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Abstract
The widely studied I/O and ideal-cache models were 
developed to account for the large difference in costs to 
access memory at different levels of the memory hierar-
chy. Both models are based on a two level memory hierar-
chy with a fixed size fast memory (cache) of size M, and an 
unbounded slow memory organized in blocks of size B. 
The cost measure is based purely on the number of block 
transfers between the primary and secondary memory. 
All other operations are free. Many algorithms have been 
analyzed in these models and indeed these models pre-
dict the relative performance of algorithms much more 
accurately than the standard Random Access Machine 
(RAM) model. The models, however, require specifying 
algorithms at a very low level, requiring the user to care-
fully lay out their data in arrays in memory and manage 
their own memory allocation.

We present a cost model for analyzing the memory effi-
ciency of algorithms expressed in a simple functional lan-
guage. We show how some algorithms written in standard 
forms using just lists and trees (no arrays) and requiring 
no explicit memory layout or memory management are 
efficient in the model. We then describe an implementa-
tion of the language and show provable bounds for map-
ping the cost in our model to the cost in the ideal-cache 
model. These bounds imply that purely functional pro-
grams based on lists and trees with no special attention 
to any details of memory layout can be asymptotically 
as efficient as the carefully designed imperative I/O effi-
cient algorithms. For example we describe an   
cost sorting algorithm, which is optimal in the ideal cache 
and I/O models.

1. INTRODUCTION
Today’s computers exhibit a vast difference in cost for 
accessing different levels of the memory hierarchy, 
whether it be registers, one of many levels of cache, the 
main memory, or a disk. On current processors, for exam-
ple, there is over a factor of a hundred between the time 
to access a register and main memory, and another factor 
of a hundred or so between main memory and disk, even a 
solid state drive (SSD). This variance in costs is contrary to 
the standard Random Access Machine (RAM) model, which 
assumes that the cost of accessing memory is uniform. To 
account for non-uniformity, several cost models have been 
developed that assign different costs to different levels of 
the memory hierarchy.

Figure 1 describes the widely used I/O2 and ideal-
cache11 machine models designed for this purpose. The 

models are based on two parameters, the memory size M 
and the block size B, which are considered variables for 
the sake of analysis and therefore show up in asymptotic 
bounds. To design efficient algorithms for these models, 
it is important to consider both temporal locality, so as to 
take advantage of the limited size slow memory, and spa-
tial locality, because memory is transferred in contiguous 
blocks. In this paper, we will use terminology from the 
ideal-cache machine model (ICMM), including referring 
to the fast memory as cache, the slow memory as main 
memory, block transfers as cache misses, and the cost as 
the cache cost.

Algorithms that do well in these models are often refer
red to as cache or I/O efficient. The theory of cache efficient 
algorithms is now well developed (see, for example, the 
surveys3, 6, 12, 17, 19, 23). These models do indeed express more 
accurately the cost of algorithms on real machines than does 
the standard RAM model. For example, the models properly 
indicate that a blocked or hierarchical matrix–matrix multi-
ply has cost

	 � (1)

This is much more efficient than the naïve triply nested loop, 
which has cost Q(n3/B). Furthermore, although the models 
only consider two levels of a memory hierarchy, cache effi-
cient algorithms in the ICMM that do not use the parame-
ters B or M in the code are simultaneously efficient across all 
levels of the memory hierarchy. Algorithms designed in this 
way are called cache oblivious.11

As an example of an algorithm analyzed in the models 
consider recursive mergeSort (see Figure 2). If the inputs 
of size n and output are in arrays, then the merge can take 
advantage of spatial locality and has cache cost O(n/B) (see 
Figure 3). The split can be done within the same, or bet-
ter bounds. For the recursive mergeSort once the recursion 
reaches a level where the computation fits into the cache, 
all subcalls are free, taking advantage of temporal locality. 
Figure 4 illustrates the merge sort recursion tree and ana-
lyzes the total cost, which for an input of size n is:

	 � (2)

The original version of this paper is entitled "Cache 
and I/O Efficient Functional Algorithms" and was pub-
lished in the Proceedings of the 40th Annual ACM SIGACT-
SIGPLAN Symposium on Principles of Programming 
Languages (POPL '13), 39–50.
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This is a reasonable cost and much better than assuming 
every memory access requires a cache miss. However, this is 
not optimal for the model. Later, we will outline a multiway 
merge sort that is optimal. It has cost

	 � (3)

This optimal cost can be significantly less than the cost 
for mergeSort. For example if n £ Mk and M ³ B2, which are 
reasonable assumptions in many situations, then the cost 
reduces to O(nk/B). All the fastest disk sorts indeed use some 
variant of a multiway merge sort or another optimal cache 
efficient algorithm based on sample sorting.21

1.1. Careful layout and careful allocation
Although the analysis for mergeSort given above seems 
relatively straightforward, we have picked a simple exam-
ple and left out several important details. With regards to 
memory layout, ordering a sorted sequence contiguously 
in memory is pretty straightforward, but this is not the 
case for many other data structures. Should a matrix, for 
example, be laid out in row-major order, in column-major 
order, or perhaps in some hierarchical order such as 
z-ordering? These different orders can make a big differ-
ence. What about pointer-based structures such as linked-
lists or trees? As Figure 5 indicates, the cost of traversing 
a linked list will depend on how the lists are laid out in 
memory.

More subtle than memory layout is memory allocation. 
Touching unused memory after allocation will cause a cache 
miss. Managing the pool of free memory properly is there-
fore very important. Consider, again, the mergeSort exam-
ple. In our discussion, we assumed that once 2ni  £  M the 
problem fits in fast memory and therefore is free. However, 
if we used a memory allocator to allocate the temporary 
array needed for the merge the locations would likely be 

CPU

Block

Fast memory

Slow memory

B

M/B

B
Cost = 1Cost = 0

Figure 1. The I/O model2 assumes a memory hierarchy comprising 
a fast memory of size M and slow memory of unbounded size. Both 
memories are partitioned into blocks of a fixed size B of consecutive 
memory locations. The CPU and fast memory are treated as a 
standard Random Access Machine (RAM)—the CPU accesses 
individual words, not blocks. Additional instructions allow one to 
move any block between the fast and slow memory. The cost of an 
algorithm is analyzed in terms of the number of block transfers—the 
cost of operations within the main memory is ignored. The ideal-
cache machine model (ICMM)11 is similar except that the program 
only addresses the slow memory, and an “ideal” cache decides which 
blocks to cache in the fast memory using an optimal replacement 
strategy. Accessing the fast memory (cache) is again regarded as 
cost-free and transferring between slow memory and fast memory 
has unit cost. The costs in the two models are equivalent within a 
constant factor, and in both models the two levels of memory can 
either represent main memory and disk, or cache and main memory.

Figure 2. Recursive mergeSort. If the input sequence is empty or a 
singleton the algorithm returns the same value, otherwise it splits 
the input in two approximately equal sized sequences, L and H, 
recursively sorts each sequence, and merges the result.

1 fun mergeSort([]) =[]
2 |  mergeSort([a])=[a]
3 | mergeSort(A) =
4 let
5 val (L, H) = split(A)
6 in
7 merge(mergeSort(L),mergeSort(H))
8 end

3 8 11 14
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8
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2 3 5 6 71Out

Blocks (B = 4)

Figure 3. Merging two sorted arrays. The fingers are moved from left to 
right along the two inputs and the output. At each point the lesser value 
at the input fingers is copied to the output, and that finger, along with 
the output finger, are incremented. During the merge, each block of the 
inputs only has to be loaded into the fast memory once, and each block 
of the output only needs to be written to slow memory once. Therefore, 
for two arrays of size n the total cache cost of the merge is O(n/B).

mergeSort

mergeSort mergeSort

kn/B

Free

log2 (2n/M)

Total  = (kn/B) log2 (2n/M)

         = O(n/B log2 (n/M))

Cache cost

MS

kn/B

kn/BMS

size = M, just fits in cache

Figure 4. The cost of mergeSort in the I/O or ideal-cache model. At 
the ith level from the top there are 2i calls to mergeSort, each of size 
ni = n/2i. Each call has cost kni /B for some constant k. The total cost 
of each level is therefore about 2ik B = kn/B . When a call fits 
into the fast memory, then the rest of the sort is cost-free. Because 
a merge requires about 2n space (for the input and the output), this 
will occur when M ª 2 . Therefore, there are log2(2n/M) levels that 
have non-zero cost, each with cost kn/B.
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fresh and accessing them would cause a cache miss. The 
cost would therefore not be free, and in fact because levels 
near the leaves of the recursion tree do many small alloca-
tions, the cost could be significantly larger near the leaves. 
To avoid this, programmers need to manage their own 
memory. They could, for example, preallocate a temporary 
array and then pass it down to the recursive calls as an extra 
argument, therefore making sure that all temporary space is 
being reused. For more involved algorithms, allocation can 
be much more complicated.

In summary, designing and programming cache efficient 
algorithms for these models requires a careful layout of data 
in the flat memory and careful management of space in that 
memory.

1.2. Our goals
The goal of our work is to be able to take advantage of the 
ideal-cache model, and hence machines that match the 
model, without requiring careful layout of data in mem-
ory and without requiring managing memory allocation 
by hand. In particular, we want to work with recursive 
data structures (pointer structures) such as lists or trees. 
Furthermore, we want to work with a fully automated 
memory manager with garbage collection and no (explicit) 
specifications of where data is placed in memory. These 
goals might seem impossible, but we show that they can 
be achieved, at least for certain cases. We show this in the 
context of a purely functional (side-effect free) language. 
The formulation given here is slightly simplified com-
pared to the associated conference paper5 for the sake of 
brevity and clarity; we refer the reader to that paper for a 
fuller explanation.

As an example of what we are trying to achieve consider 
the merge algorithm shown in Figure 6. Some properties to 
notice about the algorithm are that it is based on linked-lists 
instead of arrays. Furthermore, because we are working in 
the functional setting, every list element is created fresh (in 
the Cons operations in Lines 10 and 11). Finally, there is no 
specification of where things are allocated and no explicit 
memory management. Given these properties it might seem 
that this code could be terrible for cache efficiency because 
accessing each element could be very expensive, as indicated 
in Figure 5. Furthermore, each fresh allocation could cause 

a cache miss. Also there is an implied stack in the recursion 
and it is not clear how this affects the cost.

We show, however, that with an appropriate implementa-
tion the code is indeed cache efficient, and when used in a 
mergeSort gives the same bound as given in Equation (2). We 
also describe an algorithm that matches the optimal sorting 
bounds given in Equation (3). The approach is not limited to 
lists, it also works with trees. For example, Figure 11 defines 
a representation of matrices recursively divided into a tree 
and a matrix multiplication based on it. The cost bounds for 
this multiplication match the bounds for matrix multiplica-
tion for the ideal-cache model (Equation 1) using arrays and 
careful programmer layout.

1.3. Cost models and provable  
implementation bounds
One way to achieve our goals would be to analyze each algo-
rithm written in high-level code with respect to a particular 
compilation strategy and specific runtime memory alloca-
tion scheme. This would be extremely tedious, time con-
suming, not portable, and error prone. It would not lead to a 
practical way to analyze algorithms.

Instead we use a cost semantics that directly defines costs 
in the programming language so that algorithms can be 
analyzed without concern of implementation details (such 
as how the garbage collector works). We refer to our lan-
guage, equipped with our cost semantics, as ICFP, for Ideal-
Cache Functional Programming language. The goal is then to 
relate the costs in ICFP to costs in the ICMM. We do this by 
describing a simulation of ICFP on the ICMM and proving 
bounds on the relative costs based on this simulation. In 
particular, we show that a computation running with cost Q, 
with parameters M and B, in ICFP can be simulated on the 
ICMM with M¢ = O(M) locations of fast memory, blocksize B, 
and cost O(Q). The framework is illustrated in Figure 7.

1.4. Allocation order and spatial locality
Because functional languages abstract away from data layout 
decisions, we use temporal locality (proximity of allocation 
time) as a proxy for spatial locality (proximity of allocation 

Figure 5. Two lists in memory. The cost of traversing the lists is very 
different depending on how the lists are laid out. In the figure, the top 
one, which is randomly laid out, will require O(n) steps to traverse, 
whereas the bottom only requires O(n/B).

327 15 25 33 14 18 335 11 32

Head of list

33 11 14 315 18 25 327 32 35

Head of list

1 datatype List = Cons of  (int * List)
2 |Nil
3
4 fun merge(A, B) =
5 case (A, B) of
6 (Nil, B) ⇒  B
7 | (A, Nil) ⇒  A
8 | (Cons(a, At), Cons(b, Bt)) ⇒
9 if (a < b)

10 then Cons(!a, merge(At, B))
11 else Cons(!b, merge(A, Bt))

Figure 6. Code for merge of two lists. If list is empty, the code 
compares the two heads of the list and recurs on the tail of the 
list with the smaller element, and on the whole list with the larger 
element. When the recursive call finishes a new list element is 
created with the smaller element as the head and the result of the 
recursive call as the tail. The ! is discussed in Section 3.
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in  memory). To do this, the memory model for ICFP con-
sists of two fast memories: a nursery (for new allocations) 
and a read cache. The nursery is time ordered to ensure that 
items are laid out contiguously when written to main (slow) 
memory. For merging, for example, the output list elements 
will be placed one after the other in main memory. To for-
malize this idea we introduce the notion of a data structure 
being compact. Roughly speaking a data structure of size 
n is compact if it can be traversed in the model in O(n/B) 
cache cost. The output of merge is compact by construction. 
Furthermore, if both inputs lists to merge are compact, we 
show that merge has cache cost O(n/B). This notion of com-
pactness generalizes to other data structures, such as trees.

Another feature of the allocation cache of ICFP is that it 
only contains live data. This is important because in some 
algorithms, such as matrix multiply, the rate at which tem-
porary memory is generated is asymptotically larger than 
the rate at which output data is generated. Therefore, if all 
counted it could fill up the cache, whereas we want to make 
sure that temporary data slots are reused. Also, we want to 
ensure that temporary memory is not transferred to the slow 
memory because such transfer would cause extra traffic. 
Moreover, the temporary data could end up between out-
put data elements, causing them to be fragmented across 
blocks. In our provable implementation we do not require a 
precise tracking of live data, but instead use a generational 
collector with a nursery of size 2M. The simulation then 
keeps all the 2M locations in the fast memory so that all allo-
cation and collection (within the new generation) is fast.

1.5. Related work
The general idea of using high-level cost models based on a 
cost semantics along with a provable efficient implementa-
tion has previously been used in the context of parallel cost 
models.4, 13, 15, 22 Although there has been a large amount of 
experimental work on showing how good garbage collec-
tion can lead to efficient use of caches and disks (Chilimbi 
and Larus7, Courts10, Grunwald et al.14, Wilson et al.24 and 
many references in Jones and Lins16), we know of none that 

try to prove bounds for algorithms for functional programs 
when manipulating recursive data types such as lists or 
trees. Abello et al.1 show how a functional style can be used 
to design cache efficient graph algorithms. However, they 
assume that data structures are in arrays (called lists), and 
that primitives for operations such as sorting, map, filter 
and reductions are supplied and implemented with optimal 
asymptotic cost (presumably at a lower level using impera-
tive code). Their goal is therefore to design graph algorithms 
by composing these high-level operations on collections. 
They do not explain how to deal with garbage collection or 
memory management.

2. COST SEMANTICS
In general, a cost semantics for a language defines both how 
to execute a program and the cost of its execution. In func-
tional languages execution consists of a deterministic strat-
egy for calculating the value of an expression by a process 
of simplification, or reduction, similar to what one learns in 
elementary algebra. But rather than working with the real 
numbers, programs in a functional language calculate with 
integers, with inductive data structures, such as lists and 
trees, and with functions that act on such values, including 
other functions. The theoretical foundation for functional 
languages is Church’s l-calculus.8, 9

The cost of a computation in a functional language may be 
defined in various ways, including familiar measures such as 
time complexity, defined as the number of primitive reduc-
tion steps required to evaluate an expression, and space 
complexity, defined as the number of basic data objects allo-
cated during evaluation. Such measures are defined in terms 
of the constructs of the language itself, rather than in terms 
of its implementation on a machine model such as a RAM 
or Turing machine. Algorithm analysis takes place entirely 
at the language level. The role of the implementation is to 
ensure that the abstract costs can be realized on a concrete 
machine with stated bounds.

2.1. Cache cost
The cost measure of interest in the present paper is the 
cache cost, which is derived from considering a combination 
of the time and space behavior of a program. The cache cost 
is derived by specifying when data objects are allocated and 
retrieved, and as with the ICMM is parameterized by two con-
stants, B and M, governing the cache behavior. To be more 
precise, expressions are evaluated relative to an abstract 
store, s, which comprises a main memory, m, a read cache, r, 
and a nursery, or allocation area, u. The structure of the store 
is depicted in Figure 8. The main memory maps abstract loca-
tions to atomic data objects, and is of unbounded capacity. 
Atomic data objects are considered to occupy one unit of 
storage. Objects in main memory are aggregated into blocks 
of size B in a manner to be described shortly. The blocking 
of data objects does not change during execution; once an 
object is assigned to a block, it remains part of that block for 
the rest of the computation.

The read cache is a fixed-size mapping from locations to 
data objects containing at most M objects. As usual, the read 
cache represents a partial view of main memory. Objects are 

ICFP
(B,M)

Cost Q
in

ICFP

Cost Q’
in

ICM

Implementation

Cost
analysis

Cost
analysis

Cost
translation

M’ = 4M + kB
Q’ = k’Q

ICM
(B,M’)

Figure 7. Cost semantics for ICFP and its mapping to the ideal cache 
model (ICMM). The values k and k¢ are constants.
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be specified in a mathematically rigorous manner, which we 
now illustrate for ICFP, a simple eager variant of Plotkin’s 
language PCF20 for higher-order computation over natural 
numbers. (It is straightforward to extend ICFP to account 
for a richer variety of data structures, such as lists or trees, 
and for hardware-oriented concepts such as words and float-
ing point numbers, which we assume in our examples.)

2.2. Cost semantics
The abstract syntax of ICFP is defined as follows:

Here x stands for a variable, which will always stand for a 
data object allocated in memory. The expressions z and s( ) 
represent 0 and successor, respectively, and the conditional 
tests whether e is z or not, branching to e0 if so, and branch-
ing to e1 if not, substituting (the location of) the predeces-
sor for x in doing so. Functions, written fun(x, y.e), bind a 
variable x standing for the function itself, and a variable y 
standing for its argument. (The variable x is used to effect 
recursive calls.) Function application is written app(e1; e2), 
which applies the function given by the expression e1 to the 
argument value given by the expression e2. The typing rules 
for ICFP are standard (see Chapter 10 of Harper15), and 
hence are omitted for the sake of concision.

Were the cost of a computation in ICFP just the time 
complexity, the semantics would be defined by an evalu-
ation relation e ßn v stating that the expression e evaluates 
to the value v using n reduction steps according to a speci-
fied outermost strategy. Accounting for the cache cost of a 
computation is a bit more complicated, because we must 
account for the memory traffic induced by execution. To do 
so, we consider an evaluation relation of the form

s @ e ß
n s¢ @ l

in which the evaluation of an expression e is performed rela-
tive to a store s, and returns a value represented by a loca-
tion in a modified store s¢. The modifications to the store 
reflect the allocation of new objects, their migration to main 
memory, and their loading into the read cache. The evalua-
tion relation also specifies the cache cost n, which is deter-
mined entirely by the movements of blocks to and from 
main memory. All other operations are assigned zero cost.

The evaluation relation for ICFP is defined by deriva-
tion rules that specify closure conditions on it. Evaluation 
is defined to be the strongest relation satisfying these con-
ditions. To give a flavor of how this is done, we present in 
Figure 9 a simplified form of the rule for evaluating a func-
tion application, app(e1; e2). The rule has four premises, and 
one conclusion, separated by the horizontal line, which may 
be read as implication stating that if the premises are all 
derivable, then so is the conclusion.

The other constructs of ICFP are defined by similar 
rules, which altogether specify the behavior and cost of 
the evaluation of any ICFP program. The abstract cost 

loaded into the read cache in blocks of size B as determined 
by the aggregation of objects in main memory. Objects are 
evicted from the read cache by simply over-writing them; in 
a functional language data objects cannot be mutated, and 
hence need never be written back to main memory. Blocks 
are evicted according to the (uncomputable) Ideal Cache 
Model (ICMM).

The allocation area, or nursery, is fixed-sized mapping 
from locations to data objects also containing at most M 
objects. Locations in the nursery are not blocked, but they 
are linearly ordered according to the time at which they are 
allocated. We say that one data object is older than another 
if the location of the one is ordered prior to that of the other. 
A  location in the nursery is live if it occurs within the pro-
gram being evaluated.18 All data objects are allocated in the 
nursery. When its capacity of M objects is exceeded, the old-
est B objects are formed into a block that is migrated to main 
memory, determining once and for all the block to which 
these objects belong. This policy ensures that temporal local-
ity implies spatial locality, which means that objects that are 
allocated nearby in time will be situated nearby in space 
(i.e., occupy the same block). In particular, when an object 
is loaded into the read cache, its neighbors in its block will 
be loaded along with it. These will be the objects that were 
allocated at around the same time.

The role of a cost semantics is to enable reasoning about 
the cache cost of algorithms without dropping down to the 
implementation level. To support proof, the semantics must 

FP

Block

Nursery (n)
(size = M, not organized in blocks)

Main memory (m)

Cost = 1

Allocations
(writes)

M/B

B

Read cache (r)

Sorted by time
(live data only)

Cost = 0

Reads

Oldest

B

Toss

Figure 8. The memory model for the ICFP cost semantics. It is 
similar to the ideal cache model, but has two fast memories of 
size M: a nursery for newly allocated data, and a read cache for 
data that has migrated to main memory and was read again by 
the program. The main memory and read cache are organized into 
blocks, as in the ideal-cache model, but the nursery is not blocked. 
Rather, it consists of (live) data objects linearly ordered by the time 
at which they were allocated. The semantics defines when a piece 
of data is live, but conceptually it is just when it is reachable from 
the executing program. If an allocation overflows the nursery, the 
oldest B live objects are flushed from the cache into main memory 
as a block to make space for the new object. If one of these words 
is later read, the entire block is moved into the read cache, possibly 
displacing another block in the process. Displaced blocks can be 
discarded, because the only writes in a functional language occur at 
allocation, and never during subsequent execution.
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merge), and define the notion of hereditarily finite values for 
this purpose, but here we only consider first-order usage.

As mentioned in the introduction, the cost of access-
ing a recursive datatype will depend on how it is laid out in 
memory, which depends on allocation order. We could try to 
define the notion of a list being in a good order in terms of 
how the list is represented in memory. This is cumbersome 
and low level. We could also try to define it with respect to 
the specific code that allocated the data. Again this is cum-
bersome. Instead we define it directly in terms of the cache 
cost of traversing the structure. By traversing we mean going 
through the structure in a specific order and touching (read-
ing) all data in the structure. Because types such as trees 
might have many traversal orders, the definition is with 
respect to a particular traversal order. For this purpose, we 
define the notion of “compact.”

Definition 3.1. A data structure of size n is compact with 
respect to a given traversal order if traversing it in that order 
has cache cost O(n/B) in our cost semantics with M ³ kB for 
some constant k.

We can now argue that certain code will generate data struc-
tures that are compact with respect to a particular order. 
We note that if a list is compact with respect to traversal in 
one direction, it is also compact with respect to the opposite 
direction.

To keep data structures compact, not only do the top 
level links need to be accessed in approximately the order 

semantics underlies the analyses given in Sections 1 and 3. 
The abstract costs given by the semantics are validated by 
giving a provable implementation4, 13 that realizes these costs 
on a concrete machine. In our case the realization is given in 
terms of the ICMM, which is an accepted concrete formula-
tion of a machine with hierarchical memory. By composing 
the abstract semantics with the provable implementation 
we obtain end-to-end bounds on the cache complexity of 
algorithms written in ICFP without having to perform the 
analysis at the level of the concrete machine, but rather at 
the level of the language in which the algorithms are written.

2.4. Provable implementation
The provable implementation of ICFP on the ICMM is 
described in Figure 10. Its main properties, which are impor-
tant for obtaining end-to-end bounds on cache complexity, 
are summarized by the following theorem:

Theorem 2.1. An evaluation s @ e ß
n s¢ @ l in ICFP with 

abstract cache parameters M and B can be implemented on the 
ICMM with concrete cache parameters 4 × M + k × B and B with 
cache cost O(n), for some constant k.

The proof of the theorem consists of an implementation of 
ICFP on the ICMM described in Figure 10, and of showing 
that reduction step of ICFP is simulated on the ICMM to 
within a (small) constant factor. The full details of the proof, 
along with a tighter statement of the theorem, are given in 
the associated conference paper.

3. CACHE EFFICIENT ALGORITHMS
We now analyze mergeSort and matrix multiply in ICFP, and 
give bounds for a k-way mergeSort that is optimal. The imple-
mentations are completely natural functional programs 
using lists and trees instead of arrays. In the associated con-
ference paper, we describe how one can deal with higher-
order functions (such as passing a comparison function to 

σ @ e1 ⇓n1 σ�1 @ l�1 (evaluate function)

σ�1 @ l�1 ↓n�1 σ2 @ fun(x, y.e) (load function value)

σ2 @ e2 ⇓n2 σ�2 @ l�2 (evaluate argument)

σ�2 @ [l�1 , l �2 /x, y]e ⇓n σ� @ l (evaluate function body)

σ @ app(e1; e2 ) ⇓n 1 + n�1 + n 2 + n�2 σ� @ l�

Figure 9. Simplified semantics of function application. This rule 
specifies the cost and evaluation of a function application app(e1; e2) 
of a function e1 to an argument e2. similar rules govern the other 
language constructs. Bear in mind that all values are represented by 
(abstract) locations in memory. First, the expression e1 is evaluated, 
with cost n1, to obtain the location l1 of the function being called. 
That location is read from memory to obtain the function itself, a 
self-referential l-abstraction, at cost n'1 . Second, the expression 
e2 is evaluated, with cost n2, to obtain its value l2. Finally, l1 and l2 
are substituted into the body of the function, and then evaluated to 
obtain the result l at cost n. The overall result is l with total cost the 
sum of the constituent costs. The only non-zero cost arises from 
allocation of objects and reading from memory; all other operations 
are considered cost-free, as in the I/O model.
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(writes)
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read and stack
cache

B

2M/B nursery
using
generational GC

Reads

No longer live
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Figure 10. Simulating the ICFP on the ICMM. The simulation requires 
a cache of size 4 × M + k × B for some constant k. Allocation and 
migration is managed using generational copying garbage collection, 
which requires 2 × M words of cache to manage M live objects. The 
liveness of objects in the nursery can be assessed without accessing 
main memory, because in a functional language older objects cannot 
refer to newer objects. Copying collection preserves the allocation 
ordering of objects, as is required for our analyses. Because two 
objects that are in the same abstract block can be separated into 
adjacent blocks by the simulation, blocks are loaded two-at-a-time, 
requiring 2 × M additional words of cache on the ICMM. An additional 
B words of read cache are required to account for the space required 
by the control stack using an amortization argument, and a constant 
number of blocks are required for the allocation of the program itself 
in memory.
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they were allocated, but anything that is touched by the algo-
rithm during traversal also needs to be accessed in a simi-
lar order. For example, if we are sorting a list it is important 
that in addition to the “cons cells,” the keys are allocated in 
the list order (or, as we will argue shortly, reverse order is 
fine). To ensure that the keys are allocated in the appropri-
ate order, they need to be copied whenever placing them in 
a new list. This copy needs to be a deep copy that copies all 
components. If the keys are machine words then in practice 
these might be inlined into the cons cells anyway by a com-
piler. However, to ensure that objects are copied we will use 
operation !a to indicate copying of a.

3.1. Merge sort
We now consider analyzing mergeSort in our cost model, 
and in particular the code given in Figures 2 and 6. We will 
not cover the definition of split because it is similar to 
merge. We first analyze the merge.

Theorem 3.2. For compact lists A and B, the evaluation of 
merge(A, B) starting with any cache state will have cache cost 

  (where n = |A|+|B| ) and will return a compact list.

Proof. We consider the cache cost of going down the recur-
sion and then coming back up. Because A and B are both 
compact, we need only put aside a constant number of 
cache blocks to traverse each one (by definition). Recall that 
in the cost model we have a nursery n that maintains both 
live allocated values and place holders for stack frames in 
the order they are created. In merge nothing is allocated 
from one recursive call to the next (the cons cells are cre-
ated on the way back up the recursion) so only the stack 
frames are placed in the nursery. After M recursive calls 
the nursery will fill and blocks will have to be flushed to the 
memory m (as described in Section 2). The merge will invoke 
at most O(n/B) such flushes because only n frames are cre-
ated. On the way back up the recursion we will generate the 
cons cells for the list and copy each of the keys (using the !). 
Note that copying the keys is important so that the result 
remains compact. The cons cells and copies of the keys will 
be interleaved in the allocation order in the nursery and 
flushed to memory once the nursery fills. Once again these 
will be flushed in blocks of size B and hence there will be 
at most O(n/B) such flushes. Furthermore the resulting list 
will be compact because adjacent elements of the list will 
be in the same block. £

We now consider mergeSort as a whole.

Theorem 3.3. For a compact list A, the evaluation of 
mergeSort(A) starting with any cache state will have cache 
cost given by Equation (2) and will return a compact list.

Proof. As with the array version, we consider the two cases 
when the input fits in cache and when it does not. The 
mergeSort routine never requires more than O(n) live allo-
cated data. Therefore, when kn £ M for some (small) con-
stant k all allocated data fits in the nursery. Furthermore, 

because the input list is compact, for k¢n £ M the input fits in 
the read cache (for some constant k¢). Therefore, the cache 
cost for mergeSort is at most the time to flush O(n) items out 
of the allocation cache that it might have contained at the 
start, and to load the read cache with the input. This cache 
cost is bounded by O(n/B). When the input does not fit in 
cache we have to pay for the merge as analyzed above plus 
the recursive calls. This gives the same recurrence as for the 
array version and hence solves to the claimed result. £

Here we just outline the k-way mergeSort algorithm and 
state the cost bounds, which are optimal for sorting. The 
sort is similar to mergeSort but instead of splitting into 
two parts recursively sorting each, it splits into k parts. 
A k-way merge is then used to merge the sorted parts. The 
k-way merge can be implemented using a priority queue. 
The sort in ICFP has the optimal bounds for sorting given 
by Equation (3).

3.2. Matrix multiply
Our final example is matrix multiply. The code is shown in 
Figure 11 (we have left out checks for matching sizes). This 
is a block recursive matrix multiply with the matrix laid out 
in a tree. We define compactness with respect to a preorder 
traversal of this tree. We therefore say the matrix is compact 
if traversing in this order can be done with cache cost O(n2/B) 
for an n × n matrix (n2 leaves). We note that if we generate a 
matrix in a preorder traversal allocating the leaves along the 
way, the resulting matrix will be compact. Also, every recur-
sive sub-matrix is itself compact.

Theorem 3.4. For compact n × n matrices A and B, the evalu-
ation of  mmult(A, B) starting with any cache state will have 
cache cost given by Equation (1) and will return a compact 
matrix as a result.

Proof. Matrix addition has cache cost O(n2/B) and generates 
a compact result because we traverse the two input matrices 

1 datatype M = Leaf of  int
2 | Node of  M * M * M * M
3
4 fun mmult(Leaf a, Leaf b) = Leaf(a × b)
5 | mmult(Node(a11, a12, a21, a22),
6 Node(b11, b12, b21, b22)) =
7 let
8 fun madd(Leaf a, Leaf b) = Leaf(a + b)
9 | madd(Node(a11, a12, a21, a22),

10 Node(b11, b12, b21, b22)) =
11 Node(madd(a11, b11),madd(a12, b12),
12 madd(a21, b21),madd(a22, b22))
13 in
14 Node(madd(mmult(a11, b11),mmult(a12, b21)),
15 madd(mmult(a11, b12),mmult(a12, b22)),
16 madd(mmult(a21, b11),mmult(a22, b21)),
17 madd(mmult(a21, b12),mmult(a22, b22)))
18 end

Figure 11. Matrix Multiply.
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in preorder traversal and we generate the output in the same 
order. Because the live data is never larger than O(n2), the 
problem will fit in cache for n2 £ M/c for some constant c. 
Once it fits in cache the cost is O(n2/B) needed to load the 
input matrices and write out the result. When it does not fit 
in cache we have to do eight recursive calls and four calls to 
matrix addition. This gives a recurrence,

which solves to O . The output is compact because 
each of the four calls to madd in mmult allocate new results 
in preorder with respect to the submatrices they generate, 
and the four calls are made in preorder. Therefore, the over-
all matrix returned is allocated in preorder. £

4. CONCLUSION
The present work extends the methodology of Blelloch 
and Greiner4, 13 to account for the cache complexity of 
algorithms stated in terms of two parameters, the cache 
block size and the number of cache blocks. Analyses are 
carried out in terms of the semantics of ICFP given in 
Section 2, and are transferred to the Ideal Cache Model 
by a provable implementation, also sketched in Section 2. 
The essence of the idea is that conventional copying gar-
bage collection can be deployed to achieve cache-efficient 
algorithms without sacrificing abstraction by resorting to 
manual allocation and cacheing of data objects. Using 
this approach, we are able to express algorithms in a high-
level functional style, analyze them using a model that 
captures the idea of a fixed size read and allocation stack, 
without exposing the implementation details, and still 
match the asymptotic bounds for the ideal cache model 
achieved using low-level imperative techniques including 
explicit memory management. For sorting, the bounds 
are optimal.

One direction for further research is to integrate (deter-
ministic) parallelism with the present work. Based on previ-
ous work4, 13 we expect that the evaluation semantics given 
here will provide a good foundation for specifying parallel as 
well as sequential complexity. One complication is that the 
explicit consideration of storage considerations in the cost 
model given here would have to take account of the interac-
tion among parallel threads. The amortization arguments 
would also have to be reconsidered to account for parallel-
ism. Finally, although we are able to generate an optimal 
cache-aware sorting algorithm, it is unclear whether it is 
possible to generate an optimal cache-oblivious sorting 
algorithm in our model.
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