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Abstract— Robots operating in real world environments need
to find motion plans quickly. Robot motion should also be
efficient and, when operating among people, predictable. Min-
imizing a cost function, e.g. path length, can produce short,
reasonable paths. Anytime planners are ideal for this since they
find an initial solution quickly and then improve solution quality
as time permits. In previous work, we introduced the concept of
Experience Graphs, which allow search-based planners to find
paths with bounded sub-optimality quickly by reusing parts
of previous paths where relevant. Here we extend planning
with Experience Graphs to work in an anytime fashion so a
first solution is found quickly using prior experience. As time
allows, the dependence on this experience is reduced in order
to produce closer to optimal solutions. We also demonstrate
how Experience Graphs provide a new way of approaching
incremental planning as they naturally reuse information when
the environment, the starting configuration of the robot or the
goal configuration change. Experimentally, we demonstrate the
anytime and incremental properties of our algorithm on mobile
manipulation tasks in both simulation and on a real PR2 robot.

I. INTRODUCTION

Motion planning in real world human environments is a
challenging task. Robots have to deal with changing environ-
ments, complex tasks, and account for the presence of hu-
mans. Mobile pick and place tasks can involve multiple steps:
positioning the base of the robot, executing arm motions,
grasping and navigation while carrying objects (Figure 1).
Motion planning for these steps must be fast, to deal with
human expectations for quick execution of tasks and also for
efficient operation. Planning must also be accurate, avoiding
collisions with the environment and executing tasks correctly.

Human environments, even seemingly unstructured envi-
ronments like households, retain some amount of structure
that can be exploited for fast motion planning. An example
of this is a typical kitchen environment. The locations of
individual objects will change a lot in such an environment.
However, most objects will be found on counters, inside
drawers, on tables, inside cabinets, etc., i.e. the underlying
structure of the environment does not change. Motion plan-
ning in such environments is therefore often repetitive.

In previous work [1], we introduced the concept of Expe-
rience Graphs. Experience Graphs attempt to retain informa-
tion from previous successful motion plans (or demonstra-
tions of paths for a particular task). We showed how search-
based planners can be modified to use Experience Graphs,
using previous information when possible to speedup motion
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Fig. 1: Motion planning is often used to compute motions for complex tasks
such as dual-arm mobile manipulation.

planning significantly while still gracefully falling back to
planning from scratch when necessary. We demonstrated the
results of this approach by applying it to problems of mobile
pick and place in a kitchen environment.

In this work, we build on the concept of Experience
Graphs and extend it to allow for anytime planning and in-
cremental planning. Anytime planners are designed to return
an initial solution quickly and then improve solution quality
as time permits. Anytime planning allows robots to start
moving quickly using an initial plan while giving the planner
more time to refine the plan as time goes on. This allows
robots to be more efficient by parallelizing and interleaving
planning and execution. We present two approaches that
allow for making Experience Graphs anytime and show how
the approaches may be more suitable in different situations.

We also show how Experience Graphs can naturally be
used for incremental planning. Incremental planning involves
situations where the environment that the robot is operating
in changes slightly or the goal or start configuration of the
robot changes. In such cases, Experience Graphs naturally
reuse as much information as they can while still dealing with
the changes. We present both simulated and experimental
results to show how our approach can be used for anytime
motion planning with a mobile manipulation robot. We
demonstrate the benefits of the incremental nature of the
planner by showing how it can quickly replan when the goal
configuration of the robot changes.

II. RELATED WORK

Motion planning, especially for mobile manipulation, has
seen considerable interest recently. Most of the approaches
were initially focused on treating each new motion planning
request as a fresh request for planning. There was little, if
any, reuse of information from experience gained while car-
rying out a series of motion plans. However, recent work has
seen more reuse of previous information. In [2], Lien et. al.
constructed roadmaps for obstacles, stored them in a database
and reused them during motion planning while Bruce et.
al. [3] biased an RRT search towards waypoints remembered
from previous motion planning attempts. Related work can
also be found in [4], [5].



Other approaches to exploiting experience has included
the use of trajectory libraries. These libraries were used to
adapt policies for control of underactuated systems and high-
dimensional systems in [6], while in [7], new trajectories
were generated by combining nearby trajectories. A different
application of such techniques can also be found in [8] while
transfer of policies across tasks was presented in [9]. The
reuse of environment information, coupled with information
about previous motion plans, was presented in [10] where
machine learning methods were coupled with paths stored
in a database to generate new motion plans based on the
nature of the environment and the types of obstacles.

Jiang et. al. [11] present an approach to using a database
of older motion plans to draw a bi-directional RRT search
towards a path stored in the database that is most similar
to the new motion plan request. Recent work [12] attempts
to repair previous plans from a database using randomized
planners. As mentioned in [1], the use of a database of
motion plans is also core to Experience Graphs. Experience
Graphs attempt to use all the information from previous
experiences instead of attempting to find the nearest or
closest motion plan in a database. They are thus capable
of reusing many parts of the previous experiences when
possible.

Anytime versions of several planners have also been
explored in previous work. ARA* presented in [13] is an
anytime version of the A* algorithm that iteratively improves
its solution and and sub-optimality bound on solution quality.
The AD* algorithm [14] is an anytime incremental search-
based planner built on the D* planner and is capable of
efficiently dealing with small changes in the environment
and replanning without having to plan from scratch. The
RRT* planner [15] is an incremental anytime randomized
planner that has been shown to work well for manipulation
and navigation tasks.

Search-based planning with Experience Graphs offers sev-
eral advantages over these approaches. It does not rely on a
particular representation of the environment. It also builds the
graph using paths from prior tasks in contrast to approaches
like Probabilistic Roadmaps [16] which rely on sampling
the whole space. We refer the interested reader to [1] for
more details on the merits of using Experience Graphs. The
addition of anytime capabilities in this work allows us to
handle realtime motion planning problems better.

III. EXPERIENCE GRAPHS

A. Overview

This section gives an overview of our previous work on
Experience Graphs (we refer the interested reader to [1] for
more details). An Experience Graph or E-Graph is a graph
formed from the solutions found by the planner for previous
planning queries or from demonstrations. We will abbreviate
this graph as GE . The graph GE is incomparably smaller
than graph G used to represent the original planning problem.
At the same time, it is representative of the connectivity of
the space exercised by the previously found motions. The key
idea of planning with GE is to bias the search efforts, using

a specially constructed heuristic function, towards finding a
way to get onto the graph GE and to remain searching GE

rather than G as much as possible. This avoids exploring
large portions of the original graph G. In the following we
explain how to do this in a way that guarantees completeness
and bounds on solution quality with respect to the original
graph G.

B. Definitions and Assumptions

First, we will list some definitions and notations that
will help explain our algorithm. We assume the problem
is represented as a graph where a start and goal state are
provided (sstart, sgoal) and the desired output is a path
(sequence of edges) that connect the start to the goal.
• G(V G, EG) is a graph modeling the original motion

planning problem, where V G is the set of vertices and
EG is the set of edges connecting pairs of vertices in
V G.

• GE(V E , EE) is the E-Graph that our algorithm builds
over time (GE ⊆ G).

• c(u, v) is the cost of the edge from vertex u to vertex
v

• cE(u, v) is the cost of the edge from vertex u to vertex
v in graph GE and is always equal to c(u, v)

Edge costs in the graph are allowed to change over time
(including edges being removed and added which happens
when new obstacles appear or old obstacles disappear).
The algorithm is based on heuristic search and is therefore
assumed to take in a heuristic function hG(u, v) estimating
the cost from u to v (u, v ∈ V G). We assume hG(u, v) is
admissible and consistent for any pair of states u, v ∈ V G.
An admissible heuristic never overestimates the minimum
cost from any state to any other state. A consistent heuris-
tic hG(u, v) is one that satisfies the triangle inequality,
hG(u, v) ≤ c(u, s) + hG(s, v) and hG(u, u) = 0, ∀u, v, s ∈
V G and ∀(u, s) ∈ EG.

C. Experience Graphs

The planner maintains two graphs, G and GE . Every time
the planner receives a new planning request the findPath
function (shown below) is called. It first updates GE to
account for edge cost changes due to differences between the
current planning episode and previous planning episodes. If
any edges are invalid (e.g. they are now blocked by obstacles)
they are put into a disabled list. Conversely, if an edge in the
disabled list now has finite cost it is re-enabled. At this point,
the graph GE should only contain edges with finite costs.
Then it calls the computePath function, which produces a
path π. This path is then added to GE for future reuse.

findPath(sstart, sgoal)
1: updateChangedCosts()
2: disable edges that are now invalid
3: re-enable disabled edges that are now valid
4: precomputeShortcuts()
5: π = computePath(sstart, sgoal)

6: GE = GE ∪ π



(a) εE = 1 (b) εE → ∞

Fig. 2: Effect of εE . The dark solid lines are paths in GE while the
dark dotted lines are best paths from s0 to sgoal according to hE . Note
as εE increases, the heuristic prefers to travel on GE . The light gray
circles and lines show the graph G and the filled in gray circles show the
expanded states when planning with E-Graphs. The dark gray arrow shows
the returned path.

The speed-up of planning with Experience Graphs comes
from being able to reuse parts of old paths and avoid
searching large portions of graph G. To accomplish this we
introduce a heuristic which intelligently guides the search
toward GE when it looks like following parts of paths in
GE will help the search get close to the goal. We define
a new heuristic hE in terms of the given heuristic hG and
edges in GE for any state s0 ∈ V G:

hE(s0) = min
π

N−1∑
i=0

min{εEhG(si, si+1), c
E(si, si+1)}

(1)
where π is a path 〈s0 . . . sN 〉 and sN = sgoal and εE is a
scalar ≥ 1.

Equation 1 returns the cost of the minimal path from the
queried state s0 to the goal where the path consists of an
arbitrary number of two kinds of segments. The first type
of segment corresponds to an instantaneous jump between
between si and si+1 at a cost equal to the original heuristic
inflated by εE (this is equivalent to saying all states can reach
all of the other states in G according to the original heuristic
inflated by εE). The second kind of segment is an edge from
GE and it uses its actual cost cE (∞ if the edge does not
exist in GE). As the penalty term εE increases, the heuristic
path from s0 to the goal will go farther out of its way to
travel toward the goal using E-Graph edges.

The larger εE is, the more the actual search avoids
exploring G and focuses on traveling on paths in GE .
Figure 2 demonstrates how this works. As εE increases, the
heuristic guides the search to expand states along parts of
GE . In Figure 2a, the heuristic causes the search to ignore
the graph GE because without inflating hG at all (εE = 1),
the heuristics will never favor following edges in GE . This
figure also shows how during the search, by following GE

paths, we can avoid obstacles and have far fewer expansions.
The expanded states are shown as filled in gray circles, which
change based on εE .

IV. ANYTIME E-GRAPHS

In this section we describe two novel anytime extensions to
planning with E-Graphs. The computePath function (shown
below) runs a modified version of ARA* [13]. Anytime
Repairing A* runs a series of weighted A* searches with
decreasing sub-optimality bounds until it produces the op-
timal solution. The result is that an initial solution can be

found fast, and the quality of the solution improved as time
allows. Weighted A* uses an inflated heuristic to make an A*
search more focused, generally finding solutions significantly
faster. The solution cost is guaranteed to be no more than
the inflation factor times the optimal solution cost. The
individual weighted A* searches (improvePath) use our E-
Graph heuristic hE and in addition to using the edges that
G already provides (getSuccessors), we add two additional
types of successors: shortcuts and snap motions (line 4
in findPath). Snap successors are optional dynamically
generated motions that help the search connect to the E-
Graph [1]. Shortcut successors will be covered later.

computePath(sstart, sgoal)
1: OPEN = CLOSED = INCONS = ∅
2: g(sstart) = 0; f(sstart) = fvalue(sstart)
3: g(sgoal) = ∞; f(sgoal) = ∞
4: insert sstart into OPEN with f(sstart)
5: improvePath(sgoal)
6: publish solution with sub-optimality bound = getBound()
7: while not isOptimal() do
8: improveAnytimeParams()
9: move states from INCONS into OPEN

10: f(s) = fvalue(s), ∀s ∈ OPEN
11: update priorities for all s ∈ OPEN according to f(s)
12: CLOSED = ∅
13: improvePath(sgoal)
14: publish solution with sub-optimality bound = getBound()

15: end while

improvePath(sgoal)
1: while f(sgoal) > mins∈OPEN (f(s)) do
2: remove s with the smallest f -value from OPEN
3: insert s in CLOSED
4: S = getSuccessors(s) ∪ shortcuts(s) ∪ snap(s)
5: for all s′ ∈ S do
6: if s′ was not visited before then
7: f(s′) = g(s′) = ∞
8: end if
9: if g(s′) > g(s) + c(s, s′) then

10: g(s′) = g(s) + c(s, s′)
11: if s′ /∈ CLOSED then
12: f(s′) = fvalue(s′)
13: insert s′ into OPEN with f(s′)
14: else
15: insert s′ into INCONS
16: end if
17: end if
18: end for
19: end while

The use of the ARA* algorithm usually makes it easy to
make an A* search anytime. ARA* assumes a consistent
heuristic h(s) which it inflates with a scalar ε ≥ 1. Initially,
ε is large, so a highly weighted A* search is used to find a
solution quickly. After each search iteration ε is reduced and
the solution will be upper bounded more tightly until ε = 1
and a provably optimal solution is found.

Extending E-Graphs to be anytime is not this simple since
the heuristic hE is already partly inflated by εE . If the
heuristic was entirely scaled up by εE we could just factor
it out and run ARA*. However, the heuristic is computed
as the sum of costs: some of which are inflated by εE



(original heuristic costs) and some which are not (E-Graph
edges) so the εE can’t be pulled out. One straightforward
option that we will name H1 is to recompute hE after each
search iteration with a newly reduced value of εE . In our
experiments we found this method to work quite well as it
reduces dependence on the E-Graph in a smooth way. In our
mobile manipulation experiments the heuristic doesn’t take
long to compute compared to the difficulty of the actual
search so it is worth the recomputation overhead to have
a more informative heuristic at each search iteration. To
use this method with ARA*, the following functions used
in computePath and improvePath are implemented as
follows.
• fvalue(s) : return g(s) + εhE(s)
• isOptimal() : return [ε = 1 ∧ εE = 1]
• getBound() : return ε · εE
• improveAnytimeParams() : if εE > 1, decrease εE ;

otherwise, decrease ε
Essentially, we reduce the E-Graph inflation εE after each
search iteration until it equals 1. At that point the heuristic
function no longer has any dependence on the E-Graph. After
that the overall heuristic inflation ε is reduced until it also
equals 1. After this, the solution is provably optimal.

For some planning problems the heuristic computation
is too expensive to be computed many times during the
search. Moreover, in some cases, the heuristic computation
is so expensive that it can only be done offline [17]. We
provide a second anytime E-Graph method, H2, for such
domains. Unlike H1 which has to recompute the heuristic
for each search iteration performed by ARA*, H2 only
computes the hE heuristic once. In H2 we compute hE

only for the initial value of εE . For a given search iteration,
the H2 heuristic is given by max

(
1
δh

E(s), hG(s)
)
. δ is

initialized to 1 and is increased after each iteration until it
is equal to εE . Essentially, after each iteration δ gets larger
and reduces the magnitude of hE . Eventually, the original
heuristic hG becomes the larger heuristic value for all states
(this is guaranteed once δ = εE). Once δ has been increased
so that it equals εE , the anytime search starts reducing ε
until it equals 1. Once a search is run with these values,
the solution is optimal. To use this method with ARA* the
following functions in computePath and improvePath are
implemented as follows.
• fvalue(s) : return g(s) + εmax

(
1
δh

E(s), hG(s)
)

• isOptimal() : return [ε = 1 ∧ δ = εE ]

• getBound() : return ε · ε
E

δ
• improveAnytimeParams() : if δ < εE , increase δ;

otherwise, decrease ε
The H2 method approximates H1 while only having to com-
pute hE once. Our experiments show that the performance
of H2 is almost as good H1 and therefore, may provide a
suitable alternative in domains with expensive to compute
heuristics.

In Experience Graphs, shortcut successors are generated
when expanding a state s ∈ GE . A shortcut successor
uses GE to jump to a place much closer to sgoal [1]. This

shortcut may use many edges from various previous paths.
The shortcuts allow the planner to quickly get near the goal
without having to re-generate paths in GE . Some of these
optional shortcuts can be computed on line 4 of findPath
as shown in our prior work [1]. In our prior work, a shortcut
for s generated the successor closest to sgoal according to
the heuristic hG on the same component of GE as s. This
works well for quickly generating a first solution as it gets
the search as close as possible to the goal state. However, as
the anytime algorithm improves solution quality, this shortcut
quickly becomes too sub-optimal to be used. We therefore
introduce new shortcut successors which are more likely
to be within the asked sub-optimality bound by taking the
heuristic for the current search iteration into account.

Ideally what we would like to see is as the sub-optimality
bound comes down, shortcut successors are generated farther
from the goal in places where continuing to follow the E-
Graph is too out of the way (even if it does eventually
get very close to the goal state). Conveniently, our heuristic
hE already encodes this information since the parameter εE

represents how far out of the way the search is willing to
go to use the E-Graph. We will use the heuristic to decide
where to generate shortcuts. Since the new heuristic becomes
less dependent on the E-Graph with each search iteration,
shortcuts will automatically start getting generated in a way
that travels less far on the E-Graph if it goes out of the way.
To accomplish this, when a state s is expanded on the E-
Graph, we perform a gradient descent on the E-Graph using
the heuristic function H1 or H2 (depending on the method)
until we reach a local minima. More specifically, we look at
the states that s is connected to on the E-Graph, choose the
neighbor with the smallest heuristic and continue the descent
in that direction. When we reach a state s′ where all the E-
Graph neighbors have heuristic values greater or equal to
that of s′, we know we have reached a local minima. Then
s′ becomes the shortcut for s. For efficiency, we can cache
s′ as the shortcut for all the states we passed through during
the gradient descent so each state is only passed through
at most once for shortcut computations during a particular
search iteration.

V. INCREMENTAL E-GRAPHS

In this section, we will discuss the application of Experi-
ence Graphs to incremental planning. Incremental planners
like D* [18] and D* Lite [19] are able to reuse computations
from previous searches when the environment changes or
when the starting state (the pose of the robot) changes. They
do this by planning backward from the goal toward the start
so that the root of the search tree is at the goal. When
the start state changes the entire search tree is unaffected
and the planner just needs to keep running until the new
start state is connected (it may even be in the search tree
already). On the other hand, if the goal state changes, the root
of the search tree is moved and all previous computations
are invalidated. When the environment changes, some parts
of the tree are invalidated. Sometimes this can be quite
significant and it can be faster to plan from scratch due



(a) An initial plan to the goal.
Here the robot is shown at its
start position as a circle.

(b) After encountering a new ob-
stacle (square object in figure),
the planner reconnects the robot
to the rest of the E-Graph by
planning around the obstacle.

(c) When the robot discovers an open door it thought was closed, hE guides
the search through the door instead of continuing to follow the old path, in
order to stay within the sub-optimality bound. It is able to reconnect with
part of the E-Graph on the other side of the door.

Fig. 3: An example of using E-Graph for incremental planning.

to the bookkeeping needed to update g-values of states that
are affected by changed edges in the graph. Because of this
bookkeeping, existing incremental graph searches are not
well suited for planning problems that are higher than 3-
4 dimensions. In contrast, E-Graphs are well-suited for high
dimensional planning problems.

E-Graphs can be used to plan incrementally with minimal
bookkeeping and can still replan using prior computations
even when both the start and goal states change. Unlike
D*, which plans optimal paths, E-Graphs are only beneficial
when searching for paths within a given sub-optimality
bound. E-Graphs handle incremental planning automatically
just by feeding planned paths back into the E-Graph. Then
if the start, goal, or both change, replanning is quick since
the planner will just reconnect the states to parts of the E-
Graph as long as it is within the bound on sub-optimality
the user provides. An experiment showing this kind of
scenario is in our real robot experiments. E-Graphs also
handle changing environments. When the map is changed the
algorithm runs through the E-Graph, disables edges that are
now in collision and re-enables edges that are no longer in
collision (the Experience Graph is incomparably smaller than
the original graph especially since it is constructed in a task
oriented way). For a sufficiently high bound, the planner will
automatically repair the previous path if new obstacles broke
the path. The planner will also shorten a previous path if an
obstacle disappears, in order to stay within its sub-optimality
bound. To demonstrate how E-Graphs can be used to handle a
changing environment, we give a small example in Figure 3.

VI. THEORETICAL ANALYSIS

Lemma 1: Heuristic H1 is ε · εE-consistent.
This heuristic was used in our prior work [1] where we
proved the ε · εE-consistency.

Theorem 1: For a finite graph G, the anytime planner
using H1 terminates, and the solution published after each
iteration is guaranteed to be no worse than ε · εE times the
optimal solution cost in graph G.
Given the ε · εE-consistency Lemma 1, the upper bound
provided after each iteration of the algorithm follows from
the ARA* proofs since we are just running anytime repairing
A* with a custom rule for decrementing the bound between
iterations.

Lemma 2: Heuristic H2 is ε · ε
E

δ -consistent.
From our previous work [1], we know the ε · hE heuristic
is ε · εE-consistent. It follows then that ε

δ · h
E heuristic is

ε
δ · ε

E-consistent
Since hG is actually consistent, it is trivially ε · ε

E

δ -
consistent. Then since the max of two α-consistent heuristics
is α-consistent, we can combine the two heuristics to show
that H2 is ε · ε

E

δ -consistent.
Theorem 2: For a finite graph G, our anytime planner

using H2 terminates, and the solution published after each
iteration is guaranteed to be no worse than ε · ε

E

δ times the
optimal solution cost in graph G.
Due to Lemma 2, we can apply the same argument as for
Theorem 1.

VII. EXPERIMENTAL RESULTS

Search-based planners are challenged by having to plan in
higher-dimensional spaces. Full-body planning for the PR2
robot involves planning with a high number of degrees of
freedom. In our experiments, we tested the planners for
mobile pick and place tasks with the PR2 robot where
the robot is carrying objects in an upright orientation. We
assume that the two end-effectors of the PR2 robot are rigidly
attached to the object. The planning space is 10 dimensional:
the robot’s position and orientation (yaw) in a global frame
constitute 3 degrees of freedom, the redundant degrees of
freedom for the two arms constitute 2 more degrees of
freedom, the 3D position and yaw of the object comprise 4
more degrees of freedom while the height of the telescoping
spine of the robot constitutes the 10th degree of freedom.
Motions for the arms are computed in workspace of the
object (they can vary the x, y, z position or the yaw). Inverse
kinematics is used to check for feasibility.
hG is represented by a 3D Dijkstra heuristic for a sphere

inscribed in the object carried by the robot. The heuristic
accounts for collisions between this object and obstacles in
the environment but does not account for other constraints,
e.g. the workspace of the arms, internal collisions, or col-
lisions between the body of the robot and the environment.
All experiments were carried out with ε = 2 and εE = 10.
Thus, the initial sub-optimality bound is 20. For H1, εE was
decremented by 1 after each iteration and after it reached
1, ε was decremented by 0.2. For H2, δ was incremented
by 1 after each iteration and after it reached εE , ε was
decremented in a similar manner to H1.

The two anytime E-Graph methods (one with heuristics
computed according to H1 and the other one according to
H2) were compared to each other based on how quickly



Fig. 4: Full-body planning in a kitchen scenario (GE after bootstrap goals)

they improve the path quality as they are given more time.
We also compared anytime E-Graphs against ARA* (with
an equivalent ε = 20) and RRT* [15] (an anytime sampling-
based planner which reaches optimality in the limit) on time
to first solution, and the initial and final path quality using
various metrics. We used the implementation of RRT* in
the OMPL [20] (Open Motion Planning Library). Its paths
were post-processed using OMPL’s shortcutter. All planners
operate in the previously defined configuration space and
each was given 2 minutes to find a solution and improve it.

A. Simulation

Tests were run in a simulated kitchen environment (the
tests were similar to those in [1]). 50 goals were chosen in
locations where objects are often found (e.g. tables, coun-
tertops, cabinets, refrigerator, dishwasher). 10 representative
goals were chosen to bootstrap the planner, which was then
tested against the remaining 40 goals. The bootstrap plans
were done to the first solution so both anytime methods had
the same E-Graph. Figure 4 shows GE after bootstrapping.
To ensure the two anytime methods had the same E-Graph
throughout the tests, we did not allow paths from the test set
to be fed back.

We will now compare the results from the two anytime
approaches. Figure 5a shows the average sub-optimality
bound (across the test goals) for the planners across the two
minute planning time. Using a newly computed shortcut for
each new iteration of the search (labeled as “many short-
cuts”) improves both anytime methods. Also, recomputing
the heuristic for each iteration (H1) performs better than
interpolating between the initial and final heuristic (H2). The
better guidance provided to the search more than makes up
for the overhead to recompute the heuristic for each iteration.
Figure 5b shows the same plot but for the average cost of
the solution instead of the bound. We can see that there is
a reasonable correlation between the improvement of the
bound and the actual reduction of the cost. In both plots,
the time starts at 5 seconds so that most trials actually have
a first solution.

For the comparisons against ARA* and RRT*, we used
the anytime E-Graphs with H1 and new shortcuts for each
iteration, since this version performed the best in the previous
comparison. Table I shows the planning times for E-Graphs.
On average, 52% of the edges on the first path produced
by the planner were recycled from GE . After 2 minutes
of improvement, on average, only 21% of the edges on the
final path were reused from GE . In Table II we can see that

(a) Average bound over time (b) Average cost over time

Fig. 5: Anytime profiles for full-body planning in a kitchen scenario

TABLE I: Anytime E-Graph First Solution Planning Time
successes(of 40) mean time(s) std dev(s) max(s)

40 2.12 6.92 43.90

E-Graphs provide a significant speed-up over all the other
methods in finding a first solution, generally over 10 times.
RRT* also fails to solve many of the queries within the 2
minute limit.

Table III shows how the path quality of the first E-Graph
solution compares to other methods. Similarly, Table IV
shows how the E-Graph final solution compares to other
methods. By looking at either table it can be seen that
both ARA* and RRT* improve from their first to final
solution. However, the first solution returned by E-Graphs is
already better than both the first and final solution produced
by RRT* and this ratio only gets larger when comparing
with the final E-Graph path. As expected, the ARA* path
quality is better than the E-Graph first solution since the
algorithm may take a non-direct route in order to reuse prior
experience. Interestingly, after being given 2 minutes to plan,
E-Graphs performs as well as ARA*. This demonstrates that
the artifacts of reusing parts of prior paths drops away as the
planner is given more time to plan.

B. Real Robot Experiments

A series of tests were also run on the PR2 robot (results
from these tests can also be seen in the video accompanying
this paper). To test the anytime properties of our algorithm,
we required the robot to perform a task where it has to lift
a tray off of a low platform onto a high table (Figure 6a).
This task requires use of the arms as well as simultaneous
navigation with the base. An advantage of this kind of
coupled planning (over a hierarchical approach that plans

TABLE II: First Solution Planning Time Comparison
method successes(of 40) mean speed-up std dev max

speed-up speed-up
ARA* 36 16.42 47.97 280.98
RRT* 25 12.36 33.90 165.33

TABLE III: Path Quality Comparison (Other Method to First E-Graph
Solution Ratio)

method object XYZ path std dev
length ratio ratio

ARA* (first solution) 0.86 0.22
ARA* (final solution) 0.82 0.25
RRT* (first solution) 1.18 0.78
RRT* (final solution) 1.11 0.51



TABLE IV: Path Quality Comparison (Other Method to Final E-Graph
Solution Ratio)

method object XYZ path std dev
length ratio ratio

ARA* (first solution) 1.07 0.28
ARA* (final solution) 1.01 0.26
RRT* (first solution) 1.46 0.93
RRT* (final solution) 1.40 0.68

(a) Experimental setup (b) Initial E-Graph

Fig. 6: Anytime E-Graph Experiment

a path for the base followed by a plan for the arms) is that it
does not require explicitly planning for the positions of the
base of the robot to reach the goal with its arms (the planner
solves this problem automatically).

The planner generated paths to 3 goals (first solutions)
to build a simple E-Graph in the environment before being
given the test goal (Figure 6b). The first time that the robot
was asked to find the first feasible solution for the test goal,
it required a planning time of 35.98 seconds. However, this
solution uses large parts of the E-Graph which in this case
creates a highly sub-optimal path (Figure 7). The E-Graph
was then re-initialized with paths for the 3 goals (but not
the test goal) and the planner was then allowed to take 2
minutes. In Figure 8 we can see that the new planned path
is significantly shorter as it cuts out most of the E-Graph
paths.

Our second experiment demonstrates how E-Graphs can
be used to do incremental planning. The robot’s task is to
bring a tray to a person. The initial planning time is 8.15
seconds (with an empty Experience Graph). Figure 9a shows
this first path. After the PR2 starts executing the path, the
person slides down to the left side of the table and the goal

Fig. 7: The first, highly sub-optimal path

Fig. 8: The final path

(a) Path to the first
goal

(b) Path to the goal
after it moved

Fig. 9: Incremental E-Graph Experiment

state moves. The robot is told where the new goal is, stops,
generates a new plan (Figure 9b) in 1.15 seconds and finishes
the task. The second planning time is short because the first
path is now in the E-Graph and most of this path can be
reused (only the end of the path needs to be modified). An
interesting thing to note is that both the start and goal states
changed between the two planning requests. Conventional
incremental planning methods (such as D* and its variants)
are not able to reuse any previous information if the root of
the search tree changes. If both the start and the goal change
these methods must plan from scratch. On the other hand,
E-Graphs allow prior computation to still be used in these
cases.

C. Navigation Simulations

While E-Graphs are particularly well suited for high
dimensional problems like full-body planning for the PR2,
finding optimal solutions in such spaces is infeasible. There-
fore, in order to get a better idea of the anytime profile
of our algorithm as it approaches optimality, we ran ex-
periments in an easier (x, y, θ) navigation domain. The θ
dimension (heading) is useful in navigation planning for cre-
ating smooth paths especially for robots with non-holonomic
constraints or non-circular footprints. We ran experiments on
two maps: an indoor map of a real building (Figure 10b),
and a randomly generated “outdoor” map (Figure 10a) with
sparse obstacles and large areas of free space. The outdoor
map is 500 by 500 cells while the indoor map is 2332 by
1825 cells. The heading dimension is discretized into 16
directions.

(a) E-Graph for an outdoor
map (b) E-Graph for an indoor map

Fig. 10: Maps (x, y, θ) navigation experiments

Our two methods were bootstrapped with 10 planning
queries to build up an E-Graph with good coverage (Fig-



(a) Average bound over time on
an outdoor map

(b) Average bound over time on
an indoor map

Fig. 11: Anytime profiles for (x, y, θ) navigation

(a) Outdoor first solution (b) Outdoor final solution

(c) Indoor first solution (d) Indoor final solution

Fig. 12: Examples of anytime planning with the H2 heuristic

ure 10). Then all methods were given the same 50 randomly
generated test queries (E-Graph methods were not allowed
to feed back the solutions to these queries so that they would
have the same E-Graph throughout the tests). We compared
our two methods against ARA*. The heuristic hG is a 2D
breadth first search starting from the goal (this was also the
heuristic used for ARA*). All methods planned to a first
solution with a bound of 6 and were given two minutes
total to plan, though optimality was generally reached much
earlier than that. Figure 11 shows the average bound (across
the 50 trials) reached over time. The optimal solution is
generally found in the first 10 seconds for the outdoor map
and within 30 seconds for the indoor map. We can see that
H2 has on par performance with H1 even though it only
computes the first E-Graph heuristic. The anytime profiles of
our methods are actually slightly better than ARA* especially
on the outdoor map. Examples of a first and final solution
path for method H2 on each map are shown in Figure 12.

VIII. CONCLUSION

In this paper we have presented an anytime extension to
planning with Experience Graphs, a general search-based
planning method for reusing parts of previous paths in
order to speed up future planning requests. Our approach
is able to do this while still providing theoretical guarantees
on completeness and a bound on the solution quality with

respect to the graph representing the planning problem. We
demonstrated how E-Graphs provide a new way to approach
the incremental planning problem. Unlike conventional incre-
mental planners, E-Graphs can reuse previous computations
even when both the start and goal configurations change.
We provided experiments on full-body mobile manipulation
tasks both in simulation and on a real PR2 which demonstrate
the effectiveness of using E-Graphs in anytime and incre-
mental fashion. Our planner is able to find initial solutions
significantly faster than other anytime planners and provides
solution quality that is on par or better.
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