explore in the next iteration.

PPCP continues to iterate in this manner and, on the
7th iteration, converges to the final policy shown in fig-
ure 4(h). In this example it is optimal: it minimizes the
expected cost of reaching the goal. In general, PPCP is
guaranteed to converge to an optimal policy if it does not
require remembering the status of any cell the robot has
successfully entered (see [14] for more details).

Application of PPCP to Path Clearance

Figure 5 shows the application of PPCP to the path
clearance example in figure 1. Before the agent starts exe-
cuting any policy, PPCP plans for five seconds. Figure 5(a)
shows the very first policy produced by PPCP (in black
color). It is a single path to the goal, which in fact is ex-
actly the same as the path planned by planning with the
freespace assumption (figure 2(a)). PPCP produced this
path within few milliseconds by executing a single A*-like
deterministic search. At the next step, PPCP refines the
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(a) Typical group I environment (b) Typical group II environment

Fig. 6. The example of environments used in testing and the plans
generated by PPCP for each.

policy by executing a new search which determines the cost
of the detour the agent has to take if the first adversary lo-
cation on the found path contains an adversary. The result
is the new policy (figure 5(b)). PPCP continues in this
manner and at the end of five seconds allocated for plan-
ning, it generates the policy shown in figure 5(c). This is
the policy that is passed to the agent for execution. Each
fork in the policy is where the agent tries to sense an ad-
versary and chooses the corresponding branch.

Planning is interleaved with execution. Thus, while the
agent executes the plan, PPCP improves it relative to the
current position of the agent. Figure 5(d) shows the new
position of the agent (the agent travels at the speed of
1 meter per second) and the current policy generated by
PPCP after 15 seconds since the agent was given its goal.
Figure 5(e) shows the position of the agent and the pol-
icy PPCP has generated after 30 seconds. At this point,
PPCP has converged and no more refinement is necessary.
Note how the generated policy makes the agent go through
the area on its left since there are a number of ways to get
to the goal and therefore there is a high chance that one of
them will be available. Unlike the plan generated by plan-
ning under freespace assumption, the plan generated by
PPCP avoids going through location A. Figure 5(f) shows
the actual path traversed by the agent. It is 4,123 meters
long while the length of the trajectory traversed by the
agent that plans with freespace assumption (figure 2(b)) is
4,922 meters.

Experimental Study

In [14], we have compared planning with PPCP against
several optimal approaches to planning in belief state-
spaces. These experiments showed that, at least for the
problem of navigation in a partially-known environment,
PPCP returns optimal policies but does it orders of mag-
nitude faster than the alternative approaches. The exper-
iments have also shown that, in contrast to PPCP, the al-
ternative approaches do not scale to real-size environments.
The experiments in this section consider large-scale envi-
ronments with large number of possible adversaries. As
alternative to planning with PPCP, we therefore use plan-
ning with freespace assumption [9] which does scale to large
environments. In particular, in our experiments we com-
pared the cost of execution incurred by the agent planning

with PPCP with the cost of execution incurred by the agent
planning with freespace assumption.

We used randomly generated fractal environments that
are often used to model outdoor environments [23]. On top
of these fractal environments we superimposed a number of
randomly generated paths in between randomly generated
pairs of points. The paths were meant to simulate roads
through forests and valleys and that are usually present in
outdoor terrains. Figures 6(a,b) show typical environments
that were used in our experiments. The lighter colors rep-
resent more easily traversable areas. All environments were
of size 500 by 500 cells, with the size of each cell being 5
by 5 meters.

The test environments were split into two groups. Each
group contained 25 environments. For each environment
in the group I we set up 30 possible adversary locations
at randomly chosen coordinates but in the areas that were
traversable. Figure 6(a) shows a plan the PPCP algorithm
has generated after full convergence for one of the environ-
ments in group I. For each environment in the group II we
set up 10 possible adversary locations. The coordinates of
these locations, however, were chosen such as to maximize
the length of detours. This was meant to simulate the fact
that an adversary may often be set at a point that would
make the agent take a long detour. In other words, an
adversary is often set at a place that the agent is likely
to traverse. Thus, the environments in group II are more
challenging. Figure 6(b) shows a typical environment from
the group II together with the plan generated by PPCP.
The shown plan has about 95% probability of reaching the
goal (in other words, the agent executing the policy has
at most 5% chance of encountering an outcome for which
the plan had not been generated yet). In contrast to the
plan in figure 6(a), the plan for the environment in group
II is more complex - the detours are much longer - and it is
therefore harder to compute. For each possible adversary
location the probability of containing an adversary was set
at random to a value in between 0.1 and 0.9.

In all of the experiments, the agent was moving and was
given 5 seconds to plan while traversing 5 meter distance.
This amount of time was always sufficient for planning with
freespace assumption to generate a path. The PPCP plan-
ning, on the other hand, was interleaved with execution
as was shown in figure 5. Thus, neither of the approaches
required the agent to stop and wait for a plan to be gener-
ated.

Table I shows the overhead in the execution cost incurred
by the agent that planned with the freespace assumption
over the execution cost incurred by the agent that used
PPCP for planning. The rows freespace2 and freespace3
correspond to making the cost of going through a cell that
belongs to a possible adversary location twice and three
times higher than what it really is, respectively. One may
scale costs in this way in order to bias the paths generated
by the planner with freespace assumption away from going
through possible adversary locations. The results are av-
eraged over 8 runs for each of the 25 environments in each
group. For each run the true status of each adversary loca-
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Overhead in Execution Cost
Group I Group II Group I Group II

no penalty no penalty with penalty with penalty
freespace 5.4% 5.2% 35.4% 21.6%
freespace2 0.5% 4.9% 4.8% 17.0%
freespace3 2.1% 4.3% 0.0% 12.7%

TABLE I

The overhead in execution cost of navigating using planning with

freespace assumption over navigating using planning with PPCP

tion was generated at random according to the probability
having an adversary in there.

The figure shows that planning with PPCP results in
considerable execution cost savings. The savings for group
I environments were small only if biasing the freespace
planner was set to 2. The problem, however, is that the
biasing factor is dependent on the actual environment, the
way the adversaries are set up and the sensor range of an
adversary. Thus, the overhead of planning with freespace
for the group II environments is considerable across all bias
factors. In the last two columns we have introduced penalty
for discovering an adversary. It simulated the fact that the
agent runs the risk of being detected by an adversary when
it tries to sense it. In these experiments, the overhead
of planning with freespace assumption becomes very large.
Also, note that the best bias factor for freespace assump-
tion has now shifted to 3 indicating that it does depend
on the actual problem. Overall, the results indicate that
planning with PPCP can have significant benefits and do
not require any tuning.

Path Clearance with Scouts

We now present two strategies for employing scouts,
when available, in order to reduce the cost (e.g., time) it
takes for the agent to reach its goal. An optimal coordi-
nation of scouts would involve running PPCP in a joint
(agent and all scouts) state-space. The dimensionality of
this statespace, however, is too high - exponential in the
number of scouts - for keeping planning tractable. Instead
we propose two strategies for coordinating scouts, both
based on the idea of first running PPCP for the agent,
and then using the policy generated by PPCP to schedule
scouts. While these strategies are heuristics, they are sim-
ple, efficient, scalable to large number of scouts and can be
applied to heterogenous scouts. Experimental results prove
the benefits of these strategies. The first strategy is simpler
but not as effective as the second one. Both strategies are
equally efficient though.

Likelihood-Driven Use of Scouts

Because PPCP produces a policy for the agent, we can
evaluate the likelihood of any possible adversary location
being visited by the agent. The idea behind likelihood-
driven use of scouts is have scouts navigate to and sense
the locations that are most likely to be visited by the agent.

To be specific, suppose there are K scouts available. Our
approach is to first run PPCP to produce a policy for the
agent, as if there are no scouts available. That is, only
agent itself can sense for adversaries. Once we obtain the

policy for the agent, we find K possible adversary locations
that have the highest probability of being visited by one or
more paths on the policy. In other words, these are the
locations that PPCP assumes the agent will sense on one
of its branches in the policy. To select the ones that have
the highest probabilities of being visited by the agent, we
can perform a single pass over all the states in the policy in
topological order starting with the state of the agent. Dur-
ing this pass we can propagate the probability of the agent
visiting the state when following the policy according to
the probability distribution of the policy action outcomes.

Once we compute these K possible adversary locations,
we assign them to the nearest scouts. Each scout starts
traveling towards its assigned adversary location and per-
forms sensing when it reaches the location. While each
scout travels, the agent executes its policy. PPCP is also
being executed to improve the policy as we have described
previously. Every time the agent changes its policy onto the
policy generated by PPCP, it re-computes the K possible
adversary locations that scouts need to sense and re-assigns
them to the scouts. Also, every time one of the scouts per-
forms sensing, the agent updates its knowledge about the
adversaries, so that all the subsequent planning done by
PPCP can take this information into account. The agent
then re-computes the K possible adversary locations that
the scouts should sense.

Figure 7 shows the operation of the algorithm. There are
ten scouts available, shown by the smaller dots in a two-
row formation in figure 7(a). In this example, the scouts
are assumed to be aerial vehicles moving with the same
speed as the agent. The PPCP planner starts planning a
plan for the agent and after 30 seconds converges to the
final plan shown in figure 7(b). While the agent follows
the plan, the scouts are assigned to the possible adversary
locations that are most-likely to be visited by the agent. As
the figures show, at any point in time at most four scouts
are used because this is the maximum number of adversary
locations involved in the policy generated by PPCP.

The first locations that are being sensed are locations
B and C (figures 7(c,d)). In both of these locations, ad-
versaries were detected (the locations turned black). Once
this information is passed to the agent, PPCP re-computes
a plan. The new plan, as shown in figure 7(d), no longer
directs the agent towards the locations B and C since they
are already known to contain adversaries.

At the same time, one of the scouts flies towards the
location D and senses it. The location turns out to be
free of adversaries (figure 7(e)). Figure 7(f) shows the final
trajectory of the agent. The total distance traversed by the
agent is 3795 meters which is 328 meters shorter than in
case of no scouts (figure 5(f)).

Information Value-Driven Use of Scouts

The likelihood-driven use of scouts is simple, very fast,
and scales well to heterogeneous teams of scouts (e.g., a
mix of aerial and ground robots). It can, however, be very
greedy. In the example in figure 7 for instance, it was
clearly worthwhile to send a scout to sense the location A
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(a) initial configuration (b) plan after convergence
(30 secs)

(c) location B sensed (d) location C sensed
(adversary detected) (adversary detected)

(e) location D sensed (f) agent reaches its goal
(no adversary present)

Fig. 7. Path Clearance with PPCP planning and likelihood-driven
use of ten scouts

(the labels are shown in figure 1(b)). If it turned out to be
empty, then the path to the goal via this location would
have been the shortest possible route for the agent. The
approach we present in this section - information value-
driven use of scouts - is aimed at decreasing this greediness.

In brief, the approach can be summarized as the strategy
of sending the scouts to those possible adversary locations
that maximize the value of information which is defined
as the expected decrease in the cost incurred by the agent
before it reaches the goal less the cost of sensing. In other
words, the scouts are sent to sense those locations, the
knowledge about which would decrease the overall execu-
tion cost as much as possible. We don’t have the exact
values of the cost decreases - these would be very expen-
sive to compute. Instead, we use estimates for these values
computed as a by-product of running PPCP when planning
for the agent.

To be specific, in this strategy, the next possible adver-
sary location s to sense should be chosen such as to mini-
mize the expected cost of executing an optimal plan for the

agent given that the status of s is known, plus the expected
cost of sensing s. Mathematically, it can be expressed as:

s = argmins′E{c(π
∗
(s
′

is known)) + costofsensing(s
′
)}

In this equation, π∗(s′ is known) stands for the optimal
plan for the agent that takes into account the fact that the
status of s′ is known, c(π∗(s′ is known)) is the cost of exe-
cuting this plan. The expectation is taken over all possible
configurations of possible adversary locations including s′.
The equation can also be re-written as:

s = argmaxs′E{c(π
∗
)− c(π∗(s′ is known))− costofsensing(s′)} (2)

In this equation, π∗ stands for the optimal plan for the
agent that assumes that the status of all possible adversary
locations including s′ is unknown. In general, the expected
values of the quantities c(π∗) and c(π∗(s′ is known)) are
hard to compute since they require finding optimal poli-
cies. However, as explained previously, PPCP works by
initially considering an optimistic plan (all possible adver-
sary locations are free) and then using more and more
informative estimates on the policies. We can use this
property of PPCP to estimate the quantity E{c(π∗) −
c(π∗(s′ is known))} (details are in [13]).

The term E{costofsensing(s′)} can be computed as
the minimum expected cost of sensing s′ across all avail-
able scouts. After we compute an estimate of E{c(π∗) −
c(π∗(s′ is known))−costofsensing(s′)} for each s′, we pick
s′ that maximizes it and assign it to the scout which
minimized the term E{costofsensing(s′)}. In the experi-
ments, the scouts were helicopters and therefore the term
E{costofsensing(s′)} was computed as the time it takes
for a scout to reach the center of the location s′ which was
proportional to the Euclidean distance between the two.

Figure 8 shows the operation of information value-driven
use of scouts. Figure 8(a) shows the initial configuration.
It is the same environment with the same set of possible
adversary locations as in figure 7 with the only difference
that now there are five scouting helicopters (shown as small
dots, initially in a two-row formation). They are assigned
to the possible adversary locations selected according to
the information value-driven approach. Figure 8(c) shows
how some of the helicopters fly towards adversary locations
to sense them. Figure 8(d) shows that the location C turns
out to be free of adversaries, whereas a scout did detect an
adversary in the location B. The re-computed plan, also
shown in figure 8(d), directs the agent to go through the
location C.

The superiority of the information value-driven approach
in comparison to likelihood-driven approach is reflected in
the fact that scouts fly not only towards the adversary lo-
cations that are on the current plan of the agent, but also
towards other locations that may potentially result in a
faster route for the agent. One example that shows this is
that even though the plan for the agent in figure 8(d) does
not involve going through the location A, one of the heli-
copters is still flown to detect this location. If the location
A turns out to be free, the agent will be able to follow a
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(a) initial configuration (b) plan after convergence
(30 secs)

(c) scouting helicopters on (d) locations B and C sensed
mission (adversary detected in B)

(e) location A sensed (f) scout moves towards D

(g) location D sensed (h) agent reaches its goal

Fig. 8. Path Clearance with PPCP planning and information value-
driven use of five scouts

much faster route towards the goal by cutting through the
location A. This is shown in figure 8(e): the location A was
cleared and the new plan re-computed by PPCP makes the
agent go through it.

In a similar fashion, one of the helicopters is sent to sense
the location D even though it is also not on the plan that
the agent follows (figure 8(f)). After this location is cleared,
a faster route for the agent is re-computed by PPCP that
cuts through location D (figure 8(g)). Figure 8(h) shows

Group I Group II
cost overhead cost overhead

freespace, no scouts 5,602 8.9%(±2.6%) 4,595 14.2%(±3.8%)
PPCP, no scouts 5,351 4.1%(±1.8%) 4,405 10.9%(±3.6%)
PPCP, likelihood scouts 5,168 1.6%(±1.3%) 4,055 3.0%(±1.5%)
PPCP, info. value scouts 5,076 0.0%(±0.0%) 3,931 0.0%(±0.0%)

TABLE II

The speed of the scouts is the same as the speed of the agent. Numbers

in parentheses give 95% confidence intervals.

the final trajectory of the agent.

Experimental Study

The experiments presented in this section compare the
cost of execution incurred by the agent planning using
several approaches. The experiments were performed on
the same two groups of environments described previously
(shown in figure 6), with the exact same setup of experi-
ments. Once again, each group contained 25 environments.

Tables II and III show the execution costs incurred by
the agent that used different planning approaches. Table II
is for the case when the speed of the scouts was the same
as the speed of the agent, whereas table III gives results
for the case when the speed of scouts was four times faster
than that of the agent. In both scenarios, however, the
scouts are assumed to be aerial and therefore did not need
to avoid obstacles on the ground. In all the experiments,
there were 10 scouts.

In each of the tables, the first row corresponds to plan-
ning with freespace assumption and not utilizing scouts.
The agent itself did sensing for adversaries. The second
row corresponds to planning with PPCP but again with-
out utilizing scouts. The third row corresponds to plan-
ning with PPCP and using a likelihood-driven strategy for
scouts. Finally, the fourth row corresponds to planning
with PPCP and utilizing scouts according to the informa-
tion value-driven approach. Same as before, in all of the
experiments, the agent was given 5 seconds to plan while
traversing 5 meter distance.

The tables show execution costs, as well as the over-
head in execution cost when planning with different ap-
proaches relative to the execution cost when planning with
PPCP and using the information value-driven approach to
scheduling scouts (the last rows of the tables). Each entry
is an average over 8 runs for each of the 25 environments
in each group (200 samples total). For each run the true
status of each adversary location was generated at random
according to the probability having an adversary in there.

Table II shows that the overhead of not utilizing scouts
while planning with freespace assumption can be up to
14.2%. This overhead goes even higher if the speed of the
scouts is higher than the speed of the agent. The over-
head of not utilizing scouts while planning with PPCP is
also substantial (up to 10.9% when the speeds are the same
and up to 13.5% when the scouts move faster). The differ-
ence between the two approaches to utilizing scouts (the
last two rows in each table) is smaller. The execution cost
of the agent utilizing scouts according to likelihood-driven
approach can on average be up to 3.0% worse. While this



9

Group I Group II
cost overhead cost overhead

freespace, no scouts 5,601 12.1%(±2.8%) 4,595 16.8%(±3.9%)
PPCP, no scouts 5,349 7.6%(±2.6%) 4,405 13.5%(±3.8%)
PPCP, likelihood scouts 4,988 1.6%(±0.7%) 3,927 2.9%(±1.6%)
PPCP, info. value scouts 4,902 0.0%(±0.0%) 3,819 0.0%(±0.0%)

TABLE III

Scouts are four times faster than the agent. Numbers in parentheses give

95% confidence intervals.

overhead may not seem to be very large, the overall be-
havior of scouts following the information value-driven ap-
proach is much more intelligent, and on the environments
that were not randomly generated, such as the example
in figure 1, the overhead of the likelihood-driven approach
can be much higher. Unlike the likelihood-driven approach,
the information value-driven approach is capable of taking
advantage of the cases when sensing a possible adversary
location that is not on the current plan of the agent can
result in much faster route for the agent.

Conclusions

This article presented the techniques that we have re-
cently developed to address the Path Clearance problem.
Planning for Path Clearance is highly challenging since it
involves both large-scale planning under uncertainty as well
as coordination of multiple agents. As article describes
however, the Path Clearance problem exhibits clear pref-
erences on uncertainty. We have developed an efficient al-
gorithm, PPCP, that takes advantage of the existence of
clear preferences and can scale to large environments with
large number of adversaries. The algorithm is anytime,
converges to an optimal solution under certain conditions
and scales well to large-scale environments. The article
has also shown several strategies for how to use the PPCP
algorithm in case multiple scouts are available. The impor-
tant advantages of the presented strategies are that they
are simple, efficient, scale to large environments and scale
to large teams of heterogenous scouts. The experimental
results demonstrated the scalability of the approaches and
their benefits as compared to alternative approaches. In
the future, it is important to investigate strategies for co-
ordinating scouts using decentralized approaches and to de-
velop planning algorithms that can scale to more than one
non-scout agent (e.g., multiple ground troops and convoys
that need to reach their goals without being discovered by
adversaries).
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