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Lessons:

• Infinite data structures

• Encapsulated Computation

(We have seen a form of that with failure 

continuations.    Closures are the key tool.)

• Demand-driven (lazy) computation

Examples of (potentially) infinite data:

• Even integers, natural numbers, primes

• All keystrokes you will make on a keyboard.

• Video/Audio streams



Streams

Caution:

We will build our own streams.

These are different from SML’s

built-in I/O streams.



Brain Teaser

What is the difference between

f and (fn x => f x) ?



Brain Teaser

What is the difference between

f and (fn x => f x) ?

f is not evaluated in (fn x => f x) until 

the lambda expression is called on an argument

and the body  f x is evaluated. 

If f is itself an expression, it may not be 

valuable, whereas (fn x => f x) is valuable.



Brain Teaser (cont)

What is the difference between

f and (fn x => f x) ?

For instance, consider:

fun g x = g x

Now suppose f is the expression (g 3).

(g 3) (fn x => (g 3) x)

loops is a value (a closure)



Brain Teaser (cont)

What is the difference between

f and (fn x => f x) ?

For instance, consider:

fun g x = g x

Now suppose f is the expression (g 3).

(g 3) (fn x => (g 3) x)

loops is a value (a closure)

g : 'a -> 'b

here g : int -> 'a (g 3) : 'a -> 'b

:'a->'b



Suspensions

Definition

A suspension of type  is a function of type

unit ->  . 

We say a suspension is forced when it
is applied to argument () .

We view such a suspension as a lazy represention of e. 

The suspension is a function, so e will not be evaluated 

until the suspension is forced.

If e:t, then(fn () => e) is a suspension of type t.



Streams

We will model (potentially infinite) streams

of data much like lists, but lazily:

• Base case:  an empty stream

• Inductive case:

A suspension of the following:

A single element 

“consed”

onto another stream.

(Suspensions will allow us to build streams with no base cases!)
(never-ending, infinite, yet encapsulated finitely)



Streams

We will model (potentially infinite) streams

of data much like lists, but lazily:

• Base case:  an empty stream

• Inductive case:

A suspension of the following:

A single element 

“consed”

onto another stream.

(Suspensions will allow us to build streams with no base cases!)
(never-ending, infinite, yet encapsulated finitely)

Co-Induction



STREAM  Signature

First, a signature to describe 

streams abstractly.

(Then we will implement them.)



signature STREAM =

sig

type 'a stream  (* abstract *)

datatype 'a front = Empty | Cons of 'a * 'a stream

val expose : 'a stream -> 'a front 

val delay : (unit -> 'a front) -> 'a stream

val empty : 'a stream

val cons : 'a * 'a stream -> 'a stream

val null : 'a stream -> bool

val take : ('a stream * int ) -> 'a list

val map : ('a -> 'b) -> 'a stream -> 'b stream

val filter: ('a -> bool) -> 'a stream -> 'a stream

... 

end

Streams are abstract, modeled by the type 'a stream.



signature STREAM =

sig

type 'a stream  (* abstract *)

datatype 'a front = Empty | Cons of 'a * 'a stream

val expose : 'a stream -> 'a front 

val delay : (unit -> 'a front) -> 'a stream

val empty : 'a stream

val cons : 'a * 'a stream -> 'a stream

val null : 'a stream -> bool

val take : ('a stream * int ) -> 'a list

val map : ('a -> 'b) -> 'a stream -> 'b stream

val filter: ('a -> bool) -> 'a stream -> 'a stream

... 

end

Streams are abstract and lazy.

We may want to look at their elements.
The type 'a front represents the result of performing just

enough computation to expose the first element of a stream,

as well as obtain the rest of the stream.

Cons models the (co)inductive nature of streams.

Empty models the result of exposing an empty stream.

We say that a front is a “view” of a stream.

(* NOTE: concrete *)



signature STREAM =

sig

type 'a stream  (* abstract *)

datatype 'a front = Empty | Cons of 'a * 'a stream

val expose : 'a stream -> 'a front 

val delay : (unit -> 'a front) -> 'a stream

val empty : 'a stream

val cons : 'a * 'a stream -> 'a stream

val null : 'a stream -> bool

val take : ('a stream * int ) -> 'a list

val map : ('a -> 'b) -> 'a stream -> 'b stream

val filter: ('a -> bool) -> 'a stream -> 'a stream

... 

end

This function performs the computations needed to
see the first element of a stream.

The function returns the corresponding front

(which could be Empty).

Caution:  Since exposing a stream value involves computation,

the computation might not terminate.

This is different from looking at list values.



signature STREAM =

sig

type 'a stream  (* abstract *)

datatype 'a front = Empty | Cons of 'a * 'a stream

val expose : 'a stream -> 'a front 

val delay : (unit -> 'a front) -> 'a stream

val empty : 'a stream

val cons : 'a * 'a stream -> 'a stream

val null : 'a stream -> bool

val take : ('a stream * int ) -> 'a list

val map : ('a -> 'b) -> 'a stream -> 'b stream

val filter: ('a -> bool) -> 'a stream -> 'a stream

... 

end

This function expects a suspension of a front

and creates the corresponding stream for it.

Notice that the function expects a suspension of a front,

not merely the front.   Why?

The reason is contained in the earlier brain teaser: 

SML evaluates arguments eagerly.

If we had delay : 'a front -> 'a stream , then

delay(e) would evaluate e, but we want the computation

represented by e to be lazy, so need  delay(fn () => e).



signature STREAM =

sig

type 'a stream  (* abstract *)

datatype 'a front = Empty | Cons of 'a * 'a stream

val expose : 'a stream -> 'a front 

val delay : (unit -> 'a front) -> 'a stream

val empty : 'a stream

val cons : 'a * 'a stream -> 'a stream

val null : 'a stream -> bool

val take : ('a stream * int ) -> 'a list

val map : ('a -> 'b) -> 'a stream -> 'b stream

val filter: ('a -> bool) -> 'a stream -> 'a stream

... 

end

This is one representation of a stream containing no elements.

In particular, we will ensure that  expose(empty)  Empty.

Caution:  One can imagine other “empty stream”s, for instance
a stream value s such that expose(s) loops forever.



signature STREAM =

sig

type 'a stream  (* abstract *)

datatype 'a front = Empty | Cons of 'a * 'a stream

val expose : 'a stream -> 'a front 

val delay : (unit -> 'a front) -> 'a stream

val empty : 'a stream

val cons : 'a * 'a stream -> 'a stream

val null : 'a stream -> bool

val take : ('a stream * int ) -> 'a list

val map : ('a -> 'b) -> 'a stream -> 'b stream

val filter: ('a -> bool) -> 'a stream -> 'a stream

... 

end

A function useful for constructing streams eagerly,

i.e., e.g., when elements are already known.



signature STREAM =

sig

type 'a stream  (* abstract *)

datatype 'a front = Empty | Cons of 'a * 'a stream

val expose : 'a stream -> 'a front 

val delay : (unit -> 'a front) -> 'a stream

val empty : 'a stream

val cons : 'a * 'a stream -> 'a stream

val null : 'a stream -> bool

val take : ('a stream * int ) -> 'a list

val map : ('a -> 'b) -> 'a stream -> 'b stream

val filter: ('a -> bool) -> 'a stream -> 'a stream

... 

end

A function to test whether a stream is empty.

Caution:  Under the hood, this may involve stream exposures, 

so might not terminate.



signature STREAM =

sig

type 'a stream  (* abstract *)

datatype 'a front = Empty | Cons of 'a * 'a stream

val expose : 'a stream -> 'a front 

val delay : (unit -> 'a front) -> 'a stream

val empty : 'a stream

val cons : 'a * 'a stream -> 'a stream

val null : 'a stream -> bool

val take : ('a stream * int ) -> 'a list

val map : ('a -> 'b) -> 'a stream -> 'b stream

val filter: ('a -> bool) -> 'a stream -> 'a stream

... 

end

take(s,n) returns the first n elements of stream s, as a list;

raises Subscript, if any exposure encounters Empty.

Caution:  As always, stream exposures can loop forever.



signature STREAM =

sig

type 'a stream  (* abstract *)

datatype 'a front = Empty | Cons of 'a * 'a stream

val expose : 'a stream -> 'a front 

val delay : (unit -> 'a front) -> 'a stream

val empty : 'a stream

val cons : 'a * 'a stream -> 'a stream

val null : 'a stream -> bool

val take : ('a stream * int ) -> 'a list

val map : ('a -> 'b) -> 'a stream -> 'b stream

val filter: ('a -> bool) -> 'a stream -> 'a stream

... 

end

This is lazy!!!   So  map f s returns a stream s’, but does not

apply f to any element of s, not until someone exposes s’.



signature STREAM =

sig

type 'a stream  (* abstract *)

datatype 'a front = Empty | Cons of 'a * 'a stream

val expose : 'a stream -> 'a front 

val delay : (unit -> 'a front) -> 'a stream

val empty : 'a stream

val cons : 'a * 'a stream -> 'a stream

val null : 'a stream -> bool

val take : ('a stream * int ) -> 'a list

val map : ('a -> 'b) -> 'a stream -> 'b stream

val filter: ('a -> bool) -> 'a stream -> 'a stream

end
Again:   This is lazy!!!



signature STREAM =

sig

type 'a stream  (* abstract *)

datatype 'a front = Empty | Cons of 'a * 'a stream

val expose : 'a stream -> 'a front 

val delay : (unit -> 'a front) -> 'a stream

val empty : 'a stream

val cons : 'a * 'a stream -> 'a stream

val null : 'a stream -> bool

val take : ('a stream * int ) -> 'a list

val map : ('a -> 'b) -> 'a stream -> 'b stream

val filter: ('a -> bool) -> 'a stream -> 'a stream

(* ... more functions: append, tabulate, zip ... *)

end



Stream Structure

Time to implement streams.

Here, we will implement some key functions,

look at some examples,

implement a couple higher-order functions,

then build a stream containing all the primes.



structure Stream : STREAM =

struct

datatype 'a stream = Stream of unit -> 'a front

and 'a front = Empty | Cons of 'a * 'a stream

fun delay (d) = Stream(d)

fun expose (Stream(d)) = d ()

val empty = Stream (fn () => Empty)

fun cons (x, s) = Stream (fn () => Cons(x, s))

fun map ...   (* we will implement this soon *)

fun filter ... (* we will implement this soon *)

...  (* other functions *) ... 

end

We define the representation of an 'a stream to be 

(a Stream constructor wrapped around)

the suspension of an 'a front.

We do not really need to define a datatype with a
Stream constructor, but doing so helps when debugging.

After all, a suspension is simply a function.
By wrapping Stream around suspensions, we can more

readily see what the function means to encode

(we could also look at the function type).

There is one additional subtlety:
'a stream refers to 'a front.

Let’s see how to deal with that.



structure Stream : STREAM =

struct

datatype 'a stream = Stream of unit -> 'a front

and 'a front = Empty | Cons of 'a * 'a stream

fun delay (d) = Stream(d)

fun expose (Stream(d)) = d ()

val empty = Stream (fn () => Empty)

fun cons (x, s) = Stream (fn () => Cons(x, s))

fun map ...   (* we will implement this soon *)

fun filter ... (* we will implement this soon *)

...  (* other functions *) ... 

end

The and keyword allows us to

define mutually recursive datatypes.

(recall that we can also define
mutually recursive functions with and).

As a reminder:  the datatype declaration for 'a front was

specified concretely in signature STREAM, so we need to

implement it as it was specified.



structure Stream : STREAM =

struct

datatype 'a stream = Stream of unit -> 'a front

and 'a front = Empty | Cons of 'a * 'a stream

fun delay (d) = Stream(d)

fun expose (Stream(d)) = d ()

val empty = Stream (fn () => Empty)

fun cons (x, s) = Stream (fn () => Cons(x, s))

fun map ...   (* we will implement this soon *)

fun filter ... (* we will implement this soon *)

...  (* other functions *) ... 

end

A type picture to describe what is happening:

Stream (fn () => Cons(x, s))

t t stream
(Here t is the stream’s element type.)

t front

t front suspension

t stream



structure Stream : STREAM =

struct

datatype 'a stream = Stream of unit -> 'a front

and 'a front = Empty | Cons of 'a * 'a stream

fun delay (d) = Stream(d)

fun expose (Stream(d)) = d ()

val empty = Stream (fn () => Empty)

fun cons (x, s) = Stream (fn () => Cons(x, s))

fun map ...   (* we will implement this soon *)

fun filter ... (* we will implement this soon *)

...  (* other functions *) ... 

end

delay : (unit -> 'a front) -> 'a stream

delay simply wraps a Stream constructor around

a suspension of a front.



structure Stream : STREAM =

struct

datatype 'a stream = Stream of unit -> 'a front

and 'a front = Empty | Cons of 'a * 'a stream

fun delay (d) = Stream(d)

fun expose (Stream(d)) = d ()

val empty = Stream (fn () => Empty)

fun cons (x, s) = Stream (fn () => Cons(x, s))

fun map ...   (* we will implement this soon *)

fun filter ... (* we will implement this soon *)

...  (* other functions *) ... 

end

expose : 'a stream -> 'a front

expose(s) forces the underlying suspension in s.



structure Stream : STREAM =

struct

datatype 'a stream = Stream of unit -> 'a front

and 'a front = Empty | Cons of 'a * 'a stream

fun delay (d) = Stream(d)

fun expose (Stream(d)) = d ()

val empty = Stream (fn () => Empty)

fun cons (x, s) = Stream (fn () => Cons(x, s))

fun map ...   (* we will implement this soon *)

fun filter ... (* we will implement this soon *)

...  (* other functions *) ... 

end

empty is the suspension of  Empty (which is a front),

with the Stream constructor turning that into a stream.



structure Stream : STREAM =

struct

datatype 'a stream = Stream of unit -> 'a front

and 'a front = Empty | Cons of 'a * 'a stream

fun delay (d) = Stream(d)

fun expose (Stream(d)) = d ()

val empty = Stream (fn () => Empty)

fun cons (x, s) = Stream (fn () => Cons(x, s))

fun map ...   (* we will implement this soon *)

fun filter ... (* we will implement this soon *)

...  (* other functions *) ... 

end

Given a known element x and a stream s,

cons(x,s) creates a new stream,

consisting of x followed by all the elements of s.



structure Stream : STREAM =

struct

datatype 'a stream = Stream of unit -> 'a front

and 'a front = Empty | Cons of 'a * 'a stream

fun delay (d) = Stream(d)

fun expose (Stream(d)) = d ()

val empty = Stream (fn () => Empty)

fun cons (x, s) = Stream (fn () => Cons(x, s))

fun map ...   (* we will implement this soon *)

fun filter ... (* we will implement this soon *)

...  (* other functions *) ... 

end



Example #1

Here is how we might implement an
infinite stream, all of whose elements are 1:

fun ones’() = S.Cons(1, S.delay ones’)

val ones = S.delay ones’

Observe: ones’ : unit -> int S.front

ones  : int S.stream

For all these examples, assume (a) we are writing code outside
the Stream structure and (b) structure S = Stream.



Example #2

Here is how we might implement an infinite

stream consisting of all the natural numbers:

fun nat’ x () = 

S.Cons (x, S.delay (nat’(x+1)))

val nats = S.delay (nat’ 0)

Observe:

nat’ : int -> unit -> int S.front

nats : int S.stream



fun nat’ x () = S.Cons (x, S.delay (nat’(x+1)))

val nats = S.delay (nat’ 0)

(example #2 continued)

Consider now:

val S.Cons(x, rest) = S.expose nats

val S.Cons(y, _) = S.expose rest

To what values are x and y bound?

What does rest represent?



fun nat’ x () = S.Cons (x, S.delay (nat’(x+1)))

val nats = S.delay (nat’ 0)

(example #2 continued)

Consider now:

val S.Cons(x, rest) = S.expose nats

val S.Cons(y, _) = S.expose rest

Answers: 0/x   1/y

rest is a stream consisting of all natural numbers greater than 0.

To what values are x and y bound?

What does rest represent?



fun nat’ x () = S.Cons (x, S.delay (nat’(x+1)))

val nats = S.delay (nat’ 0)

(example #2 continued)

Consider now:

val S.Cons(x, rest) = S.expose nats

val S.Cons(y, _) = S.expose rest

To what value is z bound?

val S.Cons(z, _) = S.expose nats



fun nat’ x () = S.Cons (x, S.delay (nat’(x+1)))

val nats = S.delay (nat’ 0)

(example #2 continued)

Consider now:

val S.Cons(x, rest) = S.expose nats

val S.Cons(y, _) = S.expose rest

Answer: 0/z

val S.Cons(z, _) = S.expose nats

(Same as x.)

To what value is z bound?



Memoization

• Suppose exposing a stream element takes 1 

month to compute.

• Each time we expose that same stream element, 

we will force the same suspension and therefore 

require 1 month of computation time.

• Some lazy languages, like Haskell, remember 

the value computed, so that it does not need to 

be re-computed on subsequent re-exposures, 

merely looked up.  That is called memoization.

• We will see one way to do that Tuesday.



Stream Equivalence

• Recall the function

• We say that two streams X and Y produced by 

the same structure  Stream : STREAM are 

extensionally equivalent (X  Y) if and only if

for all integers  n  0.

take : ('a stream * int ) -> 'a list

Stream.take(X,n)  Stream.take(Y,n)



Productive Streams

• We say a stream  s of type  t Stream.stream

is productive if and only if  Stream.expose(s) 

returns one of the following:

a) Stream.Empty or

b) Stream.Cons(x,s’), with x a value of type t

and s’ itself a productive stream.



Productive & Infinite Streams

• We say a stream  s of type  t Stream.stream

is productive if and only if  Stream.expose(s) 

returns one of the following:

a) Stream.Empty or

b) Stream.Cons(x,s’), with x a value of type t

and s’ itself a productive stream.

• Now we can formally define the intuitive notion of 

an infinite stream:  A stream is infinite if it is 

productive and if successive exposures never 
encounter Stream.Empty.



Some more Stream functions

Let us implement a few more functions 
inside the structure Stream.

(Since we are within the structure we do not
use the qualified names “Stream.” or “S.”)



null

fun null s = (case (expose s) of

Empty => true

| _    => false)

Observe that null must expose stream s,

in order to try to determine whether the stream
is empty, by checking whether the corresponding

front is Empty.    This exposure could take a

long time, possibly even never terminating, 
depending on what s is.

'a stream -> bool



map

fun map f s = delay(fn () => map’ f (expose s))

and map’ f Empty = Empty

| map’ f (Cons(x,s’)) = Cons(f x, map f s’)

('a -> 'b) -> 'a stream -> 'b stream



map

fun map f s = delay(fn () => map’ f (expose s))

and map’ f Empty = Empty

| map’ f (Cons(x,s’)) = Cons(f x, map f s’)

('a -> 'b) -> 'a stream -> 'b stream

I find it convenient mentally to have two

mutually recursive functions when working with streams.

One function focuses on streams, the other on fronts.

Other implementations are possible (see next slide).



map

fun map f s =

delay (fn () =>

(case (expose s) of

Empty => Empty

| Cons(x,s’) => Cons (f x, map f s’)))

('a -> 'b) -> 'a stream -> 'b stream

Alternate implementation:

fun map f s = delay(fn () => map’ f (expose s))

and map’ f Empty = Empty

| map’ f (Cons(x,s’)) = Cons(f x, map f s’)



map

fun map f s = delay(fn () => map’ f (expose s))

('a -> 'b) -> 'a stream -> 'b stream

and map’ f Empty = Empty

| map’ f (Cons(x,s’)) = Cons(f x, map f s’)Notice the laziness here!

map does not actually call f on any elements of s.

Instead, map delays such work.  When/if someone

exposes the mapped stream, f will be applied to

the first element of s by  map’.



map

fun map f s = delay(fn () => map’ f (expose s))

and map’ f Empty = Empty

| map’ f (Cons(x,s’)) = Cons(f x, map f s’)

('a -> 'b) -> 'a stream -> 'b stream

map does not actually call f on any elements of s.

Instead, map delays such work.  When/if someone

exposes the mapped stream, f will be applied to

the first element of s by  map’.

Then map’ applies map f to the rest of the stream s’, so

as to delay further calls until someone needs the elements.



filter

('a -> bool) -> 'a stream -> 'a stream

Similar to map, much like

List.filter and List.map are similar.

There is one subtlety.



and filter’ p Empty = Empty

| filter’ p (Cons(x,s’)) =

if (p x) then Cons (x, filter p s’)

else filter’ p (expose s’)

filter

fun filter p s = 

delay (fn () => filter’ p (expose s))

('a -> bool) -> 'a stream -> 'a stream

If someone exposes a filtered stream,
code must look for the first element satisfying p.

That may entail looking at multiple elements of s,

so may need to call filter’ repeatedly.



filter

fun filter p s = 

delay (fn () => filter’ p (expose s))

('a -> bool) -> 'a stream -> 'a stream

If someone exposes a filtered stream,
code must look for the first element satisfying p.

That may entail looking at multiple elements of s,

so may need to call filter’ repeatedly.

and filter’ p Empty = Empty

| filter’ p (Cons(x,s’)) =

if (p x) then Cons (x, filter p s’)

else filter’ p (expose s’)



filter

fun filter p s = 

delay (fn () => filter’ p (expose s))

('a -> bool) -> 'a stream -> 'a stream

Can loop 

forever!

If someone exposes a filtered stream,
code must look for the first element satisfying p.

That may entail looking at multiple elements of s,

so may need to call filter’ repeatedly.

and filter’ p Empty = Empty

| filter’ p (Cons(x,s’)) =

if (p x) then Cons (x, filter p s’)

else filter’ p (expose s’)



Example #3

val evens = S.map (fn n => 2*n) nats

val [0,2,4] = S.take (evens, 3)

Observe: evens : int S.stream

The stream evens is a lazy piece of code (sometimes 

called a thunk) that knows how to compute the even 
natural numbers from the stream nats, which itself is a 

thunk that knows how to compute natural numbers.   In 
particular, the number 4 does not appear explicitly in 

nats or evens, but eventually is computed by the 

exposures implicit in the code for take.



Example #4

val ns = S.filter (fn n => n < 0) nats

Observe: ns : int S.stream

Questions:

1. Is ns a value?

2. If so, how long does it take to compute it?
3. Does S.expose ns reduce to a value?



Example #4

val ns = S.filter (fn n => n < 0) nats

Observe: ns : int S.stream

Questions:

1. Is ns a value?

2. If so, how long does it take to compute it?
3. Does S.expose ns reduce to a value?

Answers:

1. Yes.
2. The call to S.filter returns almost instantaneously.

3. No,  S.expose ns loops forever.

fun filter p s = 

delay (fn () => filter’ p (expose s))

Recall:



fun filter p s = 

delay (fn () => filter’ p (expose s))

loops 

forever!

and filter’ p Empty = Empty

| filter’ p (Cons(x,s’)) =

if (p x) then Cons (x, filter p s’)

else filter’ p (expose s’)



Example #5 :  All the primes

Inspired by the Sieve of Erathosthenes



Example #5 :  All the primes

Inspired by the Sieve of Erathosthenes

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,…

Write down all the natural numbers greater than 1.



Example #5 :  All the primes

Inspired by the Sieve of Erathosthenes

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,…

Find leftmost element (2 currently).



Example #5 :  All the primes

Inspired by the Sieve of Erathosthenes

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,…

Cross-off all multiples of that leftmost element.



Example #5 :  All the primes

Inspired by the Sieve of Erathosthenes

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,…

Repeat the process with the remaining numbers.

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,…



Example #5 :  All the primes

Inspired by the Sieve of Erathosthenes

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,…

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,…



Example #5 :  All the primes

Inspired by the Sieve of Erathosthenes

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,…

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,…

Keep repeating this process.

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,…



Example #5 :  All the primes

Inspired by the Sieve of Erathosthenes

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,…

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,…

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,…

The diagonal of leftmost elements constitutes all primes.



Example #5 :  All the primes

fun notDivides p q = (q mod p <> 0)

notDivides p q returns false if q is a multiple of p,

and true otherwise.                    



Example #5 :  All the primes

fun notDivides p q = (q mod p <> 0)

fun sieve s = S.delay (fn () => sieve'(S.expose s))

sieve delays the actual sieving.



Example #5 :  All the primes

fun notDivides p q = (q mod p <> 0)

fun sieve s = S.delay (fn () => sieve'(S.expose s))

and sieve' (S.Empty) = S.Empty

We don’t really need this clause,

since there are infinitely many primes.



Example #5 :  All the primes

fun notDivides p q = (q mod p <> 0)

fun sieve s = S.delay (fn () => sieve'(S.expose s))

and sieve' (S.Empty) = S.Empty

| sieve' (S.Cons(p, s)) =

S.Cons(p, sieve (S.filter (notDivides p) s)

sieve’ filters out multiples of the element p

that it finds at the head of its front,

recursively constructs a stream of all larger primes,
and adds p to the front of that.



Example #5 :  All the primes

fun notDivides p q = (q mod p <> 0)

fun sieve s = S.delay (fn () => sieve'(S.expose s))

and sieve' (S.Empty) = S.Empty

| sieve' (S.Cons(p, s)) =

S.Cons(p, sieve (S.filter (notDivides p) s))

val primes = sieve (S.delay (nat’ 2))

All the primes represented lazily.



Example #5 :  All the primes

fun notDivides p q = (q mod p <> 0)

fun sieve s = S.delay (fn () => sieve'(S.expose s))

and sieve' (S.Empty) = S.Empty

| sieve' (S.Cons(p, s)) =

S.Cons(p, sieve (S.filter (notDivides p) s))

val primes = sieve (S.delay (nat’ 2))

val p400 = S.take (primes, 400)

The first 400 primes in a list.



The first 400 primes
[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,

103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,

197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,

307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,

419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,

523,541,547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,

643,647,653,659,661,673,677,683,691,701,709,719,727,733,739,743,751,757,

761,769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,877,881,

883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997,1009,1013,

1019,1021,1031,1033,1039,1049,1051,1061,1063,1069,1087,1091,1093,1097,1103,

1109,1117,1123,1129,1151,1153,1163,1171,1181,1187,1193,1201,1213,1217,1223,

1229,1231,1237,1249,1259,1277,1279,1283,1289,1291,1297,1301,1303,1307,1319,

1321,1327,1361,1367,1373,1381,1399,1409,1423,1427,1429,1433,1439,1447,1451,

1453,1459,1471,1481,1483,1487,1489,1493,1499,1511,1523,1531,1543,1549,1553,

1559,1567,1571,1579,1583,1597,1601,1607,1609,1613,1619,1621,1627,1637,1657,

1663,1667,1669,1693,1697,1699,1709,1721,1723,1733,1741,1747,1753,1759,1777,

1783,1787,1789,1801,1811,1823,1831,1847,1861,1867,1871,1873,1877,1879,1889,

1901,1907,1913,1931,1933,1949,1951,1973,1979,1987,1993,1997,1999,2003,2011,

2017,2027,2029,2039,2053,2063,2069,2081,2083,2087,2089,2099,2111,2113,2129,

2131,2137,2141,2143,2153,2161,2179,2203,2207,2213,2221,2237,2239,2243,2251,

2267,2269,2273,2281,2287,2293,2297,2309,2311,2333,2339,2341,2347,2351,2357,

2371,2377,2381,2383,2389,2393,2399,2411,2417,2423,2437,2441,2447,2459,2467,

2473,2477,2503,2521,2531,2539,2543,2549,2551,2557,2579,2591,2593,2609,2617,

2621,2633,2647,2657,2659,2663,2671,2677,2683,2687,2689,2693,2699,2707,2711,

2713,2719,2729,2731,2741]



(spec for sieve might be)

(* sieve : int Stream.stream -> int Stream.stream

REQUIRES: s consists, in ascending order, of all

natural numbers starting with some

prime q, excluding all multiples of

primes less than q.

ENSURES : (sieve s) returns a stream consisting

of all primes starting with q, in

ascending order.

*)



Inspired by Euclid’s Proof

Theorem: There are infinitely many primes.

Proof:

Suppose p1, …, pn are all the primes.

Let P = p1 ∗ ⋯ ∗ pn and Q = P + 1.

Q > P, so some pi divides Q and P. 

(Euclid proved that for any finite list of primes,

there exists a prime outside the list.)

QED

Thus pi divides 1,

establishing a contradiction.



That is all.

Please have a good weekend.

See you Tuesday, when we will talk 

about mutation.
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