Path Planning for Non-Circular Micro Aerial Vehicles in Constrained
Environments

Brian MacAllistert, Jonathan Butzket, Alex KushleerT, Harsh Pandeyi, Maxim Likhachev#

Abstract— Operating micro aerial vehicles (MAVs) outside of
the bounds of a rigidly controlled lab environment, specifically
one that is unstructured and contains unknown obstacles, poses
a number of challenges. One of these challenges is that of
quickly determining an optimal (or nearly so) path from the
MAVs current position to a designated goal state. Past work
in this area using full-size unmanned aerial vehicles (UAVs)
has predominantly been performed in benign environments.
However, due to their small size, MAVs are capable of operating
in indoor environments which are more cluttered. This requires
planners to account for the vehicle heading in addition to its
spatial position in order to successfully navigate. In addition,
due to the short flight times of MAVs along with the inherent
hazards of operating in close proximity to obstacles, we desire
the trajectories to be as cost-optimal as possible. Our approach
uses an anytime planner based on A* that performs a graph
search on a four-dimensional (4-D) (x,y,z,heading) lattice. This
allows for the generation of close-to-optimal trajectories based
on a set of precomputed motion primitives along with the
capability to provide trajectories in real-time allowing for on-
the-fly re-planning as new sensor data is received. We also ac-
count for arbitrary vehicle shapes, permitting the use of a non-
circular footprint during the planning process. By not using the
overly conservative circumscribed circle for collision checking,
we are capable of successfully finding optimal paths through
cluttered environments including those with narrow hallways.
Analytically, we show that our planner provides bounds on the
sub-optimality of the solution it finds. Experimentally, we show
that the planner can operate in real-time in both a simulated
and real-world cluttered environments.

I. INTRODUCTION

Within the past decade micro aerial vehicles (MAVs),
such as quadrotors (Fig. 1), have become an affordable
and commonly used research platform. With improved on-
board sensing and processing power, they are capable of
exploring terrain that would otherwise be unreachable by a
ground vehicle. Our efforts are focused on one of the many
challenges of operating MAVs in cluttered environments -
path planning.

Autonomous path planning and navigation has its own se-
ries of challenges that must be addressed. The first challenge
is due to the three-dimensional (3-D) nature of the world.
A planner must not only plan to go around obstacles, but
must anticipate having to go over or under them as well in

This work was partially sponsored by the DARPA grant D11AP00275 and
TATRC contract W81XWH-07-C-0043. Jonathan Butzke was supported by
the Department of Defense (DoD) through the National Defense Science &
Engineering Graduate Fellowship (NDSEG) Program

t Robotics Institute, Carnegie Mellon University, Pittsburgh,
PA, USA {bmaca, jbutzke, hpandey}@andrew .cmu.edu,
maxim@cs.cmu.edu

T GRASP Lab, University of Pennsylvania, Philadelphia, PA, USA
akushley@seas.upenn.edu

Fig. 1: Photo of a quadrotor used for testing. The long pole
extending out to the left holds a camera at the end.

order to find the optimal trajectory. The second challenge
is due to the fact that the MAV often does not initially
possess a full map of the environment and must re-plan as
new obstacles are detected or as the world differs from its
prior information. This leads to a requirement for real-time
re-planning, as opposed to the computation of a single plan.

Another aspect of planning to consider is how the planner
accounts for the shape of the vehicle. For MAVs that are
circular (or nearly so) planning for a single point to represent
the vehicle pose is both safe and arguably less complex than
using a full body pose. However, this approach fails to be
complete when the footprint of the robot is non-circular. For
example, if the footprint of the robot in question was long
and narrow, using the outer circumscribed circle for collision
checking could be overly conservative, disallowing trajecto-
ries down narrow hallways that the robot could physically
fit through. Our planner alleviates this issue by planning in
the three spatial dimensions x,y, z and in orientation about
the vertical axis 6 while performing collision checks on the
actual MAV’s footprint. By taking the footprint of the MAV

o
A9 4
oo
o

(a) Overhead

s R
(b) Actual Quadrotor

Fig. 2: Planning with orientation. By taking into account the
asymmetric footprint, the planner can reason about the camera
boom and avoid colliding with obstacles when moving in and back
out of this position.

into account, the planner is capable of getting closer to the
obstacles, as shown in Fig. 2.

For our experiments, we have built a small quadrotor
(Fig. 1) with on-board sensing and processing that is ca-
pable of flying through and mapping indoor environments
autonomously. We have also developed a motion planner that
is capable of returning close-to-optimal trajectories in real-
time for the given footprint of the MAV and have tested the
performance of this algorithm on the quadrotor navigating in
a partially known environment.

This paper begins with a discussion of related work in
Section II, followed by the algorithmic details of the planner
in Section III. We then discuss our results in both simulation,
in Section IV-B, and on an actual MAYV, in Section IV-C.

II. RELATED WORK

A wide variety of approaches to planning feasible tra-
jectories around obstacles in deterministic environments for
MAVs have been proposed. Common approaches involve
using potential fields or navigation functions to generate a
gradient followed by performing a gradient ascent (or de-
scent), constructing a graph covering the state space followed
by searching the graph for a feasible path, or building a path
from a subset of randomly sampled states

Navigation functions generate a gradient that directs the
MAYV away from obstacles and towards the goal. By carefully
constructing this gradient, local minima can be eliminated,
ensuring convergence to a goal state. For speed considera-
tions these can be implemented as hierarchical planners [1]
with both a local and global planning component. However,
since these methods do not evaluate the orientation of the
MAV while generating the gradient field for the global
planner they are restricted to using the circumscribed circle
of the vehicle as their footprint. This limitation means that
environments requiring traversal of narrow passages cannot
be completed. In addition, having two separate planners of
different dimensionality can lead to inconsistencies between
the two resulting in sub-optimal trajectories or failing to find
a solution when the two disagree.

Sampling-based approaches such as Rapidly-exploring
Random Tree (RRT) algorithms [2] and Probabilistic Road
Maps (PRM) [3] are frequently used for planning in high-
dimensional spaces. These planners sample a subset of the
configuration space and generate a trajectory from these
sampled points. Most of these approaches require a path
smoothing step after the planner has generated the original
path in order to get a usable, kinodynamically feasible
trajectory. For example, one of the best currently available
implementations provides several short-cutting options to
improve generated trajectories [4]. There have been efforts
applicable to MAV navigation that have attempted to avoid
this extra processing by constructing the search graph or tree
using smooth curves or motion primitives [S][6]. However,
due to the random nature of these algorithms sampling-
based approaches tend to produce paths that are highly sub-
optimal. This is especially pronounced for MAVs operating
in constrained environments where post-processing steps

cannot change the homotopic class of the paths. We show
this in the experimental analysis of this paper.

A recently introduced hybrid planning methodology com-
bines the speeds of the sampling-based planners with cost
minimization. RRT* and PRM* [7] provide guarantees on
optimality in addition to the guarantees on completeness
from their base algorithms both in the limit of the number
of samples. We show that for cluttered environments when
planning with an MAV footprint our algorithm provides
lower cost solutions for a given planning time.

Path planning approaches based on heuristic graph
searches such as A* have been popular for navigation but
have not been as widely used for planning MAV trajectories
due to the relatively high dimensionality of the planning
problem. An early method for generating collision free
trajectories in cluttered environments was to segment the
free space into intersecting spheres, then plan through this
network of spheres using A* [8]. This method had the
advantage of not requiring any additional collision checking
during the planning stage, and due to the reduced size of
the search graph was capable of quick planning times. The
drawback to this approach was that the complete map was
needed beforehand in order to perform the segmentation,
and by requiring a spherical footprint, valid trajectories were
pruned from the search graph.

To address the speed concerns of planning in a high-
dimensional space, two-phase planners first generate a coarse
global plan over the entire domain followed by higher fidelity
local plans in the vicinity of the MAV [9]. While these
methods help reduce planning times, the large discretization
of the global planner prevents them from taking an accurate
footprint of the MAV into account. While such a footprint
could be applied at the local planner level, it is necessarily
constrained by the overall trajectory of the global planner,

and thus would not be able to take advantage of narrow

passages. Additionally, as with the hierarchical navigation
functions previously discussed, these planners are prone to
producing suboptimal solutions in higher fidelity and may
even fail.

Our approach is a search-based algorithm that combats the
computational complexity issues using the following three
components:

o an anytime and incremental version of A*

« an informative heuristic that is very fast to compute

« alattice graph representation that compactly models the
planning problem

III. SEARCH-BASED PATH PLANNING FOR A MAV

Our approach to path planning for non-circular vehicles
is search-based. We make use of what is called a state
lattice [10] combined with the incremental and anytime
performance of a variant of A* to plan feasible trajectories.
The planner also makes use of an informative and well
optimized three-dimensional (z, y, z) breadth first search (3-
D BFS) heuristic to come up with solutions in significantly
less time.

Fig. 3: Simple 2-D example of motion primitives forming transitions
between states inside a state lattice.

A. State Lattice

A state lattice is a type of discretized search space that
adheres to nonholonomic motion planning constraints, such
as minimum turning radius, for graph search. In our approach
we plan in a four-dimensional state-space, in which each
state is a combination of its position in Euclidean space and
its yaw angle about the global z-axis. Transitions between
states are obtained using a combination of motion primitives.
Motion primitives can be thought of as short, dynamically
feasible path segments that are used as building blocks to
form paths of varying sizes and curves. Any motion primitive
can come before or after another as long as neither results
in a collision. Every motion primitive has a precomputed
cost of traversal. In addition, each motion primitive has a
user-defined weight. The product of traversal cost and weight
forms the motion primitive cost. We use weights to express
a user-defined preference for certain motions over others,
e.g., placing a higher penalty on the backwards motion to
preferentially move forwards (and thus keep our sensors
pointing ahead of us). A sketch of how motion primitives
form transitions between states in a two-dimensional plane
can be seen in Fig. 3.

Motion primitives play a significant role in planner com-
pleteness, path quality, and planning time. If a pair of start
and goal points inside the state space required a feasible
motion that could not be produced from a combination of
the set of available motion primitives, the planner would fail
to find a path between them. For example, the planner would
fail to find a path between two points if the solution required
a motion that rotated the MAV in-place and the given set
of motion primitives did not include any rotation-in-place
motions. In general, the more motion primitives that are

() (b)

Fig. 4: Examples of expansions using (a) Euclidean distance and
(b) Breadth-first search as the heuristic. Goal is near the top and
the start is inside the red (light gray) structure.

available to the planner, the more flexibility it has in finding
paths. It is important to consider that there is a trade-off in
the number of motion primitives that are used in the search
and the planning time, since the addition of each motion
primitive for a given state, increases the branching factor of
each state by one.

B. Graph Search

The motion planner makes use of a graph search algorithm
to generate trajectories using the previously described lattice.
The graph search used is a variant of A* called Anytime
Dynamic A* (AD*) [11]. Like A*, AD* makes use of an
informative heuristic to reduce planning times, and given
sufficient time will find the optimal solution with respect
to the graph representing the original planning problem. It is
also both an anytime and incremental variant of A*. As an
anytime variant it quickly computes a solution which has an
€ sub-optimal upper bound on solution cost: the cost of the
found solution is no more than e times the cost of an optimal
path in the graph. It then improves the solution together
with its sub-optimally bounded cost until either the planning
time runs out or a provably optimal solution is found. As an
incremental variant, AD* can repair a previous solution when
changes in edge costs occur, such as when new obstacles are
detected, which can be, in terms of computation, significantly
less expensive than computing a new solution from scratch.
To minimize the amount of re-computation required during
planning iterations, the planner works backward searching
out from the goal to the current robot pose. In this way only
the final nodes of the graph are changed as the robot moves
or the map is updated based on the latest sensor input.

C. Heuristic

The efficiency of a heuristic search algorithm such as
A* and in particular anytime variants such as AD* depends
heavily on the quality of the heuristic. A* without a heuristic
performs the same number of expansions as a Dijkstra search
(terminated as soon as the goal state is reached), but an
informative heuristic function can greatly reduce the number
of expansions by guiding the search in a promising direction.
The heuristic value must be an underestimate of the distance
from the robot’s current pose to any other state in question

(the heuristic estimates distances from the robot pose rather
than to the goal pose because the search itself is done
backwards). A common approach in path planning is to use
the Euclidean distance as the heuristic for a state. However,
this can be highly uninformative since it does not take
obstacles into account, potentially resulting in local minima.
Another alternative is to use a lower dimensional Dijkstra’s
search to calculate the cost from the robot pose to all states.
This approach eliminates the local minima problem, but is
substantially slower to compute, especially since it needs to
be done every time the MAV moves or the map is updated.
If we make the assumption (just for our heuristic) that all
edge costs are uniform, we can instead shift to a 3-D BFS
for our heuristic. This simplification allows us to use a first-
in first-out (FIFO) queue instead of a heap data structure
required for a Dijkstra search which significantly improves
performance. Prior to performing the BFS we expand all of
the obstacles by the inscribed radius of the MAV footprint.
This eliminates the need to evaluate states that the robot is
unable to occupy in any orientation, thus saving time without
compromising completeness.

For a simple case, shown in Fig. 4, where the search
must find a solution around a wall, the Euclidean heuristic
expands a large number of states near the wall, while the 3-D
BFS heuristic leads the search to expand states around the
wall, leading to less expansions overall. In contrast, a less
informative Euclidean distance heuristic requires the search
to expand a large ring of states around the goal before it finds
a solution. As such the A* search is able to find a solution
in significantly less time using the more informative BFS
heuristic than if it were to use a less informative Euclidean
distance heuristic.

A downside to a more informative heuristic typically is
longer computation times. A 3-D BFS for large environments
can be prohibitively expensive with representative times
being 1.96 seconds to compute a 3-D grid with 7.5 million
states. Upon examination, we can find several areas of
optimization in implementing a 3-D BFS for our domain.
One area of optimization is at the data structure level. A
typical BFS implementation requires a distance grid which
stores the distance of each cell from the origin. In a typical 3-
D BFS, the distance grid may be implemented as a 3-D array
- thus to access a given cell you must supply its X, y, and z
coordinates. This creates some overhead, as each access to
the 3-D array requires address computation. We optimize in
this area by storing all the coordinates as 1-D coordinates,
which allows us to use a 1-D array for the distance grid, thus
removing the overhead. Note that given any 3-D coordinates
(%, y, and z) and grid dimensions (width, height, and length),
we can convert the 3-D coordinates to 1-D coordinates by
the following formula: x + (y * width) + (z * width * height).

Then, we can change the x dimension by adding or
subtracting 1, we can change the y dimension by adding
or subtracting width, and we can change the z dimension
by adding or subtracting (width*height). This leads to the
second area of optimization, which is loop unrolling. In
a typical BFS implementation, there is an expansion loop

which examines each successor of the current cell and
decides whether or not to add it to the FIFO queue. Loop un-
rolling is a common optimization technique which removes
the overhead of having a loop. It is a simple matter to get the
coordinates of all 26 successors of a given cell (represented
by a 1-D coordinate), as it is easy to change any of its
dimensions by the computations described above.

One final area of optimization that we implement is
eliminating bounds checking by doing some preprocessing.
It can be expensive to make sure each successor cell falls
within the boundaries of the given grid. Bounds checking
can be eliminated entirely by adding another layer around the
perimeter of the grid (thereby increasing the number of cells
along each dimension by 2) and marking all of these cells to
be non-traversable. Thus whenever a successor beyond the
boundary is expanded, it will be in our new layer of cells
added and will be marked as non-traversable, and thus will
be safely discarded. These optimization techniques each lead
to significant increases in performance. Our results show that
we are now able to evaluate a grid of 7.5 million states in
0.13 seconds instead of the 1.96 seconds previously. The
additional memory requirements for our optimized BFS are
proportional to the size of the grid it searches through. For
a grid of size N3 where N is the number of cells along
a particular dimension, the optimized search would build a
larger grid of size (N + 2)3.

IV. EXPERIMENTAL RESULTS

In this section we evaluate the performance of our planner
and compare it against RRT- and RRT*-based planners.

A. Implementation

For both our simulations and for our actual robot ex-
periments we discretize the state space into 10cm cells for
x,y, and z and into 22.5° increments for #. Also, our planner
was given a simple set of motion primitives consisting of
turning in place in both directions, moving up or down in
altitude, and moving forward a short or long distance, and
moving backwards. The backward motion was assigned an
additional penalty so that the planner would preferentially
keep the front of the MAV aligned with the direction of
travel. This provided us with a set of 112 different motion
primitives per grid cell.

We use a 3-D footprint of the MAV for collision checking
for any given (x,vy, z, 8) of the MAV. Each motion primitive
has a set of finely spaced intermediate 4-D poses and each of
these must be checked to ensure that a given motion is valid
between two states. For each motion primitive, we optimize
collision checking for the footprint by precomputing the
set of all cells that correspond to the 3-D footprint being
moved along this motion primitive. Doing so prevents the
collision checker from having to re-compute this set during
planning and prevents it from checking the same cell twice
for a given motion primitive between two poses. This type
of optimization was also used in [12].

The cost of a transition between two states connected by
a single motion primitive is set to the product of the motion

(a) RRT™* trajectory.

(b) AD* trajectory.

Fig. 5: Trajectory (white line) generated by RRT*(a) and AD*(b). Red (gray) walls extend floor-to-ceiling, green (light gray) boxes extend
from the floor to a random height. Blue (dark gray) beams are placed at varying heights and do not intersect the floor or ceiling. Therefore,
whenever the path goes over an obstacle it means that the quadrotor flies above the obstacle.

primitive cost, the maximum cost of the cells it traverses
over, and the deviation from the desired height. Cell costs for
our approach were either one for unoccupied cells or infinity
for occupied or padded cells. We prefer that the MAV follows
a path at a desired height. Therefore, every vertical motion
that deviates from this height is penalized by the difference.
Such a cost is thresholded such that plans that do require
the helicopter to deviate from the desired height, such as
moving above a high wall, are not too costly.

B. Simulation

1) Setup: We simulated our approach by randomly gen-
erating 100 maps at each of two different sizes: (250 x
250 x 30) cells and (500 x 500 x 30) cells. These maps
were then populated with randomly placed obstacles such
that approximately 20 percent of the volume of each map
was occupied, e.g., Fig. 5. The obstacles generated for those
maps were impassable floor to ceiling walls, boxes projecting
from the floor up to a random height, and fixed width beams
mounted at random elevations. The sizes of these obstacles
were scaled to maintain a constant ratio with respect to the
map dimensions.

Two kinds of experiments were performed for each of the
planners on each of the maps. In the first experiment each
planner is given the complete map of the environment and is
tasked to compute a single plan from a start position in the
bottom right corner of the map to a goal position in the upper
left corner of the map. Each planner was given 10 seconds
to come up with a plan. If the planner was unable to find a
plan within 10 seconds, it was counted as a failure.

The second experiment was similar to the first except the
map was not provided beforehand. In this way the MAV
discovered obstacles through its mounted horizontal and
vertical scanning LIDAR sensors within a 30 cell distance
as it moved towards the goal, forcing it to re-plan frequently
along the way. For this experiment data was logged as
the quadrotor moved from its start position in one corner

to the goal position in the diagonally opposite corner. To
reduce variance in simulation results, the same map and pose
information that was used by our planner at each search
episode was also provided to the other planners. In cases
where a planner was unable to find a solution within a second
for a specific episode, it was counted as a failure. It should
be noted that since RRT and RRT* are not dynamic planners,
they would start from scratch every time the MAV observes
new obstacles or moves.

All three planners used the same cost function and col-
lision checking approach presented in Section IV-A. Ad-
ditionally, the RRT* planner was also given access to the
3-D BFS heuristic. This heuristic was used to prune the
states that cannot improve the current solution. For RRT and
RRT* collisions were checked between sampled states every
Scm of translation and for every 22.5° of rotation. This is
sparse considering that intermediate positions within motion
primitives in our approach were more finely discretized. We
also post-processed solutions produced by both randomized
methods with a short-cutter between sampled vertices to
improve path quality in terms of cost.

2) Results: Results for the first experiment can be seen
in Table I. The values shown are the average values for
all planning episodes for each map size, along with the
percentage of plans that were failures. Our approach found
an initial solution in a comparable time to both randomized
methods but was able to find one with lower cost on average.
Our approach was also able to provide the best solution on
average at the end of the 10 second planning time. Between
different sized maps solution quality and path length nearly
double for all methods, but the initial planning time for
our approach did not grow as significantly compared to the
other methods. Fig. 5 shows an example of the generated
trajectories from RRT* and our approach in which both
planners were given the same start/goal pair and map.

TABLE I: Results from planning with full map

Map Planner Initial Plan Time First Solution Cost Final Solution Cost Final Path Length Percent
Avg. (s) Std. Dev. Avg. Std. Dev. Avg. Std. Dev. Avg.(m) Std. Dev. (m) Failure
AD* 0.17 0.73 44568 6844 32301 5220 43.77 5.74 0
Small RRT* 1.09 1.24 58880 12894 40590 4985 54.46 8.64 2
RRT 0.26 0.34 89129 25101 n/a n/a 87.35 19.76 0
AD* 0.16 0.50 81659 14485 61696 6026 88.14 7.44 0
Large RRT* 4.28 2.74 99531 15736 85366 12421 118.08 15.50 28
RRT 0.66 0.60 144045 37098 n/a n/a 146.87 23.20 2
TABLE II: Results from planning with unknown map
Ma Planner Initial Plan Time First Solution Cost Final Solution Cost Final Path Length Percent
P Avg. (s) Std. Dev. Avg. Std. Dev. Avg. Std. Dev. Avg.(m) Std. Dev. (m) Failure
AD* 0.05 0.08 21832 10116 17621 8915 24.79 12.05 2
Small RRT* 0.25 0.25 34091 16865 25827 13158 33.56 15.38 33
RRT 0.09 0.15 41349 24033 n/a n/a 41.16 20.41 16
AD* 0.08 0.10 38137 16800 34497 15712 49.69 23.52 4
Large RRT* 0.38 0.24 56087 26754 44914 20919 59.49 25.23 45
RRT 0.17 0.21 67319 39420 n/a n/a 69.06 31.60 24

Our approach was able to provide initial plans slightly
faster than the randomized methods, which can be attributed
to the difficulties randomized methods have with cluttered
environments and narrow passageways. This is due to the
complete randomness of choosing states without taking into
consideration the surrounding environment or restrictions of
the system. Cluttering an environment reduces the set of all
valid paths and as the clutter increases, the ratio between the
number of valid paths over hypothetical paths decreases.

The randomized methods must check all cells of a foot-
print at a given angle every 5cm along a trajectory between
two states, which results in re-checking cells that have al-
ready been checked for collision. Because our approach uses
precomputed motion primitives, we never have to recheck a
cell more than once for collision as the cells that a motion
would collide with are predetermined.

Results for the second experiment can be seen in Table II.
The averages reported are over all valid planning episodes,
which do not include failed plans. The percentage of failed
plans is calculated over all planning episodes. As with
experiment 1, our approach has comparable planning times
but significantly lower initial and final solution costs for the
same reasons.

C. Actual Robot

1) Setup: We performed experiments using a custom built
quadrotor with on-board sensing and processing as shown in
Fig. 1. For sensing the quadrotor is equipped with an IMU
and two LIDAR sensors. One LIDAR sensor is mounted on
top of the quadrotor to provide a horizontal scan up to a
maximum range of 30m. The second LIDAR is attached to
a panning servo to provide a vertical scan with a maximum
range of 5Sm. Although not used for path-planning, the
quadrotor was also equipped with a web-cam attached to
a long rod extending forward approximately 90cm from the
center of the chassis. On-board computations are performed
on an attached Mac-mini motherboard with an Intel 2 GHz

Ttk LR

Fig. 6: The prior map provided to the planner.

Core 2 Duo processor and 4 GB of RAM. The quadrotor uses
a combination of a 2-D SLAM algorithm with the horizontal
LIDAR and height estimation with the vertical LIDAR to
localize itself inside indoor environments. The path planner
was capped to use no more than 60% of one CPU core so
that other processes required for autonomous flight could
be run simultaneously with the planner. The planner was
provided with a footprint of the quadrotor which contained
a 66 x 66 x 30cm cuboid attached to a thin 58 x 1 x 30cm
cuboid representing the rod. With a 10cm discretization the
footprint occupied approximately 150 cells. 50cm padding
was provided to ensure the quadrotor would be at a safe
distance from obstacles during flight.

Tests were run inside a 16 x 12 x 1.5m (160 x 120 x 15
cell) indoor environment, a prior map of which is displayed
in Fig. 6. This prior map included just the rough floor plan;
none of the obstacles were provided to the MAV prior to the
tests. To demonstrate the anytime performance of the planner,

Fig. 8: The quadrotor at first way-point with camera sticking out
of passage (circled).

obstacles were placed near locations that the quadrotor had
to traverse through, as can be seen in Fig. 7. During each
run the quadrotor started from the bottom left corner of the
map and was expected to visit three separate way-points in
a specific order.

To demonstrate that the planner was planning with the
footprint dimensions described earlier the following scenario
was provided. When the quadrotor arrives at the first way-
point, it has to be situated in such a manner that the camera
is able to see around the corner near the top left portion
of the map as shown in Fig. 8. The placement of the two
obstacles near the passageway combined with the 50cm
padding around them prevents the quadrotor from advancing
forward or turning in place. As a result it must back up about
a meter before it can proceed to the next way-point.

2) Results: The quadrotor was run twice in the previously
described test scenario, during which the planner was con-
sistently able to provide new trajectories that prevented the
quadrotor from colliding with obstacles. With the 60% CPU
cap the planner was able to return solutions approximately
every 2 seconds on average. A video has been provided that
shows the quadrotor autonomously following plans inside the
previously described indoor environment. Pictures of plans
changing over the course of the quadrotor’s traversal can be
seen in Fig. 9a through Fig. 9f.

V. CONCLUSION

Our approach for generating MAV trajectories in cluttered
environments is capable of planning times comparable to
those of sampling-based planners while producing lower cost
solutions both in simulation and in real-world environments.
The improvements are a result of using an anytime and

incremental version of A*, an informative heuristic that is
very fast to compute, and a lattice graph representation that
compactly models the planning problem.

REFERENCES

[11 S. Scherer, S. Singh, L. Chamberlain, and S. Saripalli, “Flying fast
and low among obstacles,” in Robotics and Automation, 2007 IEEE
International Conference on, april 2007, pp. 2023 —2029.

[2] S. M. Lavalle, “Rapidly-exploring random trees: A new tool for path
planning,” Tech. Rep., 1998.

[3] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
Robotics and Automation, IEEE Transactions on, vol. 12, no. 4, pp.
566 -580, aug 1996.

[4] I A. Sucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning
Library,” IEEE Robotics & Automation Magazine, 2012, to appear.
[Online]. Available: http://ompl.kavrakilab.org

[5] E. Frazzoli, M. Dahleh, and E. Feron, “Maneuver-based motion
planning for nonlinear systems with symmetries,” Robotics, IEEE
Transactions on, vol. 21, no. 6, pp. 1077 — 1091, dec. 2005.

[6] A. Neto, D. Macharet, and M. Campos, “Feasible rrt-based path
planning using seventh order bezier curves,” in Intelligent Robots and
Systems (IROS), 2010 IEEE/RSJ International Conference on, oct.
2010, pp. 1445 -1450.

[71 S. Karaman and E. Frazzoli, “Sampling-based algorithms
for optimal motion planning,” Int. J. Rob. Res., vol. 30,
no. 7, pp. 846-894, Jun. 2011. [Online]. Available:

http://dx.doi.org/10.1177/0278364911406761

[8] N. Vandapel, J. Kuffner, and O. Amidi, “Planning 3-d path networks in
unstructured environments,” in Robotics and Automation, 2005. ICRA
2005. Proceedings of the 2005 IEEE International Conference on,
April 2005, pp. 4624 — 4629.

[9] M. Hwangbo, J. Kuffner, and T. Kanade, “Efficient two-phase 3d mo-
tion planning for small fixed-wing uavs,” in Robotics and Automation,
2007 IEEE International Conference on, April 2007, pp. 1035 —1041.

[10] M. Pivtoraiko and A. Kelly, “Generating near minimal spanning
control sets for constrained motion planning in discrete state spaces,”
in Proceedings of the 2005 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS '05), August 2005, pp. 3231 —
3237.

[11] M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun,
“Anytime dynamic a*: An anytime, replanning algorithm,” in Pro-
ceedings of the International Conference on Automated Planning and
Scheduling (ICAPS), June 2005.

[12] M. Likhachev and D. Ferguson, “Planning long dynamically
feasible maneuvers for autonomous vehicles,” Int. J. Rob. Res.,
vol. 28, no. 8, pp. 933-945, Aug. 2009. [Online]. Available:
http://dx.doi.org/10.1177/0278364909340445

Fig. 9: (a) The quadrotor beginning its journey. (b) The initial trajectory. (c) The quadrotor has encountered a horizontal bar across its
path at the desired height. (d) Updated trajectory to account for the stick. (e) Quadrotor discovers a red barrel in its path. (f) Trajectory
now veers to the right to maintain a safe distance around the barrel.

