
Search-based Planning for Dual-arm Manipulation with Upright

Orientation Constraints

Benjamin Cohen Sachin Chitta Maxim Likhachev

Abstract—Dual-arm manipulation is an increasingly impor-
tant skill for robots operating in home, retail and industrial
environments. Dual-arm manipulation is especially essential for
tasks involving large objects which are harder to grasp and
manipulate using a single arm. In this work, we address dual-
arm manipulation of objects in indoor environments. We are
particularly focused on tasks that involve an upright orientation
constraint on the grasped object. Such constraints are often
present in human environments, e.g. when manipulating a tray
of food or a container with fluids. In this paper, we present
a search-based approach that is capable of planning dual-arm

motions, often within one second, in cluttered environments
while adhering to the orientation constraints. Our approach
systematically constructs a graph in task space and generates
motions that are consistent across runs with similar start/goal
configurations and are low-cost. These motions come with
guarantees on completeness and bounds on the suboptimality
with respect to the graph that encodes the planning problem.
For many problems, the consistency of the generated motions
is important as it helps make the actions of the robot more
predictable for a human interacting with the robot.

I. INTRODUCTION

Manipulation in human environments is a challenging and

difficult task. Tasks that require manipulating large objects

are particularly very difficult for single-armed manipulation

systems. Examples of such tasks include the manipulation

of large objects like laundry baskets, trashcans or boxes and

manipulation of food or liquid containers, e.g. carrying a

tray of food or glasses. Human execution of such tasks often

requires the use of two arms. A general mobile manipulation

robot attempting to execute such tasks will also require the

use of two arms.

In this work, we focus on dual-arm manipulation, i.e.

manipulation using two arms (Figure 1). Our focus is, in

particular, on tasks where the robot is manipulating an

object with an upright constraint throughout the motion. Such

constraints often arise in human environments, particularly

in transport of food or fluids, e.g when carrying a tray of

food or a container of liquid. These tasks can often require

manipulation in very cluttered environments, e.g. removing

an open container of food from the back of a fridge while

keeping it level.

A typical dual-arm manipulation task that we would like

to execute is shown in Figure 1 where a PR2 robot is manip-

ulating a tray with wine glasses on it. The robot is required

B. Cohen is with the Grasp Laboratory, University of Pennsylvania,
Philadelphia, PA 19104 bcohen@seas.upenn.edu

S. Chitta is with Willow Garage Inc., Menlo Park, CA 94025
sachinc@willowgarage.com

M. Likhachev is with the Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA 15213 maxim@cs.cmu.edu

Fig. 1: The PR2 robot manipulating a tray with two wine

glasses on it.

to maintain the tray level throughout the execution of the

task. The full execution of this task would be composed of

multiple components including detection and tracking of the

tray, determination of dual-arm grasps and motion planning

and control for manipulation. In this work, we focus on the

motion planning component of this task, i.e. the computation

of collision free paths for moving the object from a start pose

to a goal pose while maintaining the initial roll and pitch of

the object.

Motion planning for dual-arm manipulation is inherently a

constrained task. The act of holding an object with two hands

naturally implies a constraint where the two end-effectors

of the arms have to maintain a relative configuration with

respect to each other. The rigidity of the grasp determines

how much the end-effectors can move with respect to each

other. We assume that the end-effectors are fairly constrained

in moving relative to each other, i.e. the grasp being executed

by the two arms is fairly rigid.

Our approach to this problem is based on the use of

a heuristic search such as A* search [8] and its variants.

The use of graph search-based planning techniques have

been quite successful for low-dimensional planning such as

for navigation. More recently, they have also been used

for higher dimensional motion planning including single

arm manipulation [5], [6] and some mobile manipulation

tasks [4]. Search-based planning techniques typically have

the advantages of good cost minimization and strong theoret-

ical guarantees on completeness and optimality or bounds on

the sub-optimality of the solution [17]. In addition, the graph



representation can often incorporate complex constraints

and wide range of cost functions. On the downside, the

guarantees of search-based planning are with respect to the

graph used to represent the planning problem rather than

with respect to the underlying space. This implies that the

guarantees are with respect to the used discretization of

the state-space and action-space of the problem. Another

important benefit of search-based planning is consistency in

solutions: because of its deterministic nature and systematic

discretization of the state- and action-spaces, the planned mo-

tions tend to be similar across runs in similar environments

with similar start and goal configurations. This consistency

and predictability of motions is often beneficial as it allows

for humans to be more comfortable with the robot since they

can learn to anticipate its actions in different environments.

In this paper we present an approach to dual-arm manip-

ulation that relies on two key novel components to quickly

generate feasible trajectories despite the complexity of the

problem. The first component is the chosen representation

of the state space that we use to efficiently reduce the di-

mensionality of the problem. The representation provided an

additional bonus by reducing the discretization artifacts com-

monly found in the trajectories generated by our approach

for single arm manipulation [6]. The second component is a

novel heuristic that exploits the upright orientation constraint

of the object to provide an even more informative heuristic to

efficiently guide the search around clutter in the workspace.

This paper will focus on those two concepts.

II. RELATED WORK

Manipulation of objects in human environments has gained

a lot of interest in recent years ( [19], [18], [7], [1], [11], [2],

[22]). Interest in dual-arm manipulation is also gaining, par-

ticularly with the recent availability of dual-arm manipulation

systems like the PR2 [3], Intel HERB Personal Robot [22],

ARMAR [23] and Justin [2]. Dual-Arm manipulation has

been used for tasks like cart-pushing [21], towel folding [16]

and the manipulation of small kitchen objects [23].

Motion planning for dual-arm manipulation has mostly

used randomized motion planners. In [23], randomized mo-

tion planners were used for planning re-grasping actions and

dual-arm motion plans for a humanoid robot with two arms.

Impressive results for combined grasping and motion plan-

ning were achieved by interleaving the efficient computation

of inverse kinematics using a pre-computed reachability map

with the motion planning itself. In [10], an assembly task was

executed with two arms using combined task and motion

planning. Online manipulation planning for objects moving

on a conveyer belt was carried out in [14] for two 2-DOF

arms. In [12], one of the first approaches to planning for dual-

arm manipulation was presented using a randomized planner.

Multi-arm manipulation planning, including the planning of

transfer paths and grasp and ungrasp motions for manipulat-

ing an object using multiple arms was presented in [13]. The

results of this approach were demonstrated on a simulated

system manipulating a simple object using 3 arms.

The use of randomized planners for dual-arm manipulation

tasks is popular because of the speed of the planners and

ease of implementation. However, plans generated by such

planners require frequent post-processing, e.g. using a short-

cutting approach [9], before they can be executed on a

robot. In addition, due to the random nature of the planners,

the generated paths are also inconsistent across runs, i.e.

paths planned for the same environment for similar start and

goal positions are likely to be very different. Search-based

planning addresses this issue providing consistency between

runs and reasonable cost minimization.

III. THE PR2 ROBOT

The hardware platform that we used for experiments is the

PR2 mobile manipulation robot (Fig. 1). The PR2 robot is a

two-armed robot with an omni-directional base and a variety

of sensors mounted on a sensor head. Each arm has 7 degrees

of freedom and thus has a redundant degree of freedom.

We exploit this redundancy by developing a custom inverse

kinematics solution for the arm that is parameterized by one

of the joint angles. The joint angle we choose is the upper

arm roll joint shown in Fig. 3(b). The joint limits on the

robot’s joints are also taken into account by the kinematics

solver. Thus, given the end-effector pose and a value for

the free parameter, we can deterministically compute the

corresponding inverse kinematics solution for this pose. In

general, because of joint limits, we tend to find only a single

solution (if it exists) for a given end-effector pose and free

angle parameter. If a solution does not exist, it is possible to

step through the full range of motion of the redundant joint

to search for an inverse kinematics solution.

IV. MOTION PLANNING ALGORITHM

The motion planning algorithm we describe in this paper

operates by constructing and searching a motion-primitive

based graph [5] using pre-defined and runtime-generated

motion primitives. The task of the graph search itself is

to find a path in the constructed graph, from the state that

corresponds to the current configuration of the robot, to any

state at which the object is at the desired (goal) location

and orientation. In other words, we consider the problem of

finding a motion that gets the object grasped by the two arms

from its current pose to the goal pose.

In the following sections, we explain all of the components

of the algorithm with a major focus on the new graph

representation, and the informative heuristic that efficiently

guides the search in finding the solution.

A. Graph Construction

Previously, when planning paths for single arm manipu-

lation, we represented the configuration space of the arm in

joint space [5]. Thus, if we needed to plan motions for a

robot arm with 7 DoF, it would result in a graph with 7 di-

mensions.The combination of informative heuristics, anytime

graph search and adaptive motion primitives addressed the

high dimensionality of the statespace. However, if we were

to construct a graph in the same way for dual-arm tasks



Fig. 2: The six degrees of freedom in the statespace.

then we would end up with a 14 dimensional statespace.

Fortunately though, the object constraint allows for a more

compact graph representation that we will now describe.

The graph is constructed using a lattice-based representa-

tion. A lattice is a discretization of the configuration space

into a set of states, and connections between these states,

where every connection represents a feasible path. Let us use

the notation G = (S,E) to denote the graph G we construct,

where S denotes the set of states of the graph and E is the set

of transitions between the states. The states in S are the set

of possible (discretized) 4 DoF poses of the object coupled

with the joint angles of one joint (chosen to represent the

redundancy) in each arm. That is, we define a state s as

a 6-tuple, (x, y, z, θyaw, θ1, θ2) where (x, y, z) describe the

global position of the center of the object, θyaw is the object’s

global yaw angle and θ1, θ2 are the joint positions of the

redundant joint in the right arm and the left arm, respectively.

Refer to Figure 2 for a visualization of the 6-tuple for the

PR2 robot.

The transitions in E are comprised of a set of feasible

motion primitives. A motion primitive is defined here as a

vector of (translational and yaw) velocities of the object and

the two redundant joint velocities. The graph is dynamically

constructed by the graph search as it expands states because

pre-allocation is infeasible for a 6 dimensional graph.

The set of motion primitives that we used during exper-

imentation can be seen in Figure 3. The set includes 26

motions that just translate the object one cell in the same

way as the edges in a 26-connected grid. It also includes

two motions that rotate either free angle in both directions.

Finally, it includes two motions that just yaw the object in

the world frame. We now describe how the motion primitives

are used.

Before a successor of state s, s′ can be added to the graph

it must be checked for feasibility. That is, we check that joint

configurations for both arms exist within the joint limits and

are collision free. We use an inverse kinematics solver to

compute joint configurations for each arm that satisfy the

state’s coordinates. One reason why the solver may fail is if

the solution found violate the joint limits of the arms. If a

solution is found for each arm, then the arm configurations

are forward simulated and checked for collisions with each

(a) xyz (26) (b) θ1, θ2 (4)

(c) θyaw (2)

Fig. 3: The set of 32 motion primitives we used.

other, with obstacles in the environment, and for collisions

between the grasped object and the environment.

If the inverse kinematics solver fails to compute a solution

for one or both of the arms, then rather than just reject the

invalid successor completely, we search over the redundant

joint for that arm for a valid solution. If a solution exists, then

we generate an adaptive motion primitive [6], or ”a primitive

that is generated at runtime”. Essentially, the motion primi-

tive that was used to reach the invalid state s′ is duplicated

but with a new value for θ1, θ2 or both. This results in a

successor state that is the same as s′ with the exception of

θ1, θ2 or both.

It should also be noted, that while we are using a very

basic set of motion primitives, more complicated motions

could also be used by our approach, e.g. translating the

object along an arc through the xy plane while rolling the

right arm’s redundant joint. The set of 32 motion primitives

that we described earlier were chosen because they provide

a dense coverage of the workspace. In addition, smoother

motion primitives can also be used by generating a set of

intermediate states for the motion that are not projected onto

the discretized grid in the state space. Generating and using

such motion primitives is a problem that we intend to pursue

further in the future. Using a larger set of primitives may

result in smoother paths at the expense of planning time.

We found that this task space representation is advanta-

geous over our previous joint space representation [6] in a

couple of ways. A key advantage is the reduced discretization

effects in the planned solution. Now that the path length is

being optimized in the position space of the object, it allows

for multiple joints to be moved at the same time whereas

previously, our set of primitives was limiting the trajectory to

move one joint at a time giving off a very robotic appearance.

Another advantage of this representation is that it allows for

the heuristic to be more informative and easier for the search

to follow. This will be described in detail in the Heuristic



section.

B. Cost Function

The cost function is designed to minimize the path length

of the end effector while maximizing the distance between

the manipulator and nearby obstacles along the path. The

cost of traversing any transition between states s and s′ in

graph G can therefore be represented as c(s, s′) = ccell(s
′)+

caction(s, s
′). The action cost, caction, is the cost of the

motion primitive which is generally determined by the user.

The soft padding cost, ccell, is a cost applied to cells close to

obstacles to discourage the search from planning a path that

drives any part of the manipulator close to nearby obstacles

if a safer path is possible. (For example, in our experiments,

we set ccell(s
′) to be twice more expensive than normal cell

cost if the configuration of the arm at s′ has distance to

the nearest obstacle that is less than 20 cm and to be five

times more expensive if the distance is less than 10 cm.) In

addition, if desired, one can also add an additional term to

the cost function to penalize large changes in any particular

joint angle to transition from s to s′.

An alternative cost function that we considered minimizes

the execution time of the planned trajectory. To do so, the

planner is configured with the desired joint velocities for

each joint in the arm. Then the cost of a transition between

states is computed by solving for the longest joint motion

amongst all of the joints and then multiplying its execution

time by the desired cost per second. Minimizing execution

time usually has the same effect as minimizing the path

length of the object, however, tight joint limits can sometimes

cause them to not correlate at all. While this cost function

offered promising results, it was not used any further in our

experiments.

C. Heuristic

Heuristic-based search algorithms such as the graph search

used here, depend on informative heuristics to efficiently

guide the search in promising directions towards a feasible

solution. These algorithms require that the heuristic function

is admissible and consistent.

The ability to manipulate objects through cluttered en-

vironments is the primary motivation of our research, and

so a heuristic function that efficiently circumvents obstacles

is necessary. Early in our approach we used a 3D Dijkstra

search to compute the cost of the least-cost path from the

position of the inner sphere of the object at a given state to

the object pose at the goal state. A similar method can be

found in [5], however the end effector pose is used in that

case. This proved to be an informative heuristic here as well.

However, given the additional upright orientation constraint

of the problem, we developed a more informative heuristic

that exploits this constraint.

Instead of modeling the object as a sphere when per-

forming the 3D Dijkstra search, we can instead model it

as a cylinder because we are constraining the object from

rolling or pitching. The radius of the cylinder is the radius

of the inner circle of the object, i.e. the circle centered at

(a) z = 0 (b) z = 0, inflated

(c) z = 0, z = 1, z = 2, inflated

Fig. 4: The obstacles are shown in black and the inflated

cells are red. The radius of the inner circle of the object on

the xy plane is 1 cell. The height of the object is 3 cells so

3 xy planes must be checked for collisions.

the geometric center of the object (in the xy plane) with the

largest radius such that it is completely contained within the

object footprint, and the height of the cylinder is the height

of the object.

To compute the heuristic, we first inflate the obstacles on

each xy-plane by the radius of inner circle of the object

by iterating through the z-axis of the grid. Then on each

call to the heuristic function, h(x,y,z), we check if cells

(x,y,z),(x,y,z+1), ... ,(x,y,z+n) are collision free, where n is

the height of the cylinder in cells. A detailed example can

be found in Figure 4.

Modeling the object as a cylinder is significantly more

informative than using an inner sphere when the object’s

dimensions are not similar along each axis, e.g. a tray which

is very wide and flat. The heuristic is then capable of guiding

the search through tighter spaces, e.g. when manipulating a

tray between two shelves of a bookshelf.

We use the radius of the inner circle along the xy-plane of

the object so that the heuristic is admissible, meaning that it

underestimates the cost-to-goal for any full-dimensional state

with given (x, y, z) of the object. Needless to say it does not

mean that if a feasible 3D path exists from the state to the

goal then a feasible motion plan exists to manipulate the

object to the goal. It is interesting to note that using the

radius of the outer circle may be much more informative

when guiding the search especially when the inner and outer

circles differ by a large amount. However, using the outer

circle to compute heuristics sacrifices the completeness of

the planner, i.e., the planner may not find a solution even if

one exists. In the Experimental Results section we include a

comparison of results from when we used the radius of the

inner and outer circles.

It is important to note that the heuristic for a given

state is computed when needed unlike in our previous



approaches [6], where the heuristic was precomputed for the

entire workspace before planning began. This pre-planning

step required up to 0.6 seconds. Instead, now we initially

run the Dijkstra search until it expands the start state. Then

if the search ever encounters a state which has not yet been

added to the Dijkstra search tree, we resume the Dijkstra

search until the state of interest is expanded. This way we

avoid expanding all of the states in the environment.

D. Search

Any standard graph search algorithm can be used to search

the graph G that is constructed. Given the complexity of

the graph, however, optimal graph search algorithms such as

A* [8] are infeasible to use. Instead we chose an anytime

version of A* - Anytime Repairing A* (ARA*) [15].This

algorithm generates an initial, possibly suboptimal solution

quickly and then concentrates on improving this solution

while deliberation time allows. The algorithm guarantees

completeness for a given graph G and provides a bound ǫ

on the suboptimality of the solution at any point of time

during the search. ARA* speeds up the typical A* search by

inflating the heuristic values by a desired inflation factor, ǫ.

An ǫ greater than 1.0 will produce a solution guaranteed to

cost no more than ǫ times the cost of an optimal solution in

the graph.

V. EXPERIMENTAL RESULTS

Producing a set of randomly generated experiments is a

challenging task for dual-arm object manipulation. Kinematic

constraints of the arms, the size of the grasped object and the

positions and orientations of the grasps result in a very tight

feasible workspace, not to mention obstacles. We manually

picked start and goal poses for the object, by generating

inverse kinematics (IK) solutions corresponding to them and

checking that the solutions are collision free. We conducted

twelve experiments that were inspired by practical manip-

ulation scenarios in four different cluttered environments

with five different objects. All twelve experiments were

implemented in simulation first and then on the PR2 robot

itself. Figure 5 shows the different simulation environments.

The obstacles are in purple and the collision model of the

manipulated objects can be seen in cyan. The actual objects

that were used during the real robot experiments can be seen

in Figure 6.

The results of the simulated experiments are shown in

Table I. In all of the runs the planner was initialized with

an ǫ = 100 and was given 15.0 seconds to generate a

more optimal solution if time permitted. The ǫ of the final

solution found is listed in the third column. The planning

times include the time it takes to compute the heuristic. The

resolution of the object’s pose is 2cm for the position and

5◦ for the yaw of the object as well as 2◦ for both of the

redundant joints. All of the tests require that the planner

computes a path to a 4-DoF pose constraint for the object

with a tolerance of 5◦ in the final yaw of the object and

a 2cm tolerance in the position of the object. We do not

require the redundant joints to reach the goal at specified

Fig. 5: Clockwise from top left: stick around a pole, wood

board in bookshelf, tray with wine glasses under a table, tray

with wine glasses near wall and tray with a scotch glass in

bookshelf.

Fig. 6: The objects that were modeled for the simulated

experiments. The stick is not shown.

joint angles. We used the set of 32 motion primitives shown

in Figure 3.

Earlier we noted that while the radius of the inner circle

of the object in the xy-plane is used when computing the

heuristic, the search could be sped up by using the radius

of the outer circle at the loss of the guarantee on the

completeness of the search. Table II shows the results of

the same set of experiments but using the radius of the outer

circle to compute the heuristic. The statistics do in fact verify

the predicted speedup and without failures for this particular

set of experiments. We plan to examine the incorporation of

this informative heuristic, without sacrificing guarantees on

completeness, in greater detail in future work.

A selected set of experiments that were performed on the

PR2 robot can be seen in the attached video. During the

experiments, the planner was executed onboard the robot.

The planning times and number of expansions can be found

in Table III. An ǫ = 30 was used to plan and the first solution



TABLE I: Simulation Results (12 trials)

Time until First
Soln. (s)

Expands. until
First Soln.

ǫfinal Expands. until
Final Soln.

0.31 182 3 8,161

0.15 76 3 7,584

0.33 182 3 6,265

2.01 544 5 5,021

1.07 379 4 7,991

0.98 432 4 6,445

14.88 6,773 100 6,785

0.56 31 3 6,714

0.57 34 3 5,960

1.06 322 5 4,932

0.14 62 3 7,344

0.13 68 3 6,437

TABLE II: Simulation Results of Heuristic with radius of

the outer circle in the xy-plane of the object. (12 trials)

Time until First
Soln. (s)

Expands. until
First Soln.

ǫfinal Expands. until
Final Soln.

0.39 31 2 7,758

0.32 43 2 6,089

0.4 29 2 5,517

0.79 145 3 5,977

0.98 208 3 6,527

0.28 26 2 6,368

2.16 516 3 6,290

0.5 40 3 6,454

0.52 38 3 6,027

12.16 1,996 4 2,961

0.07 38 3 7,015

0.12 68 3 6,703

found was executed. The radius of the inner circle was used

to compute the heuristic in all of the runs. The trajectories

in the video were generated only by parameterizing (in time)

the paths generated by the planner. No smoothing operations

were performed on the paths themselves. The short jerky

motion at the start of each trajectory does not, to the best of

our knowledge, arise from the nature of the planned paths.

The long delay in the video was the result of a delay encoded

in our experimental system (and not due to long planning

times).

The video shows that while the trajectories appear to be

reasonably smooth in the position space of the end-effectors,

they may not be smooth in the joint space of the arms.

While the speedup of the video enhances this effect, another

possible reason for this is that we are allowing the IK to

search over the range of positions of the redundant joints

without applying a cost for rolling either of the redundant

joints. If less erratic motion is desired in the upper arm roll

joints of the PR2, then an additional transition cost could be

used.

As a demonstration of the consistency in the planner’s

solutions, the video includes two pairs of identical trajecto-

ries. The trajectories titled ‘Table 1’ and ‘Table 3’ as well as

‘Table 2’ and ‘Table 4’ have the same number of expansions

Fig. 7: Shown here are four of the experiments that were

run on the PR2. Refer to the video for the execution of eight

planning instances in three of these environments.

TABLE III: Planning Times of Attached Video

Planning Time (s) Expands.

Backgammon 1 1.03 523

Backgammon 2 0.61 357

Wall 1 9.28 1,710

Wall 2 2.59 619

Table 1 0.38 39

Table 2 0.38 36

Table 3 0.36 39

Table 4 0.34 36

and produce the same exact trajectories but are the result

of separate unique calls to the planner. More generally, for

planning episodes that occur in similar environments with

similar start and goal pairs, the generated motions tend to be

similar.

Table IV contains the results of ten trials in which two

planners were asked to manipulate a 0.36m x 0.25m x 0.02m

tray from above a tabletop to below it and vice versa. The

table shows the planning time results of our approach as well

as those of a randomized planner (SBL [20]). The tabletop is

similar to the one shown in Fig. 5. The planners were given

the same exact set of ten unique start-goal pairs. The same

set of 32 motion primitives that were used throughout the

TABLE IV: Manipulating a Tray Over-Under Tabletop (10

trials)

mean time (s) std dev. time (s)

search-based 0.70 0.47

sbl 2.77 1.55



paper were used in these experiments as well as an ǫ = 10.

VI. CONCLUSION

We presented a search-based motion planning algorithm

for dual-arm object manipulation with an upright orientation

constraint. In our approach, we leveraged a compact repre-

sentation of the problem and an informative heuristic that ex-

ploits the orientation constraint in creating a method that can

efficiently plan dual-arm motions in less than two seconds

in over ninety percent of our runs. Our algorithm relies on

an anytime graph search to generate initial solutions quickly

as well as provide theoretical guarantees on completeness,

consistency and provide a bound on the suboptimality of

the solution with respect to the graph used to represent the

planning problem. We believe that the upright constraint

on the object is a very practical one and it covers many

of the dual-arm manipulation scenarios found in the home

and in other human service tasks. Our experiments on the

PR2 showed the ability of the planner to handle real world

cluttered manipulation scenarios and its ability to generate

motions that can be executed on the robot with minimal post-

processing.

VII. ACKNOWLEDGEMENTS

We thank Willow Garage for their partial support of this

work. In addition, this research was partially sponsored

by the Army Research Laboratory Cooperative Agreement

Number W911NF-10-2-0016. We would also like to thank

Mike Phillips for his invaluable input.

REFERENCES

[1] Dmitry Berenson, Siddhartha S. Srinivasa, Dave Ferguson, Alvaro
Collet, and James J. Kuffner. Manipulation planning with workspace
goal regions. In IEEE International Conference on Robotics and

Automation, May 2009.
[2] Christoph Borst, Christian Ott, Thomas Wimbock, Bernhard Brunner,

Franziska Zacharias, Berthold Baeum, Ulrich Hillenbrand, Sami Had-
dadin, Alin Albu-Schaeffer, and Gerd Hirzinger. A humanoid upper
body system for two-handed manipulation. In IEEE International

Conference on Robotics and Automation, pages 2766–2767, April
2007.

[3] Matei Ciocarlie, Kaijen Hsiao, E. Gil Jones, Sachin Chitta, Radu Bog-
dan Rusu, and Ioan Alexandru Sucan. Towards reliable grasping and
manipulation in household environments. In ISER, New Delhi, India,
December 2010.

[4] Benjamin J. Cohen, Sachin Chitta, and Maxim Likhachev. Planning for
autonomous door opening with a mobile manipulator. In Proceedings

of the IEEE International Conference on Robotics and Automation

(ICRA), 2010.
[5] Benjamin J. Cohen, Sachin Chitta, and Maxim Likhachev. Search-

based Planning for Manipulation with Motion Primitives. In Proceed-

ings of the IEEE International Conference on Robotics and Automation

(ICRA), 2010.
[6] Benjamin J. Cohen, Gokul Subramanian, Sachin Chitta, and Maxim

Likhachev. Planning for Manipulation with Adaptive Motion Prim-
itives. In Proceedings of the IEEE International Conference on

Robotics and Automation (ICRA), 2011.
[7] R. Diankov, N. Ratliff, D. Ferguson, S. Srinivasa, and J. J. Kuffner.

Bispace planning: Concurrent multi-space exploration. In Robotics:

Science and Systems, Zurich, Switzerland 2008.
[8] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the

heuristic determination of minimum cost paths. IEEE Transactions on

Systems, Science, and Cybernetics, SSC-4(2):100–107, 1968.
[9] K. Hauser and V. Ng-Thow-Hing. Fast smoothing of manipulator

trajectories using optimal bounded-acceleration shortcuts. In IEEE

International Conference on Robotics and Automation, May 2010.

[10] Andreas Hormann. On-line planning of action sequences for a two-arm
manipulator system. In IEEE International Conference on Robotics

and Automation, May 1992.
[11] Dov Katz, Emily Horrell, Yuandong Yang, Brendan Burns, Thomas

Buckley, Anna Grishkan, Volodymyr Zhylkovskyy, Oliver Brock, and
Erik Learned-Miller. The UMass Mobile Manipulator UMan: An
Experimental Platform for Autonomous Mobile Manipulation. In IEEE
Workshop on Manipulation for Human Environments, Philadelphia,
USA, August 2006.

[12] Yoshihito Koga and Jean-Claude Latombe. Experiments in dual-arm
manipulation planning. In IEEE International Conference on Robotics

and Automation, May 1992.
[13] Yoshihito Koga and Jean-Claude Latombe. On multi-arm manipu-

lation planning. In IEEE International Conference on Robotics and

Automation, May 1994.
[14] Tsai-Yen Li and Jean-Claude Latombe. On-line manipulation planning

for two robot arms in a dynamic environment. In IEEE International

Conference on Robotics and Automation, May 1995.
[15] M. Likhachev, G. Gordon, and S. Thrun. ARA*: Anytime A* with

provable bounds on sub-optimality. In Advances in Neural Information

Processing Systems (NIPS) 16. Cambridge, MA: MIT Press, 2003.
[16] J. Maitin-Shepard, M. Cusumano-Towner, J. Lei, and P. Abbeel. Cloth

grasp point detection based on multiple-view geometric cues with
application to robotic towel folding. In IEEE Intl. Conf. on Robotics

and Automation, 2010.
[17] J. Pearl. Heuristics: Intelligent Search Strategies for Computer

Problem Solving. Addison-Wesley, 1984.
[18] Nathan Ratliff, Matt Zucker, J. Andrew Bagnell, and Siddhartha

Srinivasa. CHOMP: Gradient optimization techniques for efficient
motion planning. In IEEE International Conference on Robotics and

Automation, pages 489–494, 12–17 May 2009.
[19] Radu Bogdan Rusu, Ioan A. Şucan, Brian Gerkey, Sachin Chitta,

Michael Beetz, and Lydia E. Kavraki. Real-time perception guided
motion planning for a personal robot. In International Conference on

Intelligent Robots and Systems, St. Louis, USA, October 2009.
[20] Gildardo Sanchez and Jean Claude Latombe. A single-query bi-

directional probabilistic roadmap planner with lazy collision checking.
In International Symposium on Robotics Research, 2001.

[21] Jonathan Scholz, Sachin Chitta, Bhaskara Marthi, and Maxim
Likhachev. Cart pushing with a mobile manipulation system: Towards
navigation with moveable objects. In IEEE International Conference

on Robotics and Automation, Shanghai, China, 2011.
[22] Siddhartha Srinivasa, David Ferguson, Michael Vande Weghe, Rosen

Diankov, Dmitry Berenson, Casey Helfrich, and Hauke Strasdat. The
Robotic Busboy: Steps Towards Developing a Mobile Robotic Home
Assistant. In Intl. Conference on Intelligent Autonomous Systems (IAS-

10), July 2008.
[23] Nikolaus Vahrenkamp, Dmitry Berenson, Tamim Asfour, James

Kuffner, and Rudiger Dillmann. Humanoid motion planning for dual-
arm manipulation and re-grasping tasks. In IEEE/RSJ International

Conference on Intelligent Robots and Systems, October 2009.


