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Abstract— Coordinated time optimal path planning and tra-
jectory management algorithms for air vehicles depend on
precise simultaneous mission commencement by all agents.
Ground-based and rotary-wing aerial vehicles can be staged
at their mission initial conditions until a mission is commenced
but fixed-wing aerial vehicles, which must maintain a minimum
forward airspeed at all times, can only be positioned approxi-
mately. A computationally simple algorithm for these vehicles
that determines simultaneous arrival paths from arbitrary
starting points is presented. The algorithm is based on planar
B-spline curves so that fully defined feasible trajectories can be
quickly determined, compactly encoded, and precisely executed.

I. INTRODUCTION
The complexity of planning trajectories for coordinated

time-critical Unmanned Aerial System (UAS) operations
typically results in computational times on the order of
multiple seconds or longer depending on the processor used,
the dimensionality of the given problem and the rigor with
which physical constraints are included [1]. When working
with fixed-wing agents, which must maintain a minimum
forward speed, planning algorithms must, therefore, assume
starting locations since the real-time solution based on actual
locations is not viable. To address this, vehicles are typically
staged in nearby loitering flight plans until the mission
execution command is issued. Specific applications may call
for predetermined holding patterns to account for obstacles
or ensure path deconfliction. However, the performance of a
typical autopilot does not permit vehicles starting at some-
what arbitrary locations and flight path vectors to arrive in
concert at the initial points of their flight plans. In some
cases, adequate performance can be obtained by buffering
the planned mission with an initial segment for each agent to
account for this variability. If inter-vehicle communications
permit vehicle locations to be shared, then the autopilots
can be configured to coordinate approximate synchronized
completion of all buffered segments. Since the airspeed range
available to regulate coordination is limited and diminishes as
ambient temperature and altitude are increased, performance
guarantees for such strategies do not exist. The variability
of winds aloft further complicates the ground-referenced
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coordination problem to the extent that any available airspeed
variability is best allocated to maintaining coordination not
establishing it. Consequently, it is useful to have a near
real-time planner that is capable of reacting to instantaneous
vehicle location and mission start points and their respective
flight path parameters to determine a precise time of arrival
for each that can be tailored to ensure simultaneity of arrival
for the team. Continuity of curvature and constraints on
its magnitude and rate of change are also critical compo-
nents of feasible paths because the response time to turning
commands for the small UAS vehicles typically used in
this application can be significant. Strict time optimality
is not critical but candidate paths should be reasonably
efficient because mission duration is also a priority. The
critical requirements for a practical simultaneous arrival
algorithm are that paths must be feasible, must be computed
in near real-time, and be free of potential collisions. Collision
deconfliction has two solutions:

1) space deconfliction of paths
2) time deconfliction of velocity profiles

Optimization algorithms can be formulated to address the
constrained problem as described in [2], [3], or [4] but these
approaches are computationally expensive and not likely
to meet the near real-time requirement on an embedded
processor. A solution to the fully constrained problem may,
however, be critical in cases where collision deconfliction
requirements become complex. An approach tailored for em-
bedded processing is developed by Nelson et al [5] in which
C1 continuity is achieved. This paper describes an algorithm
that can be rapidly executed even with the limited onboard
computing resources and yield C2 continuity with planned
missions. In our case we address collision deconfliction by
separation of initial holding patterns to minimize problem
complexity prior to the mission start. We limit constraints
to feasibility of path considerations to further minimize
complexity.

An example of coordinated flight requiring such consider-
ations is presented on Figure 1, which shows the flight plans
for two vehicles so they can simultaneously observe a road
segment from opposite sides. In order for this mission to be
successful, each vehicle must maintain precise coordination



with its teammate as the road is traversed so that there is
a single sensor location for both. Complex missions may
require coordination of more than two vehicles.

Fig. 1. Example of a coordinated road search

II. DEVELOPMENT OF SIMULTANEOUS ARRIVAL PLANS:
TOP LEVEL REQUIREMENTS

Of the many approaches that can be taken toward sim-
plification of the development of a curve between the in-
stantaneous states of a vehicle and the initial segment of
its planned route, complexity can be reduced by limiting
the problem to planar, constant altitude, curves. Constant
airspeed planning further reduces complexity and reserves
that degree of freedom for real-time trajectory corrections.
With these considerations, Dubins’ paths1 can be quickly
computed but they only support C1 continuity and are con-
sequently not considered to be feasible. Moreover, they are
not suited for subsequent operations to tailor path duration.
The effects of feasibility constraints on a solution become
more significant as initial and final points are brought into
close proximity[6]. Therefore, a second step to reduce the
complexity of the problem is to sufficiently separate the
points. In the simple case of circular orbits, this relates to
the centers about which the vehicles are staged and the
planned mission start points. For more complex holding
patterns, the closest point of the pattern with respect to the
planned mission start can be used to establish the center
of the tightest feasible turn towards the mission. In this
manner a relatively simple path can be determined which
can be adjusted to meet feasibility constraints with respect
to curvature. A Dubins-like geometric construction can be
used to determine a working boundary condition separation
by replacing the actual minimum turning radius with one
that has been expanded to account for the finite period
of time required to generate a maximum turning rate; see
Scheuer and Fraichard [7] or Scheuer and Laugier [8] for
their near-optimal path construction using clothoid curves,
which is illustrated on Figure 2. This process can be applied
when clothoid segments are used to approximate curvature

1Dubins’ paths are optimal with respect to path length and are constructed
of curved segments at minimum radius and straight segments. Dubins
showed that optimal paths have the form of 〈curve− straight− curve〉
or 〈curve− curve− curve〉, where curves can either be to the left or to
the right. Dubins showed the optimal path is an element of the set {LSL,
RSR, LSR, RSL, LLL, RRR}

variation along a path so that continuous curvature paths can
be constructed, see [9] or [10] for applications. Scheuer’s
extended radius construction concept can also be generalized
beyond clothoid curves to provide a better approximation of
the actual path taken by a fixed-wing aircraft from straight
and level flight to turning flight at minimum radius and
back to straight flight. However, when aerodynamic and
limited control authority constraints are imposed, the turn
rate time history is no longer symmetric, so the construction
is not exact. The underlying equations of motion we use
for turning segments, may be found in texts such as Seckel
[11] or Stengel [12]. Denoting the heading angle as ψ,
the gravitational constant as g, roll rate as p, roll moment
normalized by inertia as L, the angle of bank as φ, the roll
control as δaileron and speed as V , the turning equations of
motion can be approximated as follows:

ṗ =
∂L

∂p
p+

∂L

∂δaileron
δaileron

φ̇ ∼= p

ψ̇ =
g tanφ

V

(1)

These equations have been used to extend Scheuer’s geomet-

Fig. 2. Scheuer’s Dubins-like path construction for continuous curvature
paths (as derived for clothoid spirals)

ric construction as illustrated on Figure 3 for the maneuver
performance of our vehicles. The right panel illustrates the
aforementioned approximation of this approach, which only
slightly compounds the sub optimality of the path. The path
shape from maximum curvature to zero curvature can be
precomputed based on the vehicles being used so that the
construction can be applied to determine the best point from
which to depart the loiter orbit. While path shapes could
have been synthesized directly with Dubins’ constructions,
the extension lends itself to curvature-continuous paths when
endpoints are sufficiently separated.

A. Minimum proximity of IC orbits to mission plans
In order to derive a feasible path that can be determined

with minimal computational complexity, we apply Scheuer’s



Fig. 3. Scheuer’s Dubins-like path construction for continuous curvature
paths extended to equations of motion 1.

construction extended to the simplified equations of motion,
(1), to identify a minimum spacing. We use the constraints
that arise from a path with inflection (LSR or RSL) since
these cease to exist when endpoints are too close2. In the case
of an arbitrary holding pattern, instantaneous curvature can
be used to locate a point on the Scheuer construction entry
to a circular orbit and the affine nature of the construction
can be used to align the path with current position and
flight path vector. In this manner, any holding pattern can
be mapped to an equivalent circular orbit. Without loss of
generality we assess this construction for a clockwise starting
orbit to a point with arbitrary direction (path tangent) and
curvature (within the feasible peak used to size the orbit
radius)3. Once bounds are set on the distance between IC
orbit departure and mission starting points such that this
construction is feasible, a feasible parametric polynomial
curve between orbit departure and mission start can also
be found to approximate it. The geometry of Scheuer’s
construction in this case is illustrated on Figure 4, note the
additional segment that must be considered to transition from
an arbitrary holding pattern to a turning pattern. We use this
construction to derive the minimum spacing to execute a turn
from a clockwise direction from a point A to a goal point
C, with maximum curvature in the CCW direction, or D,
with maximum curvature in the CW direction as candidate
paths. The locations and orientations of goal points are then
generalized so that the distance from orbit to mission start
required to guarantee feasibility can be bounded for arbitrary
parameterization. The feasibility of the construction can be
easily verified by following the maneuver on which it is
based. The critical intermediate segment follows the path
from either A (if vehicle is currently on a zero curvature
portion of an arbitrary holding pattern) or a point A′ if on
a simple orbit to a point denoted as B with zero curvature.
This is the closest location for which zero curvature can
be achieved using a RSL maneuver to B from A (or A′).
Note, in this case the straight segment would have zero length

2In the event the opposing curve, 〈curve− straight− curve〉 (LSR
or RSL), path types cease to exist, an arbitrary feasible path may involve
a 〈curve− curve− curve〉 construction, which is unnecessarily complex
for our application. Curves of the form RSR or LSL always exist. Hence,
we use a constraint which permits inflection in the limit to set boundary
conditions.

3The geometry of the construction for a counter-clockwise IC orbit is
simply a mirror image. Since the terminal point has an arbitrary state in our
example case (direction, curvature), there is no loss of generality.

and only entail an inflection from R to L turning segments.
From point B with orientation as drawn to a condition of
arbitrary curvature turning CCW, the terminal point can then
be located along the segment from B to C, since C is the
earliest location where curvature can be maximal CCW from
B. Similarly, for arbitrary terminal curvature turning CW
from B, the terminal point would lie along the segment
from B to D. Since these segments are constructed from
an affine map, they can be rotated to accommodate any
arbitrary direction. Orientation of the flight path vector at
point B other than that shown in the figure would cause the
turning center of the construction to rotate about point B
as shown by the heavy dotted circle. The general case of
feasible goal points lies somewhere inside the dashed circle
that intersects points C and D. The furthest point from an
IC orbit point at A is illustrated as point E. In this regard,
as long as the spacing between the orbit departure point
(depicted as A) and the mission start point is greater than
the distance from A to E, then this construction will exist
and, hence, the path will be feasible. Rather than compute
this distance precisely for specific boundary conditions, it
can be bounded as ≥ 5raugmented, which can easily be
verified visually from Figure 4. Furthermore, since orbit
departure location/direction must be considered arbitrary,
orbit centers (selected by the user) must be further than
≥ 5raugmented+rorbit from the start of the planned mission.
While this establishes a reasonable bound on feasible paths, it
does not consider the consequence of lengthening a segment
to tailor duration. Since we do not want to depend on loiter
orbit synchronization, in the worst case, a path may have
to be lengthened by the full circumference of the orbit
to achieve team simultaneous arrival. We overestimate this
spacing to ≥ 8raugmented so that the derived parametric
curves require minimal complexity to satisfy time of arrival
and feasibility constraints. For our vehicles, the duration of
this traverse is less than forty seconds. Closer proximity is
feasible if more constraints are included but we work with
relatively slack constraints so the subsequent determination
of path extensions required to satisfy simultaneous arrival
requirements and feasibility constraints is straightforward.
We do not expressly use this geometry to construct paths
but rather to establish bounds on the existence of feasible
paths.

III. APPLICATION OF A PARAMETRIC CURVE
FRAMEWORK

Parametric polynomial curves are a natural framework for
this application. Complete trajectories can be encoded with
a small set of control points. In [13] we documented how
parametric curves can be directly integrated with autopilot
speed and turning commands so that navigation commands
can be rapidly computed based on an arbitrary vehicle
location and the associated point on the trajectory curve.
Computation requirements are minimal to determine points
along a path as well as other parameters such as tangent,
normal, and curvature. In this application, the approach we
take to provide simultaneous arrival for all agents is to



Fig. 4. Geometric construction of feasible path between IC orbit and
mission starting point

first find paths solely based on boundary conditions using
the fewest number of control points. These paths are then
augmented to guarantee feasibility and finally additional
control points are added to provide additional degrees of
freedom so boundary conditions may be preserved whilst
the interior portion of the shorter paths can be lengthened as
required. The fewest number of control points that provides
C2 continuity at both ends with fixed boundary conditions is
six4. Our algorithm can be configured to accept any number
of agents but will be illustrated with two for simplicity.

A. Selection of an Appropriate Parametric Polynomial Basis

There are many polynomial bases with which parametric
splines between our boundary conditions could be developed.
Hermite and Legendre bases permit affine path constructions
but do not guarantee curves will reside within the convex hull
of their control points. Bernstein polynomials (Bezier curves
and Pythagorean Hodographs) provide a convex hull property
but do not permit local curve adjustment, which is useful for
duration matching. Furthermore, Pythagorean Hodographs
are too computationally complex for our near-real-time appli-
cation but have been used in this context off-line [10]. Hence,
we use B-splines to minimize computation and permit local
curve shaping for duration matching. In [13], we showed
that quartic splines provide sufficient degrees of freedom to
approximate feasible trajectories for fixed-wing UAS, based
on the equations of motion expressed in (1). We use clamped
uniform spline basis functions5 to ensure solutions are well
conditioned numerically. The structure of the equation in this
case is:

4Six control points permit location, first and second derivatives of the
path to be matched at both ends but provides limited further independent
degrees of freedom.

5nth order clamped B-splines use n + 1 repeated knots at starting and
ending parameters. In addition, to support a curve with m control points,
the associated knot vector must be m+ n+ 1 in length.

r(τ) =
5∑

m=0

Nm,4(τ)pm, where τ ∈ [0, 1)

pm ≡ set of 6 geometrically configured control points in R2

Nm,4(τ) ≡ set of 6 basis functions of degree 4
(2)

Defining a curve solely on C2 continuity boundary condi-
tions establishes the following relations:

r(0) =
5∑

m=0

Nm,4(0)pm

r′(0) =
5∑

m=0

N ′m,4(0)pm

r′′(0) =
5∑

m=0

N ′′m,4(0)pm

r′′(1) =
5∑

m=0

N ′′m,4(1)pm

r′(1) =
5∑

m=0

N ′m,4(1)pm

r(1) =
5∑

m=0

Nm,4(1)pm

(3)

Note, since we use clamped uniform B-splines, (3) can be
expressed numerically (for r(τ) and each element of pm in
R2), as follows:

r(0)
r′(0)
r′′(0)
r′′(1)
r′(1)
r(1)

 =


1 0 0 0 0 0
−4 4 0 0 0 0
12 −18 6 0 0 0
0 0 0 6 −18 12
0 0 0 0 −4 4
0 0 0 0 0 1




p0

p1

p2

p3

p4

p5

 (4)

The block diagonal structure of (4) permits solution through
two decoupled equations:p0

p1

p2

 =

1 0 0
1 1

4 0
1 3

4
1
6

 r(0)
r′(0)
r′′(0)

 (5)

p3

p4

p5

 =

 1
6 − 3

4 1
0 − 1

4 1
0 0 1

r′′(1)
r′(1)
r(1)

 (6)

B. Determination of candidate feasible paths based on
boundary conditions

Note, based on (6), when the direction of the planned
route is approximately in line with the direction from the
holding pattern/orbit, the last three control points of a
connecting spline are determined solely by the start of the
planned mission. When the direction of the planned path
is orthogonal to the approach direction or opposes it, an
additional Scheuer graphic construction, introduced in Figure



Fig. 5. Geometric construction of feasible path between IC orbit and
mission starting point

2, must be adjoined to the planned path to minimize the
complexity required to guarantee feasibility. Since loiter
patterns can be freely placed, this case is considered to
be an exception and will not be further developed here. A
direct approach to the planned mission is used to illustrate
the general case. Having established a minimum separation
bound between or orbit center and the mission start point for
each vehicle, it remains to compute the point of departure
from the loiter pattern. To determine the departure geometry,
we apply the Scheuer graphic construction to determine the
point on the augmented turning radius circle for which the
flight path direction is pointed towards the solution. We
direct the approach from the construction to the innermost
control point of the arrival boundary condition, as described
by (6), see Figure 56. This geometry7 permits a relatively
straight path following orbit departure but introduces limits
on further tailoring for duration. Consequently, we solely use
it to identify the latest practical orbit departure path after
which it may be practical to traverse the orbit again to avoid
unnecessary inflection when a path is lengthened to match
duration. By selecting a departure earlier than illustrated, the
net effect is to permit path lengthening without introducing
inflections that tend to result in local maxima of curvature
which adversely affect feasibility. We select a departure point
whose position angle is rotated further back on the loiter
circle from A by 75o to solve (5)8. The rationale for this
step will be clear when shorter paths are lengthened for
simultaneous arrival. The steps of the overall process are
listed below (using nomenclature introduced on Figure 5).

6The selection of this control point (C on Figure 5) to which the path
is directed from point B is based on the characteristic that the spline path
is within the convex hull of control points and in the extreme, the path
is actually defined by the control points: for orbit departure from point A,
the vehicle can achieve straight flight at point B with a direction aligned
towards point C.

7The derivation of the geometry shown in Figure 5 is presented in the
Appendix.

8The path from A to B is affine so it can be translated/rotated to any
position on the orbit.

1) Plan paths off-line for each vehicle using our graph-
search based approach [14]. Paths have initial location,
direction and curvature as determined by a graph-
search based optimization algorithm.

a) Determine control points p3, p4, and p5 from the
boundary conditions at the start of the planned
mission.

b) Based on planned mission, locate points C and D
so that points A and B may be determined based
on orbit around D (i.e. locate D sufficiently far
from p5 as discussed in sub-section II-A).

c) Determine control points p0, p1, and p2 for a
loiter departure point, 75o earlier on the orbit than
A′9.

2) Augment boundary condition spline solutions so that
all paths meet curvature constraints (use tangent scal-
ing).

3) Deploy the vehicles to their staging orbit locations.
4) Determine the duration (length at constant velocity)

of a feasible path for each vehicle based on current
location, traverse to the departure from orbit point and
then to the mission starting point p5.

5) Compare the durations (lengths) of all paths and select
the longest as the one to match.

6) Lengthen the shorter paths while abiding by feasibility
constraints until all paths have equal duration.

7) Transmit simultaneous arrival path definitions to vehi-
cles and commence mission.

The first three steps above are not time-critical and can be
executed as soon as the planner converges. The last four
steps are time-critical and constitute the requirements for
our simultaneous arrival algorithm. With respect to step 6,
since the loiter patterns are asynchronous, the differences
in duration can be on the order of the circumference of a
loiter orbit. The results of the first two steps are illustrated
on Figure 6. The curvature and its derivative with respect to
τ for these curves are illustrated on Figure 7. Note, the cur-
vature of these paths far exceeds the feasibility constraints,
so they must undergo refinement before time of arrival can
be considered.

IV. AUGMENTING CANDIDATE PATHS SO THAT ALL ARE
FEASIBLE

In general, a solution, as outlined in Section III-B, de-
termined solely on boundary condition is not feasible as
it fails to satisfy curvature constraints, especially near the
endpoints, as illustrated above in Figure 7. Therefore, a
minimum complexity solution to tailor each spline path for
feasibility is required. Additionally, once paths are made
feasible, it is preferable that the results not require further
feasibility validation when tailoring for simultaneous arrival
is carried out. In order to satisfy these objectives and simplify
the problem, we constrain the bearing from the orbit center

9In case the loiter pattern is not an orbit, the Scheuer construction may
be required at the onset from a point between A and A′ to establish an
equivalent orbit center.



Fig. 6. Candidate paths between IC orbits and mission starting points
(showing construction lines to locate orbit departure points)

Fig. 7. Curvature and its derivative with respect to the parameter τ for
each vehicle (for paths shown on Figure 6)

to the mission start of each path to lie within a ±30o

angle of the path’s initial tangent vector. This enables use of
tangent magnitude scaling to adjust curvature in the vicinity
of both endpoints. The six control point spline boundary
condition solution has a single degree of freedom at each end
with which curvature may be adjusted. G2 continuity can
be preserved by appropriately scaling the first and second
derivatives of the path with respect to the parameter, τ .
Position and direction of departure (and arrival) are fixed
by boundary conditions but the magnitude of the parametric
speed and acceleration vectors can be scaled so that direction
and curvature is invariant. When the paths are flown, vehicle
speed can be set to satisfy C2 continuity in the time domain,
so only G2 continuity is required spatially. Denoting tangent
scaling factors as ρstart and ρend to be applied respectively
to the starting and ending portions of the curve, (5) and
(6) can be scaled without changing direction or curvature as
follows: p0

p1

p2

 =

1 0 0
1 1

4 0
1 3

4
1
6

 r(0)
ρstartr

′(0)
ρ2startr

′′(0)

 (7)

p3

p4

p5

 =

 1
6 − 3

4 1
0 − 1

4 1
0 0 1

ρ2endr′′(1)
ρendr

′(1)
r(1)

 (8)

Curvature, defined below for reference in (9), is a compu-
tationally expensive expression in a B-spline representation.
Consequently, ensuring peak curvature stays within bounds

throughout each path is a challenging optimization problem
in this framework. In the general case for the 6 control
point structure there will be a local maximum near each
endpoint and possibly one more near the midpoint. Rather
than incur the computational cost of a precise optimization
to find the scale factor, ρ, that minimizes κmax for each path,
an approximation of κmax as function of the ρ enables use of
a simple minimizing routine that can be executed until κmax
is bounded by vehicle turning limits. The first step is to find
the parameter, τ , for each candidate curve at which κmax
occurs, since we do not want to sample the entire curve to
find the maxima. Even though κ and its derivative ∂κ/∂τ
are not polynomials, they are easily expressed as functions
of the spline parameter, τ . The structure of the 6 control
point boundary condition solution results in ∂κ/∂τ being a
smooth function. The first root of this function with respect
to variation in τ from each endpoint identifies the parameter
at which κmax occurs on each end. These can be found by
using a simple quasi-Newton root solver whose details are
described in the Appendix. To guarantee convergence, it is
sufficient to require the magnitude of ∂κ/∂τ for the second
iteration to be less than the first, since the spline approaches
minimum curvature near it parametric midpoint. In general,
a few sample iterations may be required to satisfy this
initialization criterion (The inset of the right panel of figure
7 illustrates an example of this at the arrival end). The super-
linear convergence rate of this method then permits solution
of κmax within as few as five iterations, so computational
delay is not a significant issue.

κ ≡ x′y′′ − y′x′′

(x′2 + y′2)
3
2

=
ẋÿ − ẏẍ

(ẋ2 + ẏ2)
3
2

(9)

To ensure the spline curves are feasible, iterative values of
ρstart(end) are used in conjunction with another instance
of the quasi-Newton solver to minimize the magnitude of
κmax with respect to ρstart(end) by locating the zeros of
∂κmax/∂ρstart(end). This is accomplished with minimum
computation by seeding iterations with small perturbations in
ρ with respect to each endpoint10. Further application details
are provided in the Appendix. For the example shown in
Figure 6, the shape of the surface of ∂κmax/∂ρ on which
(14) operates is illustrated on Figure 8. The smoothness
of the surface illustrates the rationale for selection of such
rudimentary solvers. Once all paths have been rendered
feasible, shorter ones can be tailored for simultaneous arrival.

V. DETERMINATION OF EQUAL DURATION PATHS
(PROVIDE SIMULTANEOUS ARRIVAL)

The geometric construction technique described in pre-
ceding sub-section permits path duration for each vehicle,
from present time to mission start, to be computed as the
summation of the time required to traverse along an orbit
from present position to the orbit departure point plus the
time to exit the orbit and reach the mission start point. The

10The 6 control point B-spline does not exhibit local control at each
endpoint with respect to ρ but the effect of ρstart on the end portion is
second order and vice-versa.



Fig. 8. Curvature variation with tangent scaling applied uniformly at both
ends of each curve.

nominal speed of each vehicle is used to relate distance to
time. The feasible spline between orbit departure (p0) and
mission start (p5) for each vehicle constitutes the portion of
each path that can be further tailored for simultaneous arrival.
However, if the shorter duration splines are lengthened as
defined during the feasibility validation step, they may incur
additional local maxima in curvature since tangent scaling
can cause control points to crossover in the extreme. In
order to preserve the boundary conditions established by the
six control points and minimize the effect on curvature, we
leverage the local control characteristic of B-splines by sub-
dividing each path and inserting two additional interior con-
trol points. We use the knot refinement technique described
by Lyche and Mørken in [15] to accomplish this with the
following knot vectors:

For a knot vector, tk, defined as tk ∈ [0, 1]

6 control point knot vector ≡ [0, 0, 0, 0, 0, 0.5, 1, 1, 1, 1, 1]

8 control point knot vector ≡
[0, 0, 0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1, 1, 1]

(10)

The knot insertion process, which yields an identical curve
with additional control points, is a matrix-based equation (see
[15]), which can be pre-computed so during execution it only
requires a single matrix multiply operation. We then tailor
the location of the 4th control point of the shorter paths to
satisfy equal duration (simultaneous arrival) requirements11.
The path of the latest arrival vehicle is used to establish a
specified path length to which the others will be tailored.
To effect path lengthening, the 4th control point of all
short duration paths is progressively perturbed, also using
a quasi-Newton solver, along its associated normal line with
respect to the feasible path prior to subdivision. The details
of finding the path normal associated with the control point
are presented in the Appendix. The case introduced in Figure
6 is completed on Figure 9 for the extreme case where the
instantaneous position of the vehicle on the left would permit

11Path lengths are computed using a quadrature-based algorithm we
derived in [13]. Nominal speed of each vehicle is used to relate distance to
time for simultaneous arrival.

it to instantly depart the loiter orbit while the one on the
left was positioned so that it had to complete nearly a full
orbit before it could depart its orbit. Hence, the left vehicle
path required lengthening, as shown, for simultaneous arrival.
The location of the tailored control point and its normal
vector to its associated feasible spline is also shown. The

Fig. 9. Completed two vehicle example.

curvature of the tailored paths, both for feasibility through
tangent scaling, and path length through adjustment of the
4th control point is shown on Figure 10 below. The last

Fig. 10. Curvature with respect to the parameter τ for each vehicle for
paths shown on 9

step in this process is to combine the path from current
position to orbit departure and the 8 control point splines for
each vehicle into a composite which is then approximated
by a 12 control point spline, the standard we use for each
mission segment for uniform mission specification. The
approximation algorithm is identical to that used to define
the planned mission segments; see [13] for details.

VI. FLIGHT TEST VALIDATION

These concepts were validated during a series of flight
trials at the Naval Postgraduate School (NPS) Joint Inter-
agency Field Experiments (JIFX 14-2) held February 10-13,



2014. The NPS UAV lab has developed a Rapid Flight Test
Prototyping System (RFTPS) to enable on-board integration
of advanced control algorithms from concept to flight test.
The principal capability of the system enables advanced
control development, integration and deterministic execution
of the resulting code on-board, and advanced data logging
and communication capabilities. The system is based on tight
integration of several software and hardware components
including convenient Matlab/Simulink/RTW research and
development environment, an advanced industrial autopilot
and a high performance microcomputer. Major benefits of
the developed RFTPS system include:
• convenience of high level algorithm design, auto-coding

capabilities and hard real-time execution,
• simple and transparent interfacing of hardware that is

primarily based on the well supported serial and TCP/IP
communication,

• inexpensive design of on-board components based on
COTS technology,

• advanced payloads, which are highly reliable, using
industrial grade PC104 boards and miniature sensors
that can be easily changed or upgraded as mission
requirements dictate; the telemetry links are secure,
yet low power and unobtrusive to the public, thus
dispensing with the need for special authorizations from
government authorities.

An overview of the system configuration is presented in [13].
A key feature of this system is the integration of all payload
subsystems via Ethernet. On-board the vehicle, subsystems
are tied to a mesh access point through which data are com-
municated to the ground. The IP-based architecture makes
the system scalable to any sensor configuration that can be
carried by the vehicle and provides open and secure access.
Moreover, the self-configuring wireless mesh network data
communication (wave relay) is independent from the primary
autopilot command/control link for safety of flight. The
mission sensors used for this research include full motion
video (FMV) and still cameras that are pointed by gimbal
systems with one (roll stabilized) or two degrees of freedom
(pan-tilt for direct pointing). The type of vehicle we use is
shown in Figure 11. The NPS mobile ground station from
which experiments are conducted is shown in Figure 12.

Fig. 11. NPS Flight Test Vehicle

Fig. 12. NPS Mobile GCS

A. Flight test results

Figure 13 depicts flight test data for the approach errors
of a single vehicle when a planned path is approached from
arbitrary loiter orbit locations and the coordinated arrival
algorithm is not used. In these cases the autopilot converges
to precise trajectories once the line orthogonal to the initial
point is breached but entry is not precise, nor is the path
taken of consistent duration. This can degrade coordination
across the team and cause a portion of the planned path
to be missed. The coordinated arrival algorithm is designed
to permit all vehicles to achieve simultaneous arrival with
C2 continuity at the initial points of their planned paths.
Flight test results for our algorithm for a variety of starting

Fig. 13. Vehicle tracks to start of a planned mission from arbitrary orbit
locations (coordinated arrival not used.

locations are presented on Figure 14. All flight path tracks
join their respective planned paths with C2 continuity at the
entry points with precise coordination in time. These paths
enable coordinated missions to commence as planned.

VII. CONCLUSIONS

We have demonstrated a geometrically derived algorithm
to compute simultaneous arrival paths for a team of fixed-
wing aerial vehicles with fixed boundary conditions and
curvature constraints along the path. By dividing the problem
into the stages of finding a boundary condition solution



Fig. 14. Coordinated vehicle tracks to start of a planned mission from
arbitrary orbit locations (acquired from flight test).

for each vehicle, tailoring these for feasibility, and then
lengthening all but the longest in duration, the sub-problems
admitted elementary geometric solutions. The bounds on
these solutions were empirically derived to enable a complete
orbit circumference to be added to the shortest path. We
selected quasi-Newton root solvers for their super-linear rate
of convergence. The application of parametric polynomials
rendered the intricate functionals that must to be optimized
within constraints as very smooth curves and surfaces. This
permitted the partial derivatives required for optimization to
be computed using simple difference equations. By minimiz-
ing the number of control points used for path representation,
the presence of local minima were addressed without issue.
The result is computationally simple enough to for near-real
time execution. Precise team coordination can be important
for surveillance type missions. This algorithm is also appli-
cable to other types of vehicles that can be characterized as
drift-less. As derived, this approach requires relatively calm
winds to be successful. Steps to provide robustness to winds
are ongoing but results from flight test indicate the current
approach is practical.

VIII. FUTURE WORK

We are in the process of generalizing the algorithm to
support mission approach from any direction and at any
proximity. As described, if the initial tangent vector of the
planned path is opposite to the direction from which it is
approached, this algorithm can fail to sufficiently tailor cur-
vature at the arrival end because it relies on tangent scaling.
As noted earlier, a further instance of appending a Scheuer
construction on the arrival end is a practical approach to
resolve this issue but the bounds for its application are still
being derived. Furthermore, we are looking at ways to make
the algorithm more robust to winds. In this regard, we are
considering ways to iteratively call the algorithm if wind or
other disturbances introduce errors in the coordinated spline
paths. A simpler version of the algorithm can be used once a
vehicle is directed towards its initial planned mission point.

APPENDIX
A. Determining a practical loiter orbit departure point

Parameters for the geometry presented in Figure 5 can be
determined as follows: the orbit center, point D, is set by the

user based on an offset from the mission start as described
earlier and illustrated earlier in Figure 3. Therefore, distance
C̄D is known. The angle ∠CBD is also known: ∠CBD =
µ + π

2 , based on Scheuer’s construction. The Law of Sines
can then be used to find the angle denoted as ∠δ, since its
corresponding line segment is the radius of the augmented
turning circle. This relation is used to locate point B and
hence A for each vehicle’s orbit.

B. Finding local maxima in curvature

To find the parameter, τ , such that κ(τ) is a local maxi-
mum of a 6 control point spline, we look for roots of ∂κ/∂τ .
A quasi-Newton method12 can be set up to find these roots by
sampling perturbations in τ from each end such that κ′2 < κ′1
for τ2 more interior to the curve than τ1. Successive iterations
may be found:

τn = τn−1 − κ′(τn−1) ∗ τn−1 − τn−2
κ′(τn−1)− κ′(τn−2)

(11)

The structure of the 6 control point spline permits this
technique to be started from each end to rapidly provide
the local maxima of a given path so that it can be tailored
if required to satisfy feasibility constraints.

C. Tangent scaling to tailor curvature of interior portions of
a path

The use of tangent vector scaling at each end of a path
to ensure κmax(ρ) satisfies feasibility constraints is a multi-
variate optimization problem, i.e. at each end: κmaxstart(end) =

f(ρstart, ρend), where the values at each end are calculated
from small perturbations about a central value13. Approx-
imating κmax(ρstart, ρend) at each end by a second order
Taylor Series yields:

κmax(ρ) ≈ κmax(ρi) + 〈∇κmax(ρi), (ρ− ρi)〉+
1

2
(ρ− ρi)D2κmax(ρi)(ρ− ρi)

for ρ ∈ <2: (ρstart, ρend)

(12)

Where ρi denotes the central values for the ith iteration
about which the series is evaluated. If the Hessian matrix,
D2κmax(ρi), is positive definite, iterative values to find a
minimal κmax(ρ) can be found:

ρn+1 = ρn − [D2κmax(ρn)]−1∇κmax(ρn) (13)

The quasi-Newton approach is to approximate the Hessian
through difference equations. Furthermore, by noting that
its off-diagonal terms are of second order significance, the
equation can be diagonalized so a matrix inverse calculation
is not required. Iterations are alternated for ρstart and ρend
with updates only made to ρstart when the nth iteration of
κmax(ρstart) fails bounds on the starting portion and to ρend

12The classic Newton-Raphson iterative root solver can be expressed:
xn+1 = xn− f(xn)

f ′(xn)
. Quasi-Newton methods approximate the derivative,

typically through difference equations. While they do not converge as rapidly
as Newton-Raphson, convergence is still super-linear and may require less
computational time, especially when derivatives are costly to compute as in
the case of curvature.

13See Equation (14) for nomenclature.



when the nth iteration of κmax(ρend) fails bounds on the
ending portion. The process is initiated by using a pair of
values of at ρstart(end) that constitute a small perturbation
to find numerical expressions for ∂κmax/∂ρ at each end
of the spline. These are used to seed this application of
the solver to optimize ρ until the magnitude of κmax is
within feasibility bounds. Again, super-linear convergence
means only a few iterations are required to tailor the six
control point spline curve for each vehicle until it is rendered
feasible. In general, the final values of the scale factors are
not equal (ρstart 6= ρend), so the separate scaling is required
if such a simple technique is to be successful. The equations
for this process are described below in (14).

∂κmax
∂ρi

≈ κmax (ρb)− κmax (ρa)

ρb − ρa
ρi =

ρb + ρb
2

(14)

Where ρa = 1 and ρb = 1 + ε for i = 1; ρa = 1 + δ and
ρb = 1 + δ + ε for i = 2. For iterations where i > 2, ρi is
then set by the quasi-Newton solver:

ρi = ρi−1 − κmaxi−1

ρi−1 − ρi−2
κmaxi−1

− κmaxi−2

(15)

Perturbations are then set by: ρa = ρi − ε/2 and ρb = ρi +
ε/2; for δ << 1 and ε << δ.

D. Finding the normal vector from a curve to a (control)
point

The normal vector from a spline curve to one of its control
points can be found by noting that the inner product of the
tangent at that point on the curve with respect to the vector
from the curve, r(τ) = [x(τ), y(τ)], to the (control) point,
pi = [xi, yi], is zero there:〈

dr
dτ

(τ), (pi − r(τ)

〉
= 0.0 =

dx

dτ
(τ) · (xi − x(τ)) +

dy

dτ
(τ) · (yi − y(τ))

(16)

A rapidly converging iterative relation can be set up to find
the parameter, τ , for which a control point, pi, is normal
to the curve by leveraging the shape of the basis functions.
By starting a Newton-Raphson iteration at the value of τ
associated with the maximum of the ith basis function,
the user can set the desired tolerance on the magnitude of
the inner product. This relation can be used to identify the
normal vector of a curve that intersects a designated control
point. We use this approach to identify the line along which
the fourth control point in the 8 point spline can be slid to
lengthen a path. By using this vector, the curvature is not
increased until a path has been significantly lengthened and
the curve is locally governed by a single basis function.
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