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Lessons:
• Mutation

– Mutable cells

– Typing rules

– Evaluation rules

• Aliasing

• Race Conditions

• Ephemeral Data vs Persistent Data

• Benign Effects



A New Type

The type is written
t ref

with t any ML type.



A New Type

Restriction: at top-level, t must be monomorphic.
(This is a consequence of SML’s “value restriction”, designed 

to avoid bizarre side-effects.  We won’t discuss details.)

The type is written
t ref

with t any ML type.



Values

We think of a value of type  t ref as being a 
cell that contains a value v of type t:

v

E.g, 7 is a value of type  int ref
containing the value 7 of type int.
(Create such a cell by writing  ref 7.)



Typing and Evaluation

• Expressions involving reference cells have 
precise type-checking and evaluation rules.

• As always in SML, type-checking happens 
before evaluation.

• We will discuss evaluation first, since that is a 
natural way to introduce new constructs 
involving reference cells.  (We assume all 
expressions are well-typed during evaluation.)



ref e

• Evaluate expression e.
• If e reduces to a value v, then 

create and return a new cell 
containing v.

Evaluation rules:

Pictorially: If e   v , then ref e .v

Example: val c = ref 7

That creates a binding         /c .7



!e

• Evaluate expression e.
• If e reduces to a cell containing 

value v, then return v.

Evaluation rules:

Pictorially: If e      , then  !e v.v

Example: val c = ref 7
val v = !c

That creates bindings        /c and  7/v.7



e1 := e2

• Evaluate expression e1.
• If e1 reduces to cell c, then evaluate e2.
• If e2 reduces to value v, then change the contents 

of c to be v and return ().

Evaluation rules:

observe



e1 := e2

• Evaluate expression e1.
• If e1 reduces to cell c, then evaluate e2.
• If e2 reduces to value v, then change the contents 

of c to be v and return ().

Evaluation rules:

Pictorially: If e1 (some w) and if e2 v,
then replace w with v in the cell above.

w

Example: val c = ref 7 /c7



e1 := e2

• Evaluate expression e1.
• If e1 reduces to cell c, then evaluate e2.
• If e2 reduces to value v, then change the contents 

of c to be v and return ().

Evaluation rules:

Pictorially: If e1 (some w) and if e2 v,
then replace w with v in the cell above.

w

Example: val c = ref 7
val () = c := 4
val v = !c

/c4

4/v



Typing Rules

• ref e : t ref  if e : t .

• !e : t   if e : t ref .

• e1 := e2 : unit

if  e1 : t ref  
and e2 : t .



(and so we also have)

• ref is similar to a constructor.
It has type 'a -> 'a ref .

• ! : 'a ref -> 'a .

• (op :=) : 'a ref * 'a -> unit .



Side Comment

There is no explicit “deallocation” of cells.

In practice, a garbage collector reclaims
cells once they become inaccessible via
any code (e.g., permanently shadowed).

We do not worry about that in this course.



pattern matching

Can pattern match on ref:

(* containsZero : int ref -> bool *)

fun containsZero (ref 0) = true
| containsZero _ = false

val d = ref 42
val false = containsZero d
val false = containsZero (ref 7)
val true = containsZero (ref 0)



Aliasing
val c = ref 10
val w = !c
val d = c

val () = d := 42
val v = !c

What values are bound to w and v?



Aliasing
val c = ref 10
val w = !c
val d = c

val () = d := 42
val v = !c

What values are bound to w and v?
10/w   42/vAnswer:

We say that c and d are
aliases for the same cell.



Sequential Expressions

SML allows this form of an expression:

(e1; e2; …; en)

observe the semi-colons (and the parentheses)



Sequential Expressions

SML allows this form of an expression:

(e1; e2; …; en)

The overall expression is well-typed
iff each expression ei is well-typed.

In that case, the overall type is the type of en:

(e1; e2; …; en) : tn
if there exist types ti such that 
ei:ti,  i=1,...,n.



Sequential Expressions

SML allows this form of an expression:

(e1; e2; …; en)

The overall expression has a value
iff each expression ei has a value.

In that case, the overall expression has the value of en:

if there exist values vi such that 
ei vi,  i=1,...,n.

(e1; e2; …; en)    vn



Sequential Expressions

SML allows this form of an expression:

(e1; e2; …; en)

If any ei raises an exception or loops forever,
then the overall expression raises an exception

or loops forever, as determined by the
leftmost ei that fails to reduce to a value.

Evaluation is left-to-right.



Sequential Expressions
Example:
let

val c = ref 10
in

(print(Int.toString(!c));
c)

end

What is the type of this let? What is the value?

This code creates a reference cell c,
prints the contents 10,
then returns the cell.



Sequential Expressions
Example:
let

val c = ref 10
in

(print(Int.toString(!c));
c)

end

What is the type of this let? What is the value?
int ref ref 10

This code creates a reference cell c,
prints the contents 10,
then returns the cell.



Alternate implementation

let
val c = ref 10
val _ = print(Int.toString(!c))

in
c

end



Extensional Equivalence
• Reasoning about equivalence must take into account 

changes in reference cells.

• We define the store to be the set of accessible reference 
cells along with their contents.

• When evaluating code, we now should write

• To say e  e’ independent of store means that 
{e;s}==>{v;s’} and {e’;s}==>{w;s’}, with v and w
equivalent values (or both reductions raise equivalent 
exceptions with identical stores or both reductions loop 
forever with identical changes in store), for all initial stores s.

{e ; s} ==> {e’ ; s’}

with e and e’ expressions and s and s’ stores.



Race Conditions

Consider:

fun deposit a n = a := !a + n

deposit increments the contents of cell a by n.
deposit : int ref -> int -> unit

When we see a return type of unit in a function,
we understand that the function is being called for effect.



Race Conditions

Consider:

fun deposit a n = a := !a + n

fun withdraw a n = a := !a - n

val chk = ref 100 (* bank account *)



Race Conditions

Consider:

fun deposit a n = a := !a + n

fun withdraw a n = a := !a - n

val chk = ref 100

val _ = (deposit chk 50; withdraw chk 80)

(* bank account *)

What is the value of  !chk ?
Assume sequential evaluation.



Race Conditions

Consider:

fun deposit a n = a := !a + n

fun withdraw a n = a := !a - n

val chk = ref 100

val _ = (deposit chk 50; withdraw chk 80)

(* bank account *)

What is the value of  !chk ?
Assume sequential evaluation.

70



Race Conditions

fun deposit a n = a := !a + n
fun withdraw a n = a := !a - n

val chk = ref 100

val _ = (deposit chk 50, withdraw chk 80)

What now is the value of  !chk ?

Now assume parallel evaluation of the pair.



Race Conditions
Now assume parallel evaluation of the pair.
fun deposit a n = a := !a + n
fun withdraw a n = a := !a - n

val chk = ref 100

val _ = (deposit chk 50, withdraw chk 80)

What now is the value of  !chk ?
There is no definitive answer.

If deposit and withdraw happen atomically, then 70 as before.
Otherwise, timing of read and write could mean 20, 70, or 150.
If simultaneous writes to the underlying bits, then maybe garbage.



Deterministic Parallelism
The previous example has multiple outcomes,

determined nondeterministically
(that means: beyond our knowledge or control).

We want deterministic outcomes.

Concerns: Sequential vs Parallel Evaluation

Persistent vs Ephemeral Data

no mutation mutable



Sequential

EphemeralPersistent

Parallel

Functional 

programming

is a good tool

Reasoning is

more complicated,

but FP is fine.

need to think

about concurrency

Can include diverging code by left-to-right evaluation 
semantics.

Can also include some mutation
as benign effects (see subsequent slides).



Benign Effects

A benign effect is some effect (such as mutation)
that is localized within some sufficiently small 
chunk of code (such as a function or structure)
so that external users can use the code as if it
were purely functional.

Benign effects can be useful, for instance, in 
improving efficiency while still keeping code simple 
enough to analyze and prove correct.



Example:   Graph Reachability

3
4

1

2

Can get to vertex 4
from any other vertex,
but cannot get to
any other vertex from 4.

type graph = int -> int list

val G : graph = fn 1 => [2,3]
| 2 => [1,3]
| 3 => [4]
| _ => []

G

Let us model a graph as a function that
encodes neighbors reachable by a single edge:



First (naïve) attempt to check reachability: 

(* reach : graph -> int*int -> bool *) 

reach g (x,y) is supposed to
return true if y is reachable from x in g,

and return false otherwise.

REQUIRE:  g is total.



First (naïve) attempt to check reachability: 

(* reach : graph -> int*int -> bool *) 

fun reach (g : graph) (x,y) = 
let

fun dfs n = (n=y) orelse

in
dfs x

end

Start the search from x initially.

Perform a depth-first search.
Current vertex is n.

First, check whether n is the
desired destination y.



First (naïve) attempt to check reachability: 

(* reach : graph -> int*int -> bool *) 

fun reach (g : graph) (x,y) = 
let

fun dfs n = (n=y) orelse
(List.exists dfs (g n))

in
dfs x

end

Recall
List.exists : ('a -> bool) -> 'a list -> bool

checks whether some element in the list satisfies the predicate.

Check whether y is reachable
from any of n’s neighbors.



First (naïve) attempt to check reachability: 

(* reach : graph -> int*int -> bool *) 

fun reach (g : graph) (x,y) = 
let

fun dfs n = (n=y) orelse
(List.exists dfs (g n))

in
dfs x

end

Issue: The depth-first search can loop forever on G.

3
4

1

2

G



We can fix this by updating a visited list:

(* mem: int -> int list -> bool *)
fun mem (n:int) = List.exists (fn x => n=x)

mem n L checks whether  n is in list  L.



We can fix this by updating a visited list:

(* reachable : graph -> int*int -> bool *) 
fun reachable (g:graph) (x,y) =

let
val visited = ref []

in

end

(* mem: int -> int list -> bool *)
fun mem (n:int) = List.exists (fn x => n=x)

Create a reference cell that will hold a list of vertices (integers)
visited during depth first search of the graph.

Initially the list is empty.



We can fix this by updating a visited list:

(* reachable : graph -> int*int -> bool *) 
fun reachable (g:graph) (x,y) =

let
val visited = ref []
fun dfs n = (n=y) orelse

in
dfs x

end

(* mem: int -> int list -> bool *)
fun mem (n:int) = List.exists (fn x => n=x)

As before, the first thing dfs does is to check whether
it has arrived at the destination y.



We can fix this by updating a visited list:

(* reachable : graph -> int*int -> bool *) 
fun reachable (g:graph) (x,y) =

let
val visited = ref []
fun dfs n = (n=y) orelse

(not (mem n (!visited))
andalso
(visited := n::(!visited);
List.exists dfs (g n)))

in
dfs x

end

(* mem: int -> int list -> bool *)
fun mem (n:int) = List.exists (fn x => n=x)

Only continue the depth first search if the current
vertex  n has not already been visited. 

In that case, also update the visited list with n.



Alternative approaches

• Pass and return visited explicitly as an 
argument.

• Use continuations with visited as an 
argument.



Other Roles for Mutation

• Maintain local state in a random number 
generator.

• Remember stream values that have been 
exposed previously, so that re-exposing 
them does not require repeating potentially 
expensive computations.  
(This is called memoization.)



A Random Number Generator

signature RANDOM =
sig

type gen (* abstract *)
val init : int -> gen  (* REQUIRE: seed > 0 *)
val random : gen -> int -> int

end

bound random nonnegative
integer less than bound

pseudo

Reference: Paulson, ML for the Working Programmer, 1996, p. 108,
who points to Park & Miller, CACM, 1988, 31, pp.1192-1201.



A Random Number Generator
structure R :> RANDOM =
struct

type gen = real ref
val a = 16807.0
val m = 2147483647.0
fun next r = a*r – m*real(floor(a*r/m))
val init = ref o real
fun random g b = (g := next(!g);

floor( (!g/m) * (real b)))
end

val G = R.init(12345)
val L = List.tabulate(100, fn _ => R.random G 1000)

L is a list of 100 random integers in the range [0,999].

Reference: Paulson, ML for the 
Working Programmer, 1996, p. 108,
who points to Park & Miller, CACM, 
1988, 31, pp.1192-1201.

pseudo



Previously we had the following code
inside our Stream structure:

fun delay d = Stream d
fun expose (Stream d) = d ()

Data persistence means that any and every time someone
exposes a given stream, the computation d() will occur.

Let us add a hidden reference cell that remembers the
result of computing  d().  We will leave expose as is,
and change delay.

Stream Memoization



Stream Memoization
fun delay d =

let
val cell = ref d

in
Stream (fn () => !cell())

end

Recall the code for expose:
fun expose (Stream d) = d()

That means we now need a suspension, which when forced
will access the reference cell and force the function we put there:

Our first observation is that we can put  d in a reference cell.



Stream Memoization
fun delay d =

let
val cell = ref d
fun memoFn () =

let
val r = d()

in
(cell := (fn () => r);
r)

end

in
Stream (fn () => !cell())

end

memoFn is a function that computes d(), remembers the result
r in a suspension, puts that suspension in cell, and returns r . 



Stream Memoization
fun delay d =

let
val cell = ref d
fun memoFn () =

let
val r = d()

in
(cell := (fn () => r);
r)

end

val _ = cell := memoFn
in

Stream (fn () => !cell())
end

We put memoFn into cell, where it will sit until someone exposes
the stream, at which point memoFn replaces itself with (fn()=>r).



Stream Memoization
fun delay d =

let
val cell = ref d
fun memoFn () =

let
val r = d()

in
(cell := (fn () => r);
r)

end handle E =>
(cell := (fn () => raise E);
raise E)

val _ = cell := memoFn
in

Stream (fn () => !cell())
end

One can even memoize
raised exceptions this way.



Stream Memoization
fun delay d =

let
val cell = ref d
fun memoFn () =

let
val r = d()

in
(cell := (fn () => r);
r)

end handle E =>
(cell := (fn () => raise E);
raise E)

val _ = cell := memoFn
in

Stream (fn () => !cell())
end



That is all.

Please have a good Carnival!

See you next Tuesday, when we will 
talk about context free grammars.
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