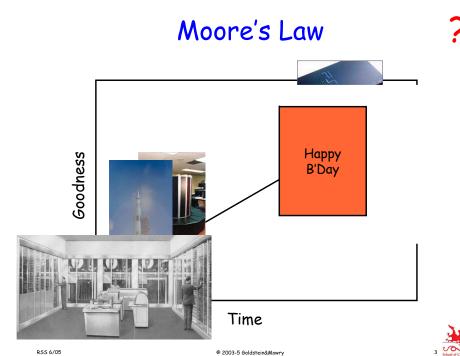
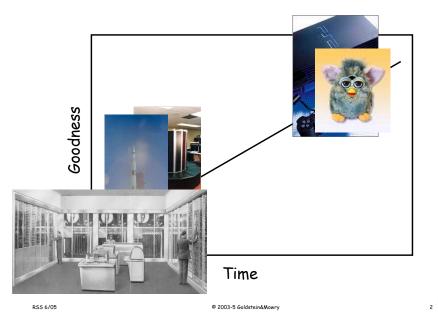


RSS 6/05

Claytronics


Seth Copen Goldstein www.cs.cmu.edu/~claytronics

RSS - 6/11/05


Joint work with Todd Mowry and Baker, Campbell, Gibbons, Guestrin, Hoburg, Kufner, Lee, Pillai, Seshan, Sitti, Sukthankar, Veloso, Kirby, Aksak, Bhat, Bowers, DeRosa, Rister, Stanos

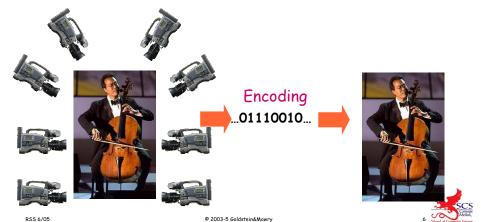
© 2003-5 Goldstein&Mowry

Moore's Law

Where are we in 50 years?

	1949	2003	2050
	Eniac	greeting card	Programmable matter
Cost	5M-23M (2002 \$)	1\$	1 millicent
Weight	30 tons	1 oz	20 µg
Volume	450 M ³	1 cm ³	1 nm ³ ?? (1 μm ³)
Power	200KW	20mW	2 attowatts
Cycle time	>200µs	25ns	2 picosec
Storage	<800B	4KB	16KB

Science Fiction?



© 2003-5 Goldstein&Mowry

pario

Latin: to bear, bring forth, produce; create, make, get

Science fiction?

Claytronics & Catoms

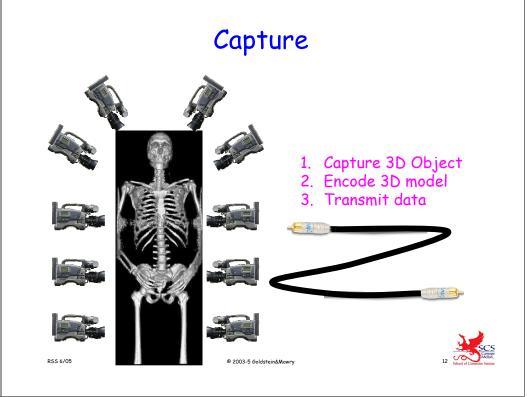
The old way: Monolithic

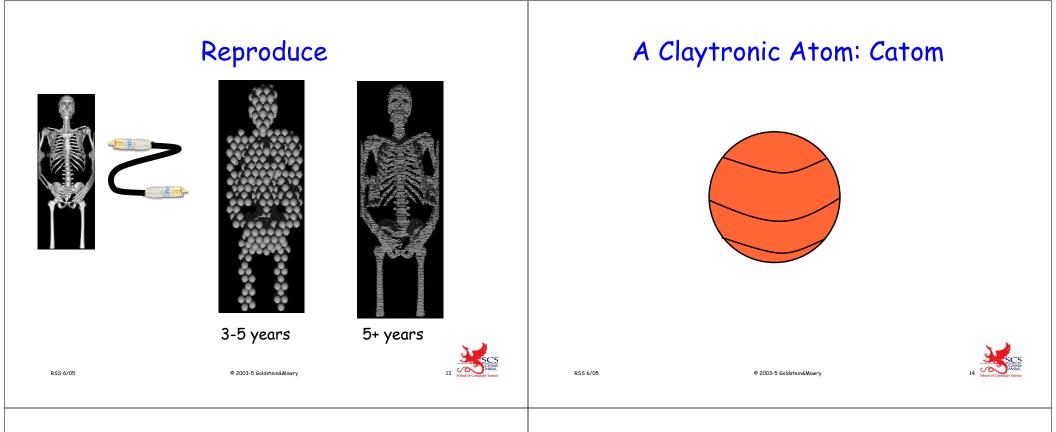
Not AI – Just the system to render 3D dynamic objects

Terminator 2: Judgment day trailer RSS 6/05

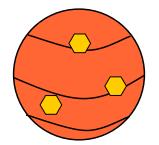
Claytronics & Catoms

Claytronics & Catoms •Ensemble of elements which each contain


-Processor

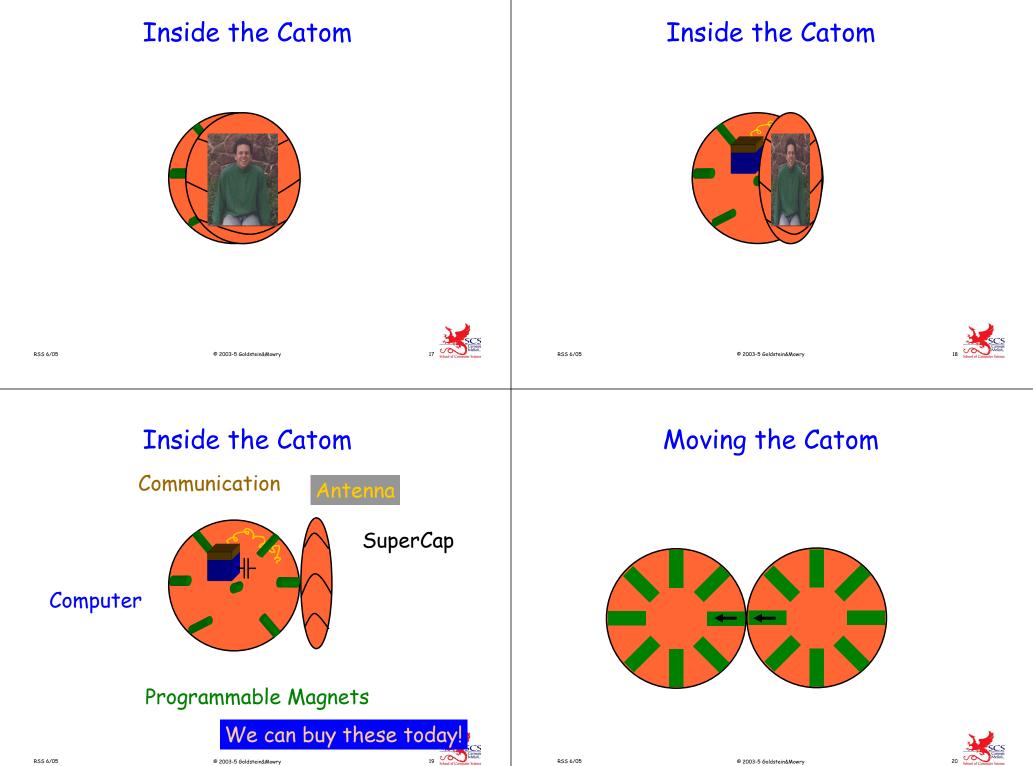

- -Communication
- -Power
- Sensing
- Display
- Actuation
- -Programmable adhesive
- •Can be programmed to form interesting dynamic shapes and configurations.

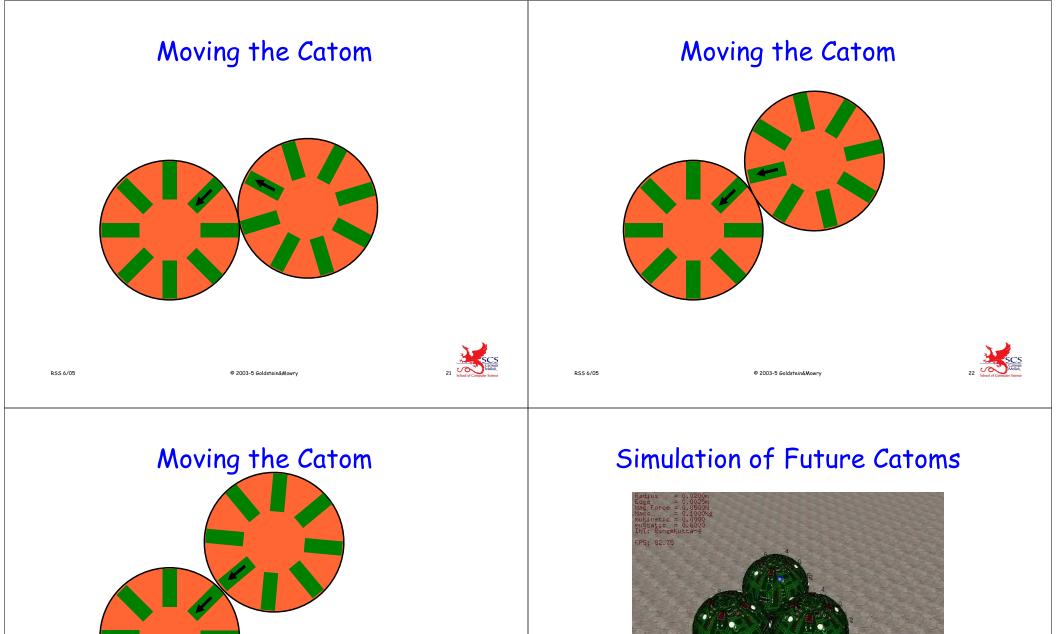
© 2003-5 Goldstein&Mowry


•A system for exploring the computer science of programmable matter

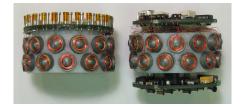
A Claytronic Atom: Catom

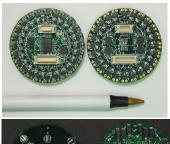
The outside is studded with contacts


A Claytronic Atom: Catom



Each catom can display an image/pixel





Claytronics REV4

- 2D system
- Modular design

RSS 6/05


© 2003-5 Goldstein&Mowry

© 2003-5 Goldstein&Mowry

REV3

Design Principles

- Goal: Scaling
 - Up (in numbers)
 - down (in size)
- sub-goals:
 - simplicity
 - robustness
 - homogeneity
 - no static power
 - distributed, but catom local computation

© 2003-5 Goldstein&Mowry

- low complexity algs

Design Principles

- Goal: Scaling
 - Up - down
- Some consequences:
- No moving parts
- sub-goal
 - simplici · Genderless, unary connectors
 - robustr No self-contained power source
 - homoge . New programming paradigm
 - no static power
 - distributed, but catom local computation
 - low complexity algs

The Ensemble Axiom

- Goal: Scaling
 - Up (in numbers)
 - down (in size)
- Consequences:
 - No moving parts
 - Genderless, unary connectors
 - No self-contained power source
 - New programming paradigm

The Ensemble Axiom:

A catom should include only enough functionality to contribute to the desired functionality of the ensemble

© 2003-5 Goldstein&Mowr

A day in the life of a catom

© 2003-5 Goldstein&Mowry

- Get power!
- Localize

RSS 6/0

- Establish a network
- Get to work
 - move to desired location
 - If on surface, display video, ...

© 2003-5 Goldstein&Mowr

The Robot is the tether

- Catoms have no battery
- They cooperatively create a power grid
- Challenge:

RSS 6/05

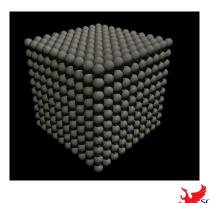
- connectors are
 - unary
 - genderless
- Requires two indep sub-graphs
 - V_{dd}

PSS 6/05

• Ground

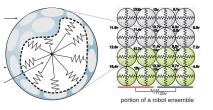
31 School of Computer Scien

© 2003-5 Goldstein&Mowry



The Robot is the tether

- Catoms have no battery
- They cooperatively create a power grid
- Challenge:
 - connectors are
 - unary
 - genderless
 - Requires two indep sub-graphs
 - $\cdot V_{dd}$


RSS 6/05

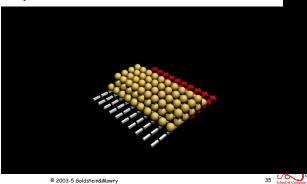
• Ground

Multiphase Algorithm

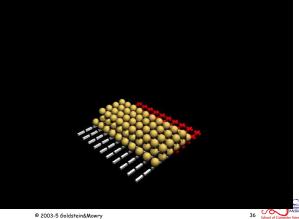
- First, passive resister net
- Second, distributed environment/guid-oblivious algorithm
- Third, fix-up

RSS

PSS 6/05


© 2003-5 Goldstein&Mowry

Multiphase Algorithm


© 2003-5 Goldstein&Mowry

- First, passive resister net
- Second, distributed environment/guid-oblivious algorithm
- Third, fix-up

Multiphase Algorithm

- First, passive resister net
- Second, distributed environme
- Third, fix

Algorithms Scale

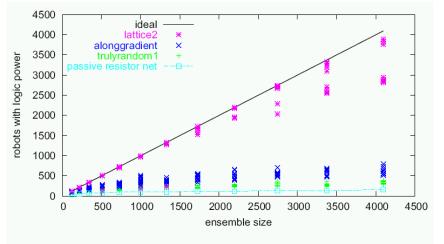
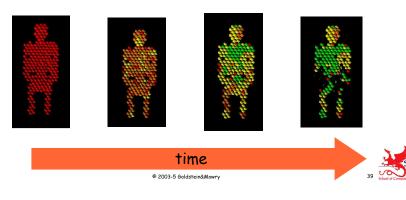
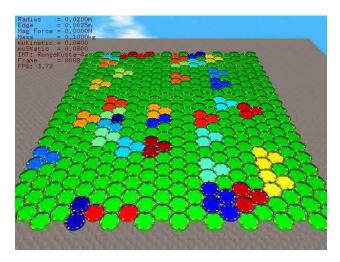


Fig. 11. Robots energized (logic power) for three representative algorithms vs. ensemble size


		37

```
RSS 6/05
```

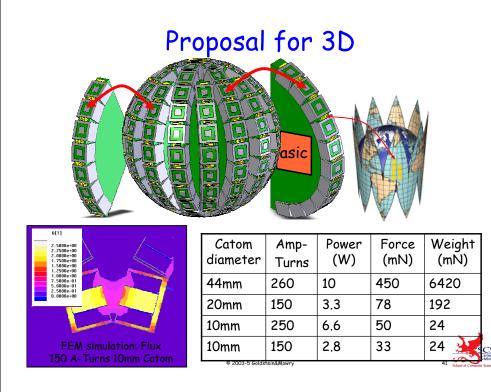

© 2003-5 Goldstein&Mowry

Next Step, Create Network

- Use simple local rules to form hierarchy
- 10 line program does this!
- Local only decisions \rightarrow Global effect

Distributed Localization

Scales sublinearly with diagonal of ensemble



Getting There From Here

- Goal: Robust ensemble of millions of catoms
- Claytronics Design Principles
 - No Moving Parts
 - Local Control
 - No Static Power

What about the software?

- Programming Models
- Distributed Planning
- Networking
- 05
- ...

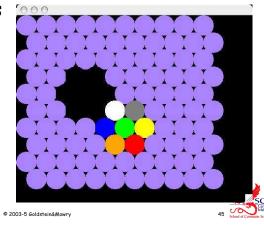
One example: Motion planning

Scaling of Claytronics

	Macro	Micro	Nano
Dimensions	>1 cm	>1 mm	<10 microns
Weight	10's gr	100's mg	<1 mg
power	<2 Watts	10's mW	10's nW
Locomotive mechanism	Programmable magnets Electromagnets	Electrostatics	Aerosol
Adhesion mechanism	Nanofiber adhesives Magnets	Programmable nanofiber adhesives	Molecular surface adhesion and covalent bonds
Manufacturing methods	Conventional manufacturing and assembly	Micro/Nano- fabrication and micro-assembly	Chemically directed self- assembly and fabrication
Resolution	Low	High	High
Cost	\$\$\$/catom	\$/catom	Millicents/catom

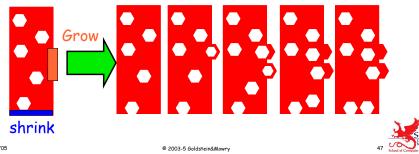
Motion Planning Challenges

- Large Number of Catoms (~ 100k+)
- No central planner
- Physical Limitations
 - Maximum torque
 - Center of gravity
 - Structural stability
- Power/network connectivity
- Inaccuracies/failures

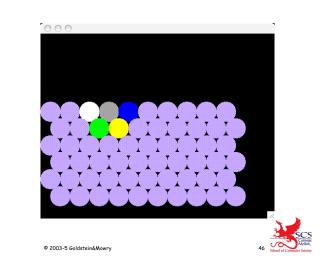

PSS 6/05

Hole Flow Methods

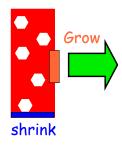
- Based on concept from moving tile puzzles or semiconductor physics
- Planning is scale-independent
- Three primitives
 - move


RSS 6/05

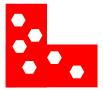
- create
- destroy


Motion Planning with Holes

- Create raises contour
- Destroy lowers contour
- Holes circulate freely through structure (Brownian motion/gas molecules)

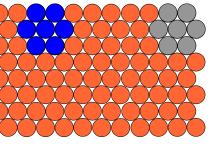

Motion Planning with Holes

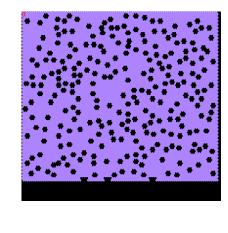
Create raises contour

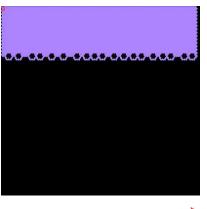


Motion Planning with Holes

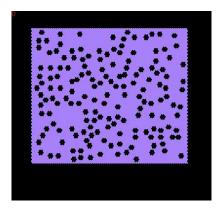
- Create raises contour
- Destroy lowers contour
- Holes circulate freely through structure (Brownian motion/gas molecules)


RSS 6/05


Keeping it local and smooth


- Hole motion based on local rules
- How do we control the global effect?
- Use ideas from self-organized criticality to do local Collapsing/smoothing

Effect of criticality smoothing



© 2003-5 Goldstein&Mowry

Making a shape

© 2003-5 Goldstein&Mowry

Claytronics & Pario

- Open up an entire new application space
 - Antennas
- (Programmable Antennas) (100x protein model)
- Design
- Entertainment (interactive clay)
- Interaction (telepario)
- Rescue

PSS 6/05

- (paramedic on demand)
- Metal Man (fault tolerant robotics)
- Vehicle for studying CS problem of the future:

How do you design, program, maintain, and use a billion component system?

RSS 6/05

Claytronics

- Open up an entire new application space
- Vehicle for studying CS problem of the future:

How do you design, program, maintain, and use a billion component system?

• Our Approach:

RSS 6/05

- The Ensemble Axiom
- Make scaling work for us
- Exploit scale invariance
- Design for scalability in both number & size: Millions of Micron-scale catoms

© 2003-5 Goldstein&Mowry