15-150

Principles of Functional Programming

Slides for Lecture 21
Imperative Programming

April 9, 2024

Michael Erdmann

- Mutation
- Mutable cells
- Typing rules
- Evaluation rules
- Aliasing
- Race Conditions
- Ephemeral Data vs Persistent Data
- Benign Effects

A New Type

The type is written t ref

 with \mathbf{t} any ML type.
A New Type

The type is written t ref

with \mathbf{t} any ML type.

Restriction: at top-level, \mathbf{t} must be monomorphic.
(This is a consequence of SML's "value restriction", designed to avoid bizarre side-effects. We won't discuss details.)

Values

We think of a value of type \mathbf{t} ref as being a cell that contains a value \mathbf{v} of type \mathbf{t} :

v

E.g, 7
is a value of type int ref containing the value 7 of type int.
(Create such a cell by writing ref 7.)

Typing and Evaluation

- Expressions involving reference cells have precise type-checking and evaluation rules.
- As always in SML, type-checking happens before evaluation.
- We will discuss evaluation first, since that is a natural way to introduce new constructs involving reference cells. (We assume all expressions are well-typed during evaluation.)

ref e

Evaluation rules:

- Evaluate expression e.
- If \mathbf{e} reduces to a value \mathbf{v}, then create and return a new cell containing \mathbf{v}.

Pictorially: If $\mathbf{e} \hookrightarrow \mathbf{v}$, then refe $\mathbf{e} \hookrightarrow \mathbf{v}$.
Example: val $c=r e f 7$
That creates a binding $7 / \mathbf{c}$.

!e

Evaluation rules:

- Evaluate expression e.
- If e reduces to a cell containing value \mathbf{v}, then return \mathbf{v}.

Pictorially: If $\mathbf{e} \hookrightarrow \mathbf{v}$, then $\mathbf{~} \mathbf{e} \hookrightarrow \mathbf{v}$.
Example:

$$
\begin{aligned}
& \text { val } c=r e f ~ \\
& \text { val } v=!c
\end{aligned}
$$

That creates bindings $7 / \mathrm{c}$ and $7 / \mathrm{v}$.

$$
\mathbf{e}_{1}:=\mathbf{e}_{2}
$$

Evaluation rules:

- Evaluate expression $\mathbf{e}_{\mathbf{1}}$.
- If $\mathbf{e}_{\mathbf{1}}$ reduces to cell \mathbf{c}, then evaluate $\mathbf{e}_{\mathbf{2}}$.
- If $\mathbf{e}_{\mathbf{2}}$ reduces to value \mathbf{v}, then change the contents of \mathbf{c} to be \mathbf{v} an return ().

$$
e_{1}:=e_{2}
$$

Evaluation rules:

- Evaluate expression $\mathbf{e}_{\mathbf{1}}$.
- If $\mathbf{e}_{\mathbf{1}}$ reduces to cell \mathbf{c}, then evaluate $\mathbf{e}_{\mathbf{2}}$.
- If $\mathbf{e}_{\mathbf{2}}$ reduces to value \mathbf{v}, then change the contents of \mathbf{c} to be \mathbf{v} and return ().
Pictorially: If $\mathbf{e}_{\mathbf{1}} \hookrightarrow \boldsymbol{W}$ (some \mathbf{w}) and if $\mathbf{e}_{\mathbf{2}} \hookrightarrow \mathbf{V}$, then replace \mathbf{w} with \mathbf{v} in the cell above.

Example: val c = ref 7

$$
e_{1}:=e_{2}
$$

Evaluation rules:

- Evaluate expression $\mathbf{e}_{\mathbf{1}}$.
- If $\mathbf{e}_{\mathbf{1}}$ reduces to cell \mathbf{c}, then evaluate $\mathbf{e}_{\mathbf{2}}$.
- If $\mathbf{e}_{\mathbf{2}}$ reduces to value \mathbf{v}, then change the contents of \mathbf{c} to be \mathbf{v} and return ().
Pictorially: If $\mathbf{e}_{\mathbf{1}} \hookrightarrow \boldsymbol{W}$ (some \mathbf{w}) and if $\mathbf{e}_{\mathbf{2}} \hookrightarrow \mathbf{V}$, then replace \mathbf{w} with \mathbf{v} in the cell above.

Example: val c = ref 7
val () = c := 4
val $v=$! c
$4 / \mathrm{c}$
4/v

Typing Rules

- ref e : t ref if e : t.
- !e : t if e : t ref.
- $e_{1}:=e_{2} \quad$: unit

$$
\begin{aligned}
\text { if } \mathbf{e}_{1} & : \mathbf{t} \text { ref } \\
\text { and } & \mathbf{e}_{2}
\end{aligned}: \mathbf{t} .
$$

(and so we also have)

- ref is similar to a constructor.

It has type 'a -> 'a ref.

- ! : 'a ref -> 'a.
- (op :=) : 'a ref * 'a -> unit.

Side Comment

There is no explicit "deallocation" of cells.

In practice, a garbage collector reclaims cells once they become inaccessible via any code (e.g., permanently shadowed).

We do not worry about that in this course.

pattern matching

Can pattern match on ref:
(* containsZero : int ref -> bool *)
fun containsZero (ref 0) = true | containsZero _ = false
val d = ref 42
val false = containsZero d
val false = containsZero (ref 7)
val true = containsZero (ref 0)

Aliasing

val c = ref 10
val $w=!c$
val $d=c$
val () = d := 42
val $v=$! c
What values are bound to \mathbf{w} and \mathbf{v} ?

Aliasing

val c = ref 10
val $w=$! $\mathbf{c} \quad$ We say that \mathbf{c} and \mathbf{d} are
val d = c
val () = d := 42
val v = !c
What values are bound to \mathbf{w} and \mathbf{v} ?
Answer: 10/w 42/v

Sequential Expressions

SML allows this form of an expression:

$$
\begin{gathered}
\left(e_{1} ; e_{2} ; \ldots ; e_{n}\right) \\
\uparrow
\end{gathered}
$$

observe the semi-colons (and the parentheses)

Sequential Expressions

SML allows this form of an expression:

$$
\left(e_{1} ; e_{2} ; \ldots ; e_{n}\right)
$$

The overall expression is well-typed iff each expression $\mathbf{e}_{\mathbf{i}}$ is well-typed. In that case, the overall type is the type of $\mathbf{e}_{\mathbf{n}}$:
$\left(e_{1} ; e_{2} ; \ldots ; e_{n}\right): t_{n}$ if there exist types $\mathbf{t}_{\mathbf{i}}$ such that $e_{i}: t_{i}, i=1, \ldots, n$.

Sequential Expressions

SML allows this form of an expression:

$$
\left(e_{1} ; e_{2} ; \ldots ; e_{n}\right)
$$

The overall expression has a value iff each expression $\mathbf{e}_{\mathbf{i}}$ has a value.
In that case, the overall expression has the value of $\mathbf{e}_{\mathbf{n}}$:
$\left(e_{1} ; e_{2} ; \ldots ; e_{n}\right) \hookrightarrow \mathbf{v}_{n}$ if there exist values $\mathbf{v}_{\mathbf{i}}$ such that

$$
e_{i} \hookrightarrow v_{i}, i=1, \ldots, n .
$$

Sequential Expressions

SML allows this form of an expression:

$$
\left(e_{1} ; e_{2} ; \ldots ; e_{n}\right)
$$

Evaluation is left-to-right.

If any $\mathbf{e}_{\mathbf{i}}$ raises an exception or loops forever, then the overall expression raises an exception or loops forever, as determined by the leftmost $\mathbf{e}_{\mathbf{i}}$ that fails to reduce to a value.

Sequential Expressions

Example:

let

$$
\text { val c = ref } 10
$$

in

> (print(Int.toString(!c));
c)
end

This code creates a reference cell \mathbf{c}, prints the contents $\mathbf{1 0}$, then returns the cell.

What is the type of this let?
What is the value?

Sequential Expressions

Example:

let

$$
\text { val c = ref } 10
$$

in

> (print(Int.toString(!c));
c)
end
This code creates a reference cell \mathbf{c}, prints the contents $\mathbf{1 0}$, then returns the cell.

What is the type of this let?
int ref

What is the value?
ref 10

Alternate implementation

let

> val $c=\operatorname{ref} 10$
> val $_{-}=\operatorname{print(Int.toString(!c))}$

in

C

end

Extensional Equivalence

- Reasoning about equivalence must take into account changes in reference cells.
- We define the store to be the set of accessible reference cells along with their contents.
- When evaluating code, we now should write

$$
\{e ; s\}==>\left\{e^{\prime} ; s^{\prime}\right\}
$$

with \mathbf{e} and \mathbf{e}^{\prime} expressions and \mathbf{s} and \mathbf{s}^{\prime} stores.

- To say $\mathbf{e} \cong \mathbf{e}^{\prime}$ independent of store means that $\{e ; s\}==>\left\{v ; s^{\prime}\right\}$ and $\left\{e^{\prime} ; s\right\}==>\left\{w ; s^{\prime}\right\}$, with v and w equivalent values (or both reductions raise equivalent exceptions with identical stores or both reductions loop forever with identical changes in store), for all initial stores s.

Race Conditions

Consider:

fun deposit a $n=a \quad:=$!a + n
deposit increments the contents of cell a by \mathbf{n}. deposit : int ref -> int -> unit

When we see a return type of unit in a function, we understand that the function is being called for effect.

Race Conditions

Consider:

fun deposit a $n=\mathbf{a}:=$!a + n
fun withdraw a $n=\mathbf{a}:=$!a - n
val chs = ref 100 (* bank account *)

Race Conditions

Consider:
fun deposit a $n=a \quad:=$!a + n
fun withdraw a $n=a \quad:=$!a - n
val chk = ref 100 (* bank account *)
val _ = (deposit chk 50; withdraw chk 80)
Assume sequential evaluation. What is the value of !chk?

Race Conditions

Consider:
fun deposit a $n=a \quad:=$!a + n
fun withdraw a $n=a \quad:=$!a - n
val chk = ref 100 (* bank account *)
val _ = (deposit chk 50; withdraw chk 80)
Assume sequential evaluation.

> What is the value of !chk?

Race Conditions

Now assume parallel evaluation of the pair.
fun deposit a n = a := !a + n fun withdraw a $n=a \quad:=$!a - n val chk = ref 100
val _ = (deposit chk 50, withdraw chk 80)
What now is the value of !chk ?

Race Conditions

Now assume parallel evaluation of the pair.
fun deposit a n = a := !a + n fun withdraw a $n=a \quad:=$!a - n val chk = ref 100
val _ = (deposit chk 50, withdraw chk 80)
What now is the value of ! chk ? There is no definitive answer.

If deposit and withdraw happen atomically, then 70 as before. Otherwise, timing of read and write could mean 20, 70, or 150. If simultaneous writes to the underlying bits, then maybe garbage.

Deterministic Parallelism

The previous example has multiple outcomes, determined nondeterministically
(that means: beyond our knowledge or control).
We want deterministic outcomes.

Concerns: Sequential vs Parallel Evaluation

Persistent vs Ephemeral Data no mutation mutable

Persistent

Ephemeral

Sequential

Parallel

Functional programming is a good tool

\uparrow

Reasoning is more complicated, but FP is fine.

need to think

 about concurrencyCan include diverging code by left-to-right evaluation semantics.

Can also include some mutation as benign effects (see subsequent slides).

Benign Effects

A benign effect is some effect (such as mutation) that is localized within some sufficiently small chunk of code (such as a function or structure) so that external users can use the code as if it were purely functional.

Benign effects can be useful, for instance, in improving efficiency while still keeping code simple enough to analyze and prove correct.

Example: Graph Reachability

Can get to vertex 4 from any other vertex, but cannot get to any other vertex from 4.

Let us model a graph as a function that encodes neighbors reachable by a single edge:
type graph $=$ int $->$ int list
val G : graph = in 1 => $[2,3]$

$$
\mid 2 \text { => }[1,3]
$$

$$
3 \text { => [4] }
$$

$$
-\quad=>\text { [] }
$$

First (naïve) attempt to check reachability:

(* reach : graph -> int*int -> bool*)

> reach $\mathbf{g}(x, y)$ is supposed to return true if \mathbf{y} is reachable from \mathbf{x} in \mathbf{g}, and return false otherwise.

REQUIRE: \mathbf{g} is total.

First (naïve) attempt to check reachability:
(* reach : graph -> int*int -> bool *)
fun reach (g : graph) (x,y) = let fun dfs $\mathrm{n}=(\mathrm{n}=\mathrm{y})$ orelse

First (naïve) attempt to check reachability:
(* reach : graph -> int*int -> bool *)
fun reach (g : graph) $(x, y)=$ let
fun dfs $n=(n=y)$ orelse (List.exists dfs (g n))
in
Check whether y is reachable from any of \mathbf{n} 's neighbors. end

Recall
List.exists : ('a -> bool) -> 'a list -> bool checks whether some element in the list satisfies the predicate.

First (naïve) attempt to check reachability:
(* reach : graph -> int*int -> bool *)
fun reach (g : graph) $(x, y)=$ let
fun dfs $n=(n=y)$ orelse
(List.exists dfs (g n))
in

$$
\text { dfs } x
$$

end

Issue: The depth-first search can loop forever on \mathbf{G}.

We can fix this by updating a visited list:

(* mem: int -> int list -> bool *)
fun mem (n:int) = List.exists (fn x => n=x)
mem $\mathbf{n} \mathbf{L}$ checks whether \mathbf{n} is in list \mathbf{L}.

We can fix this by updating a visited list:

(* mem: int -> int list -> bool *)
fun mem (n:int) $=$ List.exists (fn x => n=x)
(* reachable : graph -> int*int -> bool *)
fun reachable (g:graph) $(x, y)=$
let val visited = ref []
Create a reference cell that will hold a list of vertices (integers) visited during depth first search of the graph.

Initially the list is empty.
in
end

We can fix this by updating a visited list:
(* mem: int -> int list -> bool *)
fun mem (n:int) = List.exists (fn x => n=x)
(* reachable : graph -> int*int -> bool *)
fun reachable (g:graph) (x, y) =
let
val visited = ref []
fun dfs $n=(n=y)$ orelse
As before, the first thing dfs does is to check whether it has arrived at the destination \mathbf{y}.
in
dfs x
end

We can fix this by updating a visited list:

(* mem: int -> int list -> bool *)
fun mem (n:int) $=$ List.exists (fn x => n=x)
(* reachable : graph -> int*int -> bool *)
fun reachable (g:graph) (x, y) =
let
val visited = ref []
fun dfs $n=(n=y)$ orelse
(not (mem n (!visited)) andalso
(visited := n::(!visited); List.exists dfs (g n)))
in
dfs x
end
Only continue the depth first search if the current vertex \mathbf{n} has not already been visited. In that case, also update the visited list with \mathbf{n}.

Alternative approaches

- Pass and return visited explicitly as an argument.
- Use continuations with visited as an argument.

Other Roles for Mutation

- Maintain local state in a random number generator.
- Remember stream values that have been exposed previously, so that re-exposing them does not require repeating potentially expensive computations.
(This is called memoization.)

A Random Number Generator

```
signature RANDOM =
sig
    type gen (* abstract *)
    val init : int -> gen (* REQUIRE: seed > 0 *)
    val random : gen -> int -> int
end
```


Reference: Paulson, ML for the Working Programmer, 1996, p. 108, who points to Park \& Miller, CACM, 1988, 31, pp.1192-1201.

A Random Number Generator

structure R :> RANDOM = struct
type gen = real ref
val a = 16807.0
val m = 2147483647.0
fun next $r=a * r-m * r e a l(f l o o r(a * r / m))$
val init $=$ ref o real
fun random $\mathbf{g} \mathbf{b}=(g:=n e x t(!g) ;$
floor ((!g/m) * (real b)))
end
val G = R.init(12345)
val L = List.tabulate(100, fn _ => R.random G 1000)
\mathbf{L} is a list of $\mathbf{1 0 0}$ random integers in the range $[0,999]$.

Stream Memoization

Previously we had the following code inside our Stream structure:

fun delay d = Stream d fun expose (Stream d) = d ()

Data persistence means that any and every time someone exposes a given stream, the computation d() will occur.

Let us add a hidden reference cell that remembers the result of computing $\mathbf{d}()$. We will leave expose as is, and change delay.

Stream Memoization

fun delay $d=$
 let
 ```val cell = ref d```

Our first observation is that we can put \mathbf{d} in a reference cell.

Recall the code for expose: fun expose (Stream d) = d()

That means we now need a suspension, which when forced will access the reference cell and force the function we put there: in

Stream (fn () => !cell())

 end
Stream Memoization

fun delay d = let val cell = ref d fun memoFn () = let
val $r=d()$ in
(cell := (fn () => r);
r) end
memoFn is a function that computes $\mathbf{d}()$, remembers the result \mathbf{r} in a suspension, puts that suspension in cell, and returns \mathbf{r}.
in
Stream (fn () => !cell()) end

Stream Memoization

fun delay $d=$ let val cell = ref d fun memoFn () = let val $r=d()$ in (cell := (fn () => r); r)
end
We put memoFn into cell, where it will sit until someone exposes the stream, at which point memoFn replaces itself with ($\mathrm{fn}(\mathrm{)}=>\mathrm{r}$).
val _ = cell := memoFn
in
Stream (fn () => !cell()) end

Stream Memoization

fun delay $d=$ let
val cell = ref d
fun memofn () = let

$$
\text { val } r=d()
$$

in
One can even memoize raised exceptions this way.
(cell := (fn () => r);
r)
end handle E =>
(cell := (fn () => raise E);
raise E)
val _ = cell := memorn
in
Stream (fn () => !cell())
end

Stream Memoization

fun delay $d=$
let
val cell = ref d
fun memoFn () = let

$$
\text { val } r=d()
$$ in

(cell := (fn () => r);
r)
end handle $E=>$
(cell := (fn () => raise E);
raise E)
val _ = cell := memoFn
in
Stream (fn () => !cell()) end

That is all.

Please have a good Carnival!

See you next Tuesday, when we will talk about context free grammars.

