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Abstract

The widely studied I/O and ideal-cache models were
developed to account for the large difference in costs to
access memory at different levels of the memory hierar-
chy. Both models are based on a two level memory hierar-
chy with a fixed size fast memory (cache) of size M, and an
unbounded slow memory organized in blocks of size B.
The cost measure is based purely on the number of block
transfers between the primary and secondary memory.
All other operations are free. Many algorithms have been
analyzed in these models and indeed these models pre-
dict the relative performance of algorithms much more
accurately than the standard Random Access Machine
(RAM) model. The models, however, require specifying
algorithms at a very low level, requiring the user to care-
fully lay out their data in arrays in memory and manage
their own memory allocation.

We present a cost model for analyzing the memory effi-
ciency of algorithms expressed in a simple functional lan-
guage. We show how some algorithms written in standard
forms using just lists and trees (no arrays) and requiring
no explicit memory layout or memory management are
efficient in the model. We then describe an implementa-
tion of the language and show provable bounds for map-
ping the cost in our model to the cost in the ideal-cache
model. These bounds imply that purely functional pro-
grams based on lists and trees with no special attention
to any details of memory layout can be asymptotically
as efficient as the carefully designed imperative 1/O effi-
cient algorithms. For example we describe an o| log,,,
cost sorting algorithm, which is optimal in the ideal cache
and I/0 models.

1. INTRODUCTION
Today’s computers exhibit a vast difference in cost for
accessing different levels of the memory hierarchy,
whether it be registers, one of many levels of cache, the
main memory, or a disk. On current processors, for exam-
ple, there is over a factor of a hundred between the time
to access a register and main memory, and another factor
of a hundred or so between main memory and disk, even a
solid state drive (SSD). This variance in costs is contrary to
the standard Random Access Machine (RAM) model, which
assumes that the cost of accessing memory is uniform. To
account for non-uniformity, several cost models have been
developed that assign different costs to different levels of
the memory hierarchy.

Figure 1 describes the widely used I/O*> and ideal-
cache' machine models designed for this purpose. The

models are based on two parameters, the memory size M
and the block size B, which are considered variables for
the sake of analysis and therefore show up in asymptotic
bounds. To design efficient algorithms for these models,
it is important to consider both temporal locality, so as to
take advantage of the limited size slow memory, and spa-
tial locality, because memory is transferred in contiguous
blocks. In this paper, we will use terminology from the
ideal-cache machine model (ICMM), including referring
to the fast memory as cache, the slow memory as main
memory, block transfers as cache misses, and the cost as
the cache cost.

Algorithms that do well in these models are often refer-
red to as cache or I/O efficient. The theory of cache efficient
algorithms is now well developed (see, for example, the
surveys* & 121719, 23) 'These models do indeed express more
accurately the cost of algorithms on real machines than does
the standard RAM model. For example, the models properly
indicate that a blocked or hierarchical matrix-matrix multi-
ply has cost

. . n’

matrix multiply cache cost @(B «/MJ (1)
This is much more efficient than the naive triply nested loop,
which has cost ®@(n*/B). Furthermore, although the models
only consider two levels of a memory hierarchy, cache effi-
cient algorithms in the ICMM that do not use the parame-
ters B or M in the code are simultaneously efficient across all
levels of the memory hierarchy. Algorithms designed in this
way are called cache oblivious.**

As an example of an algorithm analyzed in the models
consider recursive mergeSort (see Figure 2). If the inputs
of size n and output are in arrays, then the merge can take
advantage of spatial locality and has cache cost O(n/B) (see
Figure 3). The split can be done within the same, or bet-
ter bounds. For the recursive mergeSort once the recursion
reaches a level where the computation fits into the cache,
all subcalls are free, taking advantage of temporal locality.
Figure 4 illustrates the merge sort recursion tree and ana-
lyzes the total cost, which for an input of size n is:

merge sort cache cost= @((Ej log, (in (2)
B M

The original version of this paper is entitled "Cache
and I/O Efficient Functional Algorithms" and was pub-
lished in the Proceedings of the 40th Annual ACM SIGACT-
SIGPLAN Symposium on Principles of Programming
Languages (POPL '13), 39-50.
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Figure 1. The I/0 model? assumes a memory hierarchy comprising

a fast memory of size M and slow memory of unbounded size. Both
memories are partitioned into blocks of a fixed size B of consecutive
memory locations. The CPU and fast memory are treated as a
standard Random Access Machine (RAM)—the CPU accesses
individual words, not blocks. Additional instructions allow one to
move any block between the fast and slow memory. The cost of an
algorithm is analyzed in terms of the number of block transfers—the
cost of operations within the main memory is ignored. The ideal-
cache machine model (ICMM)* is similar except that the program
only addresses the slow memory, and an “ideal” cache decides which
blocks to cache in the fast memory using an optimal replacement
strategy. Accessing the fast memory (cache) is again regarded as
cost-free and transferring between slow memory and fast memory
has unit cost. The costs in the two models are equivalent within a
constant factor, and in both models the two levels of memory can
either represent main memory and disk, or cache and main memory.
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Figure 2. Recursive mergesort. If the input sequence is empty or a
singleton the algorithm returns the same value, otherwise it splits
the input in two approximately equal sized sequences, L and H,
recursively sorts each sequence, and merges the result.
1 fun mergeSort([]) =[]
2 | mergeSort([al)=[a]
| mergeSort(A) =
let
val (L, H) = split(A)
in
merge(mergeSort(L), mergeSort(H))
end
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Figure 3. Merging two sorted arrays. The fingers are moved from left to
right along the two inputs and the output. At each point the lesser value
at the input fingers is copied to the output, and that finger, along with
the output finger, are incremented. During the merge, each block of the
inputs only has to be loaded into the fast memory once, and each block
of the output only needs to be written to slow memory once. Therefore,
for two arrays of size n the total cache cost of the merge is O(n/B).
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Figure 4. The cost of mergeSort in the 1/0 or ideal-cache model. At
the ith level from the top there are 2’ calls to mergeSort, each of size
n,=n/2'. Each call has cost kn /B for some constant k. The total cost
of each level is therefore about 2’k % B=kn/B . When a call fits
into the fast memory, then the rest of the sort is cost-free. Because
a merge requires about 2n space (for the input and the output), this
will occur when M = 2 zl . Therefore, there are log,(2n/M) levels that
have non-zero cost, each with cost kn/B.

Cache cost
mergeSort kn/B
9 : log, (2n/M)
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size = M, just fits in cache Free

Total = (kn/B) log, (2n/M)
=0(n/B log, (n/M))

This is a reasonable cost and much better than assuming
every memory access requires a cache miss. However, this is
not optimal for the model. Later, we will outline a multiway
merge sort that is optimal. It has cost

n n
optimal sort cache cost=0| | — |lo — 3
b [(Bj Ea (ij )

This optimal cost can be significantly less than the cost
for mergeSort. For example if n < M* and M > B?, which are
reasonable assumptions in many situations, then the cost
reduces to O(nk/B). All the fastest disk sorts indeed use some
variant of a multiway merge sort or another optimal cache
efficient algorithm based on sample sorting.*

1.1. Careful layout and careful allocation

Although the analysis for mergeSort given above seems
relatively straightforward, we have picked a simple exam-
ple and left out several important details. With regards to
memory layout, ordering a sorted sequence contiguously
in memory is pretty straightforward, but this is not the
case for many other data structures. Should a matrix, for
example, be laid out in row-major order, in column-major
order, or perhaps in some hierarchical order such as
z-ordering? These different orders can make a big differ-
ence. What about pointer-based structures such as linked-
lists or trees? As Figure 5 indicates, the cost of traversing
a linked list will depend on how the lists are laid out in
memory.

More subtle than memory layout is memory allocation.
Touching unused memory after allocation will cause a cache
miss. Managing the pool of free memory properly is there-
fore very important. Consider, again, the mergeSort exam-
ple. In our discussion, we assumed that once 2n, < M the
problem fits in fast memory and therefore is free. However,
if we used a memory allocator to allocate the temporary
array needed for the merge the locations would likely be



Figure 5. Two lists in memory. The cost of traversing the lists is very
different depending on how the lists are laid out. In the figure, the top
one, which is randomly laid out, will require O(n) steps to traverse,
whereas the bottom only requires 0(n/B).
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fresh and accessing them would cause a cache miss. The
cost would therefore not be free, and in fact because levels
near the leaves of the recursion tree do many small alloca-
tions, the cost could be significantly larger near the leaves.
To avoid this, programmers need to manage their own
memory. They could, for example, preallocate a temporary
array and then pass it down to the recursive calls as an extra
argument, therefore making sure that all temporary space is
being reused. For more involved algorithms, allocation can
be much more complicated.

In summary, designing and programming cache efficient
algorithms for these models requires a careful layout of data
in the flat memory and careful management of space in that
memory.

1.2. Our goals

The goal of our work is to be able to take advantage of the
ideal-cache model, and hence machines that match the
model, without requiring careful layout of data in mem-
ory and without requiring managing memory allocation
by hand. In particular, we want to work with recursive
data structures (pointer structures) such as lists or trees.
Furthermore, we want to work with a fully automated
memory manager with garbage collection and no (explicit)
specifications of where data is placed in memory. These
goals might seem impossible, but we show that they can
be achieved, at least for certain cases. We show this in the
context of a purely functional (side-effect free) language.
The formulation given here is slightly simplified com-
pared to the associated conference paper’ for the sake of
brevity and clarity; we refer the reader to that paper for a
fuller explanation.

As an example of what we are trying to achieve consider
the merge algorithm shown in Figure 6. Some properties to
notice about the algorithm are that it is based on linked-lists
instead of arrays. Furthermore, because we are working in
the functional setting, every list element is created fresh (in
the Cons operations in Lines 10 and 11). Finally, there is no
specification of where things are allocated and no explicit
memory management. Given these properties it might seem
that this code could be terrible for cache efficiency because
accessing each element could be very expensive, as indicated
in Figure 5. Furthermore, each fresh allocation could cause

Figure 6. Code for merge of two lists. If list is empty, the code
compares the two heads of the list and recurs on the tail of the
list with the smaller element, and on the whole list with the larger
element. When the recursive call finishes a new list element is
created with the smaller element as the head and the result of the
recursive call as the tail. The ! is discussed in Section 3.

1 datatype List=Cons of (int * List)

2 | Nil

3

4 fun merge(r, B)=

5 case (A, B)of

6 (Nil, B)= B

7 | (A, Nil)= A

8 | (Cons(a, At), Cons(b, Bt))=
9 if (a2 < b)

10 then Cons(!a, merge(At, B))
11 else Cons(!b, merge(a, Bt))

a cache miss. Also there is an implied stack in the recursion
and it is not clear how this affects the cost.

We show, however, that with an appropriate implementa-
tion the code is indeed cache efficient, and when used in a
mergeSort gives the same bound as given in Equation (2). We
also describe an algorithm that matches the optimal sorting
bounds given in Equation (3). The approach is not limited to
lists, it also works with trees. For example, Figure 11 defines
a representation of matrices recursively divided into a tree
and a matrix multiplication based on it. The cost bounds for
this multiplication match the bounds for matrix multiplica-
tion for the ideal-cache model (Equation 1) using arrays and
careful programmer layout.

1.3. Cost models and provable

implementation bounds

One way to achieve our goals would be to analyze each algo-
rithm written in high-level code with respect to a particular
compilation strategy and specific runtime memory alloca-
tion scheme. This would be extremely tedious, time con-
suming, not portable, and error prone. It would not lead to a
practical way to analyze algorithms.

Instead we use a cost semantics that directly defines costs
in the programming language so that algorithms can be
analyzed without concern of implementation details (such
as how the garbage collector works). We refer to our lan-
guage, equipped with our cost semantics, as ICFP, for Ideal-
Cache Functional Programming language. The goal is then to
relate the costs in ICFP to costs in the ICMM. We do this by
describing a simulation of ICFP on the ICMM and proving
bounds on the relative costs based on this simulation. In
particular, we show that a computation running with cost Q,
with parameters M and B, in ICFP can be simulated on the
ICMM with M’ = O(M) locations of fast memory, blocksize B,
and cost O(Q). The framework is illustrated in Figure 7.

1.4. Allocation order and spatial locality

Because functional languages abstract away from data layout
decisions, we use temporal locality (proximity of allocation
time) as a proxy for spatial locality (proximity of allocation
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Figure 7. Cost semantics for ICFP and its mapping to the ideal cache
model (ICMM). The values k and k’ are constants.
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in memory). To do this, the memory model for ICFP con-
sists of two fast memories: a nursery (for new allocations)
and a read cache. The nursery is time ordered to ensure that
items are laid out contiguously when written to main (slow)
memory. For merging, for example, the output list elements
will be placed one after the other in main memory. To for-
malize this idea we introduce the notion of a data structure
being compact. Roughly speaking a data structure of size
n is compact if it can be traversed in the model in O(1/B)
cache cost. The output of merge is compact by construction.
Furthermore, if both inputs lists to merge are compact, we
show that merge has cache cost O(/B). This notion of com-
pactness generalizes to other data structures, such as trees.
Another feature of the allocation cache of ICFP is that it
only contains live data. This is important because in some
algorithms, such as matrix multiply, the rate at which tem-
porary memory is generated is asymptotically larger than
the rate at which output data is generated. Therefore, if all
counted it could fill up the cache, whereas we want to make
sure that temporary data slots are reused. Also, we want to
ensure that temporary memory is not transferred to the slow
memory because such transfer would cause extra traffic.
Moreover, the temporary data could end up between out-
put data elements, causing them to be fragmented across
blocks. In our provable implementation we do not require a
precise tracking of live data, but instead use a generational
collector with a nursery of size 2M. The simulation then
keeps all the 2M locations in the fast memory so that all allo-
cation and collection (within the new generation) is fast.

1.5. Related work

The general idea of using high-level cost models based on a
cost semantics along with a provable efficient implementa-
tion has previously been used in the context of parallel cost
models.* %22 Although there has been a large amount of
experimental work on showing how good garbage collec-
tion can lead to efficient use of caches and disks (Chilimbi
and Larus’, Courts'’, Grunwald et al."; Wilson et al.>* and
many references in Jones and Lins'®), we know of none that
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try to prove bounds for algorithms for functional programs
when manipulating recursive data types such as lists or
trees. Abello et al.* show how a functional style can be used
to design cache efficient graph algorithms. However, they
assume that data structures are in arrays (called lists), and
that primitives for operations such as sorting, map, filter
and reductions are supplied and implemented with optimal
asymptotic cost (presumably at a lower level using impera-
tive code). Their goal is therefore to design graph algorithms
by composing these high-level operations on collections.
They do not explain how to deal with garbage collection or
memory management.

2. COST SEMANTICS
In general, a cost semantics for a language defines both ow
to execute a program and the cost of its execution. In func-
tional languages execution consists of a deterministic strat-
egy for calculating the value of an expression by a process
of simplification, or reduction, similar to what one learns in
elementary algebra. But rather than working with the real
numbers, programs in a functional language calculate with
integers, with inductive data structures, such as lists and
trees, and with functions that act on such values, including
other functions. The theoretical foundation for functional
languages is Church’s A-calculus.®®

The cost ofacomputation in a functional language maybe
defined in various ways, including familiar measures such as
time complexity, defined as the number of primitive reduc-
tion steps required to evaluate an expression, and space
complexity, defined as the number of basic data objects allo-
cated during evaluation. Such measures are defined in terms
of the constructs of the language itself, rather than in terms
of its implementation on a machine model such as a RAM
or Turing machine. Algorithm analysis takes place entirely
at the language level. The role of the implementation is to
ensure that the abstract costs can be realized on a concrete
machine with stated bounds.

2.1. Cache cost
The cost measure of interest in the present paper is the
cache cost,which is derived from considering a combination
of the time and space behavior of a program. The cache cost
is derived by specifying when data objects are allocated and
retrieved, and as with the ICMM is parameterized by two con-
stants, B and M, governing the cache behavior. To be more
precise, expressions are evaluated relative to an abstract
store, 0, which comprises a main memory, U, a read cache, p,
and a nursery, or allocation area, v. The structure of the store
is depicted in Figure 8. The main memory maps abstract loca-
tions to atomic data objects, and is of unbounded capacity.
Atomic data objects are considered to occupy one unit of
storage. Objects in main memory are aggregated into blocks
of size B in a manner to be described shortly. The blocking
of data objects does not change during execution; once an
objectis assigned to a block, it remains part of that block for
the rest of the computation.

The read cache is a fixed-size mapping from locations to
data objects containing at most M objects. As usual, the read
cache represents a partial view of main memory. Objects are



Figure 8. The memory model for the ICFP cost semantics. It is
similar to the ideal cache model, but has two fast memories of

size M: a nursery for newly allocated data, and a read cache for
data that has migrated to main memory and was read again by

the program. The main memory and read cache are organized into
blocks, as in the ideal-cache model, but the nursery is not blocked.
Rather, it consists of (live) data objects linearly ordered by the time
at which they were allocated. The semantics defines when a piece
of data is live, but conceptually it is just when it is reachable from
the executing program. If an allocation overflows the nursery, the
oldest B live objects are flushed from the cache into main memory
as a block to make space for the new object. If one of these words
is later read, the entire block is moved into the read cache, possibly
displacing another block in the process. Displaced blocks can be
discarded, because the only writes in a functional language occur at
allocation, and never during subsequent execution.
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loaded into the read cache in blocks of size B as determined
by the aggregation of objects in main memory. Objects are
evicted from the read cache by simply over-writing them; in
a functional language data objects cannot be mutated, and
hence need never be written back to main memory. Blocks
are evicted according to the (uncomputable) Ideal Cache
Model (ICMM).

The allocation area, or nursery, is fixed-sized mapping
from locations to data objects also containing at most M
objects. Locations in the nursery are not blocked, but they
are linearly ordered according to the time at which they are
allocated. We say that one data object is older than another
if the location of the one is ordered prior to that of the other.
A location in the nursery is /ive if it occurs within the pro-
gram being evaluated.'® All data objects are allocated in the
nursery. When its capacity of M objects is exceeded, the old-
est Bobjects are formed into a block that is migrated to main
memory, determining once and for all the block to which
these objects belong. This policy ensures that temporal local-
ity implies spatial locality, which means that objects that are
allocated nearby in time will be situated nearby in space
(i.e., occupy the same block). In particular, when an object
is loaded into the read cache, its neighbors in its block will
be loaded along with it. These will be the objects that were
allocated at around the same time.

The role of a cost semantics is to enable reasoning about
the cache cost of algorithms without dropping down to the
implementation level. To support proof, the semantics must

be specified in a mathematically rigorous manner, which we
now illustrate for ICFP, a simple eager variant of Plotkin’s
language PCF* for higher-order computation over natural
numbers. (It is straightforward to extend ICFP to account
for a richer variety of data structures, such as lists or trees,
and for hardware-oriented concepts such as words and float-
ing point numbers, which we assume in our examples.)

2.2. Cost semantics
The abstract syntax of ICFP is defined as follows:

e u= x| Z | s(e) | ifz(e;e,;x.e) |

fun(x,y.e) | app (e;;e,)

Here x stands for a variable, which will always stand for a
data object allocated in memory. The expressions z and s( )
represent 0 and successor, respectively, and the conditional
tests whether e is z or not, branching to e, if so, and branch-
ing to e, if not, substituting (the location of) the predeces-
sor for x in doing so. Functions, written fun(x, y.e), bind a
variable x standing for the function itself, and a variable y
standing for its argument. (The variable x is used to effect
recursive calls.) Function application is written app(e ; e,),
which applies the function given by the expression e, to the
argument value given by the expression e,. The typing rules
for ICFP are standard (see Chapter 10 of Harper®), and
hence are omitted for the sake of concision.

Were the cost of a computation in ICFP just the time
complexity, the semantics would be defined by an evalu-
ation relation e " v stating that the expression e evaluates
to the value v using n reduction steps according to a speci-
fied outermost strategy. Accounting for the cache cost of a
computation is a bit more complicated, because we must
account for the memory traffic induced by execution. To do
so, we consider an evaluation relation of the form

c@el'c@!

in which the evaluation of an expression e is performed rela-
tive to a store o, and returns a value represented by a loca-
tion in a modified store ¢’. The modifications to the store
reflect the allocation of new objects, their migration to main
memory, and their loading into the read cache. The evalua-
tion relation also specifies the cache cost n, which is deter-
mined entirely by the movements of blocks to and from
main memory. All other operations are assigned zero cost.

The evaluation relation for ICFP is defined by deriva-
tion rules that specify closure conditions on it. Evaluation
is defined to be the strongest relation satisfying these con-
ditions. To give a flavor of how this is done, we present in
Figure 9 a simplified form of the rule for evaluating a func-
tion application, app(e,; €,). The rule has four premises, and
one conclusion, separated by the horizontal line, which may
be read as implication stating that if the premises are all
derivable, then so is the conclusion.

The other constructs of ICFP are defined by similar
rules, which altogether specify the behavior and cost of
the evaluation of any ICFP program. The abstract cost
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Figure 9. Simplified semantics of function application. This rule
specifies the cost and evaluation of a function application app(e;; e,)
of a function e, to an argument e,. similar rules govern the other
language constructs. Bear in mind that all values are represented by
(abstract) locations in memory. First, the expression e, is evaluated,
with cost n,, to obtain the location [, of the function being called.
That location is read from memory to obtain the function itself, a
self-referential A-abstraction, at cost n;. Second, the expression

e, is evaluated, with cost n,, to obtain its value L,. Finally, |, and [,
are substituted into the body of the function, and then evaluated to
obtain the result [ at cost n. The overall result is [ with total cost the
sum of the constituent costs. The only non-zero cost arises from
allocation of objects and reading from memory; all other operations
are considered cost-free, as in the 1/0 model.
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o1 @l J,”,l 6, @ fun(x y.e)
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(evaluate function)
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semantics underlies the analyses given in Sections 1 and 3.
The abstract costs given by the semantics are validated by
giving a provable implementation™ '’ that realizes these costs
on a concrete machine. In our case the realization is given in
terms of the ICMM, which is an accepted concrete formula-
tion of a machine with hierarchical memory. By composing
the abstract semantics with the provable implementation
we obtain end-to-end bounds on the cache complexity of
algorithms written in ICFP without having to perform the
analysis at the level of the concrete machine, but rather at
the level of the language in which the algorithms are written.

2.4. Provable implementation

The provable implementation of ICFP on the ICMM is
described in Figure 10. Its main properties, which are impor-
tant for obtaining end-to-end bounds on cache complexity,
are summarized by the following theorem:

THEOREM 2.1. An evaluation c @ e |J" o' @ [ in ICFP with
abstract cache parameters M and B can be implemented on the
ICMM with concrete cache parameters 4 x M + k x B and B with
cache cost O(n), for some constant k.

The proof of the theorem consists of an implementation of
ICFP on the ICMM described in Figure 10, and of showing
that reduction step of ICFP is simulated on the ICMM to
within a (small) constant factor. The full details of the proof,
along with a tighter statement of the theorem, are given in
the associated conference paper.

3. CACHE EFFICIENT ALGORITHMS

We now analyze mergeSort and matrix multiply in ICFP, and
give bounds for a k-way mergeSort thatis optimal. The imple-
mentations are completely natural functional programs
using lists and trees instead of arrays. In the associated con-
ference paper, we describe how one can deal with higher-
order functions (such as passing a comparison function to
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Figure 10. Simulating the ICFP on the ICMM. The simulation requires
a cache of size 4 x M+ k x B for some constant k. Allocation and
migration is managed using generational copying garbage collection,
which requires 2 x M words of cache to manage M live objects. The
liveness of objects in the nursery can be assessed without accessing
main memory, because in a functional language older objects cannot
refer to newer objects. Copying collection preserves the allocation
ordering of objects, as is required for our analyses. Because two
objects that are in the same abstract block can be separated into
adjacent blocks by the simulation, blocks are loaded two-at-a-time,
requiring 2 x M additional words of cache on the ICMM. An additional
B words of read cache are required to account for the space required
by the control stack using an amortization argument, and a constant
number of blocks are required for the allocation of the program itself
in memory.
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merge), and define the notion of hereditarily finite values for
this purpose, but here we only consider first-order usage.

As mentioned in the introduction, the cost of access-
ing a recursive datatype will depend on how it is laid out in
memory, which depends on allocation order. We could try to
define the notion of a list being in a good order in terms of
how the list is represented in memory. This is cumbersome
and low level. We could also try to define it with respect to
the specific code that allocated the data. Again this is cum-
bersome. Instead we define it directly in terms of the cache
cost of traversing the structure. By traversing we mean going
through the structure in a specific order and touching (read-
ing) all data in the structure. Because types such as trees
might have many traversal orders, the definition is with
respect to a particular traversal order. For this purpose, we
define the notion of “compact.”

DEFINITION 3.1. A data structure of size n is compact with
respect to a given traversal order if traversing it in that order
has cache cost O(n/B) in our cost semantics with M > kB for
some constant k.

We can now argue that certain code will generate data struc-
tures that are compact with respect to a particular order.
We note that if a list is compact with respect to traversal in
one direction, it is also compact with respect to the opposite
direction.

To keep data structures compact, not only do the top
level links need to be accessed in approximately the order



they were allocated, but anything that is touched by the algo-
rithm during traversal also needs to be accessed in a simi-
lar order. For example, if we are sorting a list it is important
that in addition to the “cons cells,” the keys are allocated in
the list order (or, as we will argue shortly, reverse order is
fine). To ensure that the keys are allocated in the appropri-
ate order, they need to be copied whenever placing them in
a new list. This copy needs to be a deep copy that copies all
components. If the keys are machine words then in practice
these might be inlined into the cons cells anyway by a com-
piler. However, to ensure that objects are copied we will use
operation ! a to indicate copying of a.

3.1. Merge sort

We now consider analyzing mergeSort in our cost model,
and in particular the code given in Figures 2 and 6. We will
not cover the definition of split because it is similar to
merge. We first analyze the merge.

THEOREM 3.2. For compact lists A and B, the evaluation of
merge (A, B) starting with any cache state will have cache cost
o [ z ) (where n = |A|+|B|) and will return a compact list.

PROOF. We consider the cache cost of going down the recur-
sion and then coming back up. Because A and B are both
compact, we need only put aside a constant number of
cache blocks to traverse each one (by definition). Recall that
in the cost model we have a nursery v that maintains both
live allocated values and place holders for stack frames in
the order they are created. In merge nothing is allocated
from one recursive call to the next (the cons cells are cre-
ated on the way back up the recursion) so only the stack
frames are placed in the nursery. After M recursive calls
the nursery will fill and blocks will have to be flushed to the
memory i (as described in Section 2). The merge will invoke
at most O(n/B) such flushes because only n frames are cre-
ated. On the way back up the recursion we will generate the
cons cells for the list and copy each of the keys (using the !).
Note that copying the keys is important so that the result
remains compact. The cons cells and copies of the keys will
be interleaved in the allocation order in the nursery and
flushed to memory once the nursery fills. Once again these
will be flushed in blocks of size B and hence there will be
at most O(n/B) such flushes. Furthermore the resulting list
will be compact because adjacent elements of the list will
be in the same block. []

We now consider mergeSort as a whole.

THEOREM 3.3. For a compact list A, the evaluation of
mergeSort (A) starting with any cache state will have cache
cost given by Equation (2) and will return a compact list.

PROOF. As with the array version, we consider the two cases
when the input fits in cache and when it does not. The
mergeSort routine never requires more than O(n) live allo-
cated data. Therefore, when kn < M for some (small) con-
stant k all allocated data fits in the nursery. Furthermore,

because the input list is compact, for k'n <M the input fits in
the read cache (for some constant k'). Therefore, the cache
cost for mergeSort is at most the time to flush O(n) items out
of the allocation cache that it might have contained at the
start, and to load the read cache with the input. This cache
cost is bounded by O(n/B). When the input does not fit in
cache we have to pay for the merge as analyzed above plus
the recursive calls. This gives the same recurrence as for the
array version and hence solves to the claimed result. [J

Here we just outline the k-way mergeSort algorithm and
state the cost bounds, which are optimal for sorting. The
sort is similar to mergeSort but instead of splitting into
two parts recursively sorting each, it splits into k parts.
A k-way merge is then used to merge the sorted parts. The
k-way merge can be implemented using a priority queue.
The sort in ICFP has the optimal bounds for sorting given
by Equation (3).

3.2. Matrix multiply

Our final example is matrix multiply. The code is shown in
Figure 11 (we have left out checks for matching sizes). This
is a block recursive matrix multiply with the matrix laid out
in a tree. We define compactness with respect to a preorder
traversal of this tree. We therefore say the matrix is compact
if traversing in this order can be done with cache cost O(*/B)
for an n x n matrix (n? leaves). We note that if we generate a
matrix in a preorder traversal allocating the leaves along the
way, the resulting matrix will be compact. Also, every recur-
sive sub-matrix is itself compact.

THEOREM 3.4. For compact n x n matrices A and B, the evalu-
ation of mmult (A, B) starting with any cache state will have
cache cost given by Equation (1) and will return a compact
matrix as a result.

PROOF. Matrix addition has cache cost O(n*/B) and generates
a compact result because we traverse the two input matrices

Figure 11. Matrix Multiply.

datatype M=Leaf of int
| Node of M * M *x M * M

1
2
3
4 fun mmult(Leaf a, Leaf b)=Leaf(axb)

5 | mmult(Node(ayy, 0q9 o1, Oo9) 4

6 Node (byy, b1y by, ba)) =

7 let

8 fun madd(Leaf a, Leaf b)=Leaf(a+b)
9 | madd(Node (a1, 015 091, G9) s

10 Node (byy, byy, by, byy)) =

11 Node (madd(ayy, byp), madd(agy byy),
12 madd (a,, byy) , madd(ay,, by,))

13 in

14 Node (madd (mmult(ay, byp), mmult(ag, by)),
15 madd (mmult

(
(
(
(

( )
011, byy) , mmult Eau, bn;
( )

16 madd (mmult (dyy, byp), mmult(ayy, b)),
17 madd(mmult )1, blz) ,mmult 0y, b22 )
18 end
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in preorder traversal and we generate the output in the same
order. Because the live data is never larger than O(n?), the
problem will fit in cache for n* < M/c for some constant c.
Once it fits in cache the cost is O(n?/B) needed to load the
input matrices and write out the result. When it does not fit
in cache we have to do eight recursive calls and four calls to
matrix addition. This gives a recurrence,

2
so(gjm % n*>M/c
JOR
o — otherwise
B

3

which solves to O JWJ The output is compact because
each of the four calls to madd in mmult allocate new results
in preorder with respect to the submatrices they generate,
and the four calls are made in preorder. Therefore, the over-

all matrix returned is allocated in preorder. [J

4. CONCLUSION

The present work extends the methodology of Blelloch
and Greiner* ** to account for the cache complexity of
algorithms stated in terms of two parameters, the cache
block size and the number of cache blocks. Analyses are
carried out in terms of the semantics of ICFP given in
Section 2, and are transferred to the Ideal Cache Model
by a provable implementation, also sketched in Section 2.
The essence of the idea is that conventional copying gar-
bage collection can be deployed to achieve cache-efficient
algorithms without sacrificing abstraction by resorting to
manual allocation and cacheing of data objects. Using
this approach, we are able to express algorithms in a high-
level functional style, analyze them using a model that
captures the idea of a fixed size read and allocation stack,
without exposing the implementation details, and still
match the asymptotic bounds for the ideal cache model
achieved using low-level imperative techniques including
explicit memory management. For sorting, the bounds
are optimal.

One direction for further research is to integrate (deter-
ministic) parallelism with the present work. Based on previ-
ous work® ** we expect that the evaluation semantics given
here will provide a good foundation for specifying parallel as
well as sequential complexity. One complication is that the
explicit consideration of storage considerations in the cost
model given here would have to take account of the interac-
tion among parallel threads. The amortization arguments
would also have to be reconsidered to account for parallel-
ism. Finally, although we are able to generate an optimal
cache-aware sorting algorithm, it is unclear whether it is
possible to generate an optimal cache-oblivious sorting
algorithm in our model.
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