15-150

Principles of Functional Programming

Lecture 3

January 23, 2024

Michael Erdmannn

Recursion & Induction Standard Strong Structural

```
(* square: int > int
     REQUIRES: true
     ENSURES: Square(n) => n2
 *)
 fun square (n: int): int = n*n
Square is bound to a function value.
square : int -> int
      "has type"
square 7 is an expression.
square 7: int
 square 7 (evaluates to)
 49 : int
 49 is a value (values are also expressions)
```

I sometimes abbreviate reductions

Instead of

square 7

 \Rightarrow [env when square was defined] (fn (n:int) \Rightarrow n*n) 7

=> [env...][7/n] n*n

=> [env...][7/n] 7*n

=> [env...][7/n] 7x7

→ 49

I may just write

Square 7

→ 7×7

⇒ 49

I sometimes abbreviate reductions

Instead of

square 7

 \Rightarrow [env when square was defined] (fn (n:int) \Rightarrow n*n) 7

=> [env...][7/n] n*n

=> [env...][7/n] 7*n

=> [env...][7/n] 7*7

→ 49

or even just

square 7

3949

(* power : int + int -) int

REQUIRES: K = 0

ENSURES: power (n, H) <>nk

(let's define 00 = 1)

*)

fun power (n:int,0:int): int = 1

| power (n,k) = n * power(n,k-1)

(* power * int * int -> int

REQUIRES: K = 0

ENSURES: power (n, K) <> nk

(let's define 00 = 1)

*)

fun power (-:int,0:int): int = 1| power (n,k) = n * power(n,k-1)

(* power & int * int -> int

REQUIRES: K 20

ENSURES: power (n, K) <> nk

(let's define 0°=1)

*)

fun power (n:int,0:int): int = 1

| power (n,k) = n * power(n,k-1)

 $3^7 = 3 \cdot 1$

= 2187

O(k) recursive calls

(* even: int -> bool

REQUIRES: true

ENSURES: even k evaluates to

Strue, if k is even;

Yalse, if k is odd.

fun even (k:int):bool = (k mod 2) = 0

Typing & Evaluation of if... then...else.

if e, then ez else es: t

if e, bool,

ez: t,

e3: t.

(In particular, ez & ez must have the same type.)

ez is evaluated iff e, con false.

Evalution is left-to-right.

ez is evaluated iff e, con false.

(* power * int * int -> int

REQUIRES: K = 0

ENSURES: power (n, K) <> nk

(let's define 00 = 1)

*)

fun power (n: int, 0: int): int = 1

| power (n, k) =

if (even k)

then square (power (n, kdiv2))

else n * power (n, k-1)

(* power & int * int -> int REQUIRES: KZO ENSURES: power (n, H) C7nt (let's define 00 = 1) *) tun power (n: int, 0: int): int = 1 | power (n, k) = if (even k) then square (power (n, kdiv2)) else n * power (n, k-1) $3^7 = 3 \cdot (3 \cdot (3 \cdot 1)^2)^2$ = 2187

O(logk) recursive calls

we would like to prove correctness for each implementation:

Theorem

For all values n: int & k: int, with k:0, power(n,k) = nk.

During lecture:

We proved the theorem for our two implementations of **power**.

We used standard mathematical induction for the first implementation and strong induction for the second implementation.

Lists

Type t list for any type t.

Values [V1, 111, Vn], with each V: a value of typet, & n20. (By n=0 we mean the empty list, written [] or nil.)

Expressions · All the values, of · e:: es, with e:t & es:t list.

For example 1:: [2,3] which gives the list [1,2,3] & int list

Small comment

1:: [2,3] & [1,2,3]
are simply two different ways of writing the same thing (same list value).
Here is another way: 1::2::3::nil.

is right-associative.

So

1 :: 2 :: 3 :: rest

means

1::(2::(3::rest)).

Type-checking

- · []: t list
- e::es: t list

 if e:t and es: t list

Evaluation

- [] is a value (pronounced "nil")
 (same as nil)
- e:: es \Rightarrow e':: es if $e \Rightarrow e'$
- $V::es \Rightarrow V::es'$ if V is a value $es \Rightarrow es'$
- (I.e., left-to-right evaluation for sequential evaluation.)

Can use list structure as patterns, with variables binding to different parts of the list.

During lecture:

We wrote a **length** function for lists.

We proved that **length** is total We used *structural induction* for the proof.

Datastructure Code Proof

base case(s) base case(s) base case(s)

inductive/recursive recursive induction

definition(s) clause(s) step(s)

Datastructure Code Proof

base case(s) base case(s) base case(s)

O fun power(-,0)=1 power(n,0)=1

inductive/recursive recursive induction

definition(s) clause(s) step(s)

(k-1)+1 | power(n,k)=n** power(n,k-1)

JH: power(n,k) c>nk
NTS: power(n,k+1) c>nk+1

Datastructure	Code	Proof
base case(s)	base case(s)	base case(s)
	0	length [] co
inductive/recursive definition(s)	recursive clause(s)	inductive case(s)
X::XS	1+length(xs)	IH: length(ks) C>V VTS: length(x::XS) C>V'

Datastructure	Code	Proof
base case(s)	base case(s)	base case(s)
[]	0	length [] cao
inductive/recursidefinition(s)	ve recursiv	e inductive) case(s)
X::XS	1+length(xs)	IH: length(s) C>V NTS: length(x::xs) C>V'

There may be several base cases and/or several inductive cases.

That is all.

Have a good

Wednesday!