$15-150$

Principles of Functional Programming

Slides for Lecture 1
Introduction, Philosophy, Some Basics

$$
\text { January 16, } 2024
$$

$15-150$

Principles of Functional Programming

Michael Erdmann Dilsun Kaynar

Aileen Guo Brandon Dong George Zhou
Alice Tran, Alvaro Luque, Andrew Lam, Ashley Xing, Daniel Brown, Jacky Gao, Kiera O'Flynn, Leon Lu, Nancy Kuang, Sanjana Kuchibhotla, Stephen Nah, Caroline Shi, Vianna Seifi, Emma Tong, Ian Martin, Benjamin Chen, Aria Lakhmani, Anna He, Ting Chen,

Nellie Tonev, Susan Huang, Yosef Alsuhaibani, Crystal Zhang, Michael Duncan, Chris Roberts,
Michael Perry, Deon Kouatchou, Janise Kim, Annie Zhang, Alan Abraham, Madison Zhao,

Nia Robinson, Max Kulbida, Justin Sun, Gursimran Panesar, Stephen Mao

How to Succeed in College

SHOW UP

How to Succeed in College

SHOW UP

Go to lecture, go to lab.

Do not expect to understand everything in real-time.
Repeated exposure is important.

How to Succeed in College

Take Notes

By writing.

The eye-hand-brain loop is magical.

How to Succeed in College

Study Your Notes

How to Succeed in College

Study Your Notes

The same day. And again.

 And again. And again.Figure out what you don't understand.
Repeated exposure is important.

How to Succeed in College

Keep up
 Do not let work pile up.

Small steps, big achievements.

How to Succeed in College

SHOW UP

Take Notes
Study Your Notes
Keep up

Course Webpage

http://www.cs.cmu.edu/~15150/

Policies: http://www.cs.cmu.edu/~15150/policy.htm|
Lectures: http://www.cs.cmu.edu/~15150/lect.htm|
1
$=:$
$=$
$=:$
$=$
$=$
$=$
$=$
$=$
$=$
$=$
$=$

Computation is Functional
values: types expressions
Functions map values to values

Imperative	vs.
Functional	
Command	Expression
\downarrow	\downarrow
- executed	- evaluated
- has an effect	- no effect
$x:=5$	$3+4$
(state)	(value)

Programming as Explanation
Problem statement
high expectation - invariants
to explain $\{$ - specifications
precisely concisely . proofs of correctness

- code

Analyze, Decompose Fit, Prove

Parallelism

$$
\begin{array}{lll}
& & \Lambda \\
<1,0,0,1,1\rangle & \rightarrow & 3, \\
<1,0,1,1,0\rangle & \rightarrow & 3, \\
\langle 1,1,1,0,1\rangle & \rightarrow & 4, \\
\langle 0,1,1,0,0\rangle & \rightarrow & 2, \\
& & V \\
& & \downarrow \\
& & 12
\end{array}
$$

Parallelism

sum : int sequence \rightarrow int
type row = int sequence
type room = row sequence
fun count (class : room) : int = sum (map sum class)

Parallelism

- Work:
- Sequential Computation
- Total sequential time; number of operations
- Span:
- Parallel Computation
- How long would it take if one could have as many processors as one wants; length of longest critical path

Three Recent Theses

- August 2022, Efficient and Scalable Parallel Functional Programming Through Disentanglement, by Sam Westrick, advised by Umut Acar.
- June 2022, Deductive Verification for Ordinary Differential Equations: Safety, Liveness, and Stability, by Yong Kiam Tan, advised by André Platzer.
- October 2021, First Steps in Synthetic Tait Computability: The Objective Metatheory of Cubical Type Theory, by Jonathan Sterling, advised by Robert Harper.

Defining ML (Effect-Free Fragment)

- Types t
- Expressions e
- Values v (subset of expressions)

Examples:

$$
\begin{aligned}
& (3+4) * 2 \\
& \stackrel{1}{\Rightarrow} \quad 7 * 2 \\
& \Rightarrow \quad 14 \\
& (3+4) *(2+1) \\
& \stackrel{3}{\Rightarrow} \quad 21
\end{aligned}
$$

"the " 1 "walrus"
\Longrightarrow "the walrus"

The expression "the " A "walrus" rectuces to the value "the walrus".

It has type string.
"the walrus" +1

$$
\Rightarrow \quad ? ?
$$

The expression "the walrus" +1 does not have a type and it clos not reduce to a value.

Types

A type is a prediction about the kind of value an expression must have if it winds up reducing to a value.
(SML makes this prediction before evaluating the expression. Evaluation may ultimately produce a value of that type, but could alternatively raise an exception or loop forever.)

An expression is well-typed if it has a type, and ill-typed otherwise.

(The phrase 'to type-check e' means to decide whether \boldsymbol{e} is well-typed.
The phrase 'e type-checks' means \boldsymbol{e} is well-typed.)

Important: SML never evaluates an ill-typed expression.

Given an expression e:

First,

SML determines whether e is well-typed.
If expression e is well-typed, then SML evaluates expression e; otherwise, SML reports a type error.

Expressions

Every well-formed ML expression e

- has a type t , written as e : t
- may have a value v , written as $\mathrm{e} \hookrightarrow \mathrm{v}$.
- may have an effect (not for our effect-free fragment)

$$
\text { Example: } \quad(3+4) * 2: \text { int }
$$

$$
(3+4) * 2 \Longleftrightarrow 14
$$

Integers, Expressions

Type int

Values ..., ${ }^{\sim} 1,0,1, \ldots$,
that is, \quad every integer n.

Expressions $\quad e_{1}+e_{2}, \quad e_{1}-e_{2}, \quad e_{1} * e_{2}$, $e_{1} \operatorname{div} e_{2}, \quad e_{1} \bmod e_{2}, \quad$ etc.

Typing Rules

- n : int
- $e_{1}+e_{2}$: int
if e_{1} :int and e_{2} : int
similar for other operations.

Example:

$$
(3+4) * 2: \operatorname{int}
$$

Why?

$$
3+4: \operatorname{int} \text { and } 2: \text { int }
$$

Why?
3: int and 4 : int

Integers, Evaluation

Evaluation Rules

$$
e_{1}+e_{2} \stackrel{1}{\Longrightarrow} e_{1}^{\prime}+e_{2} \quad \text { if } e_{1} \xrightarrow{1} e_{1}^{\prime}
$$

$$
n_{1}+e_{2} \stackrel{1}{\Longrightarrow} n_{1}+e_{2}^{\prime} \quad \text { if } e_{2} \xrightarrow{1} e_{2}^{\prime}
$$

$$
n_{1}+n_{2} \stackrel{1}{\Longrightarrow} n
$$ with n the sum of the integer values n_{1} and n_{2}.

Example of a well-typed expression with no value

$$
5 \text { div } 0 \text { : int }
$$

$5 \operatorname{div} O: \operatorname{in} t$
because 5 :int
\& $O: \operatorname{int}$
and because div expects two int and returns an int.

However, 5 div 0 does not reduce to a value.

Notation Recap
$e: t$ "e has type t "
$e \Rightarrow e^{\prime}$ "e reduces to $e^{"}$
$e \hookrightarrow v$ "e evaluatestov"

Extensional Equivalence

An equivalence relation on expressions (of the same type).

Extensional Equivalence

- Expressions are extensionally equivalent if they have the same type and one of the following is true: both expressions reduce to the same value, or both expressions raise the same exception, or both expressions loop forever.
- Functions are extensionally equivalent if they map equivalent arguments to equivalent results.
- In proofs, we use \cong as shorthand for "is equivalent to".
- Examples: $21+21 \cong 42 \cong 6 * 7$

$$
\begin{aligned}
& {[2,7,6] \underset{\sim}{\cong}[1+1,2+5,3+3]} \\
& (\mathrm{fn} \mathrm{x}=>\mathrm{x}+\mathrm{x}) \stackrel{(\mathrm{fn} \mathrm{y}=>2 * \mathrm{y})}{ }
\end{aligned}
$$

- Functional programs are referentially transparent, meaning:
- The value of an expression depends only on the values of its sub-expressions.
- The type of an expression depends only on the types of its sub-expressions.

Need a slightly more general definition to include function values:

- Expressions are extensionally equivalent if they have the same type and one of the following is true: both expressions reduce to equivalent values, or both expressions raise equivalent exceptions, or both expressions loop forever.
- Functions are extensionally equivalent if they map equivalent arguments to equivalent results.
- In proofs, we use $\xlongequal{\sim}$ as shorthand for "is equivalent to".
- Examples: $21+21 \cong 42 \cong 6 * 7$

$$
[2,7,6] \cong[1+1,2+5,3+3]
$$

$$
(f n x=>x+x) \cong(f n y=>2 * y)
$$

- Functional programs are referentially transparent, meaning:
- The value of an expression depends only on the values of its sub-expressions.
- The type of an expression depends only on the types of its sub-expressions.

Types in ML
Base types:
int, real, bool, char, string
Constructed types:
product types
function types user-defined types

Products, Expressions

Types $\quad t_{1} * t_{2}$ for any type t_{1} and t_{2}.
Values $\quad\left(v_{1}, v_{2}\right)$ for values v_{1} and v_{2}.

Expressions $\left(e_{1}, e_{2}\right), \# 1 e, \# 2 e$
DO NOT USE!
Examples: $(3+4$, true $)$
$(1.0, \sim 15.6)$
(8,5, false, ~ 2)
You will learn how to extract components using pattern matching

Products, Typing

Typing Rules
- $\left(e_{1}, e_{2}\right): t_{1} * t_{2}$
if $e_{1}: t_{1}$
and $e_{2}: t_{2}$

Example: $(3+4$, true $)$: int \times boot

Products, Evaluation

Evaluation Rules

$$
\left(e_{1}, e_{2}\right) \stackrel{1}{\Longrightarrow}\left(e_{1}^{\prime}, e_{2}\right) \quad \text { if } e_{1} \xrightarrow{1} e_{1}^{\prime}
$$

$$
\left(v_{1}, e_{2}\right) \stackrel{1}{\Longrightarrow}\left(v_{1}, e_{2}^{\prime}\right) \quad \text { if } e_{2} \stackrel{1}{\Longrightarrow} e_{2}^{\prime}
$$

What are the type \& value of ...

$$
(3 * 4,1.1+7.2 \text {, true })
$$

Type reasoning

$$
\begin{aligned}
& 3 * 4: \text { int } \\
& 1.1+7.2: \text { real }
\end{aligned}
$$

true : boo
So $(3 * 4,1.1+7.2$, true)
: int * real * bool

Evaluation

$$
\begin{aligned}
& (3 * 4,1.1+7.2, \text { true }) \\
\Longrightarrow & (12,1.1+7.2, \text { true }) \\
\Longrightarrow & (12,8.3, \text { true })
\end{aligned}
$$

That is a value, so

$$
\begin{aligned}
& (3 * 4,1.1+7.2, \text { true }) \\
\longrightarrow & (12,8.3, \text { true })
\end{aligned}
$$

What are the type \& value of ...

$$
(3 * 4,1.1+7.2 \text {, true })
$$

$$
\begin{aligned}
& (3 * 4,1.1+7.2, \text { true }): \text { int } * \text { real } * \text { tool } \\
& (3 * 4,1.1+7.2, \text { true }) \hookrightarrow(12,8.3, \text { true })
\end{aligned}
$$

What are the type \& value of ...

$$
(5 \operatorname{div} 0,2+1)
$$

($5 \operatorname{div} 0,2+1$): int * int
$(5 \operatorname{div} 0,2+1)$ does not reduce to a value, because evaluation of 5 div 0 raises an exception.

What are the type \& value of ...

$$
\text { (} 8 \text { + "miles", false) }
$$

This expression is ill-typed, i.e., it has no type, because the subexpression 8 + "miles" is ill-typed.

SML does not evaluate ill-typed expressions, so the expression has no value.

What are the type \& value of ...
(2, (true, "a"), 3.1)

What are the type \& value of ...
(2, (true, "a"), 3.1)
This expression has type int* (bool*string) * real, which is different from int* boil* string* real. contrast:
$(2$, (true, " a "), 3.1$):$ int* (boole *string) * real
vs. (2, true, "a" 3.1): int * boole string * real.

What are the type \& value of ...
(2, (true, "a"), 3.1)

$$
\begin{aligned}
& (2, \text { (true, "a") , 3.1) : int*(boolnstring)* real } \\
& (2, \text { (true, "a"), 3.1) } \longrightarrow(2, \text { (true, "a"), 3.1) }
\end{aligned}
$$

Functions

In math, one talks about a function f mapping between spaces X and Y,

$$
f: X \rightarrow Y
$$

In SML, we will do the same, with X and Y being types.
Issue: Computationally, a function may not always return a value. That complicates checking equivalence.

Def: A function f is total if f reduces to a value* and $f(x)$ reduces to a value for all values x in X.

* (With one unusual exception, this first condition is implied by the second.

We write it for emphasis, since f could be a general expression of type $X \rightarrow Y$.)

Functions

In math, one talks about a function f mapping between spaces X and Y,

$$
f: X \rightarrow Y
$$

In SML, we will do the same, with X and Y being types.
Issue: Computationally, a function may not always return a value. That complicates checking equivalence.

Def: A function f is total if f reduces to a value and $f(x)$ reduces to a value for all values x in X.
(Totality is a key difference between math and computation.)

Sample Function Code

(* square : int -> int REQUIRES: true ENSURES: square (x) evaluates to \mathbf{x} * \mathbf{x} *)
fun square (x:int) : int $=\mathbf{x} * \mathbf{x}$
(* Testcases: *)
val $0=$ square 0
val $49=$ square 7
val $81=$ square (~9)

Sample Function Code

(* square : int -> int function type REQUIRES: true ENSURES: square(x) evaluates to \mathbf{x} * \mathbf{x} *)
fun square (x:int) : int $=\mathbf{x} * \mathbf{x}$

keyword function argument	
name	result name \& type
type	

(* Testcases: *)
val $0=$ square 0
val $49=$ square 7
val $81=$ square (~9)

Five-Step Methodology

($*$ square : int $->$ int function type REQUIRES: true
ENSURES: square (x) evaluates to \mathbf{x} * \mathbf{x} *)
(4)fun square (x :int) : int $=x * x$
Keyword function argument result body of function name name \& type type
(5)(* Testcases: *)

$$
\begin{aligned}
& \text { val } 0=\text { square } 0 \\
& \text { val } 49=\text { square } 7 \\
& \text { val } 81=\text { square }(\sim 9)
\end{aligned}
$$

Six-Step Methodology

(* square : int $->$ int function type REQUIRES: true ENSURES: square (x) evaluates to \mathbf{x} * \mathbf{x} *)

(5)(* Testcases: *)
val $0=$ square 0
val $49=$ square 7
val $81=$ square (~9)

Declarations
Environments

Scope

Declaration

Introduces binding of pi to 3.14 (som etines written $\left[3.14 / p_{i}\right]$)

Lexically statically scoped.

Val $x: \operatorname{int}=8-5$
val $y: \operatorname{int}=x+1$
val $x: \operatorname{int}=10$
val $z: \operatorname{int}=x+1$$\left\{\begin{array}{l} \\ {[3 / x]} \\ {[4 / y]} \\ {[10 / x]} \\ {[11 / z]}\end{array}\right.$
second binding of x
shadows first binding.
First binding has been shadowed.

Local Declarations
let ... in ... end
let
val $m: \operatorname{int}=3$
val $n: \operatorname{int}=m * m$
in end $m+n$

This is an expression. What type does it have? int What value? 12

Local Declarations
val $k: \operatorname{in} t=4$
$\left.\begin{array}{l}\text { let val } k: \text { real }=3.0 \\ \text { in } k * k \\ \text { end } \hookrightarrow 9.0: \text { real }\end{array}\right\} \begin{aligned} & \text { Type? } \\ & \text { Value? }\end{aligned}$
$K \leftharpoonup$ Type? $\hookrightarrow 4$:int Value?

Concrete Type Def type float $=$ real type point $=$ float float
val $p:$ point $=(1.0,2.6)$

Closures

Function declarations also create value bindings:

fun square (x:int) : int $=\mathbf{x}$ * \mathbf{x}
binds the identifier square to a closure.
The closure consists of two parts:

- A lambda expression (code):

$$
\underset{\text { keyword }}{\text { En }} \underset{\substack{\text { argument } \\ \text { name \& type }}}{\mathbf{~}} \underset{\text { int })}{ } \quad \mathbf{x} * \mathbf{x}
$$

- An environment (all prior bindings).

Closures

Function declarations also create value bindings:

fun square (x:int) : int $=\mathbf{x}$ * \mathbf{x}
binds the identifier square to a closure.
The closure consists of two parts:

- A lambda expression (code):
fn (x : int) $=>\times$ * x
keyword
argument
name \& type
body of function
CAUTION: Do NOT write return type.
- An environment (all prior bindings).

Closures

Function declarations also create value bindings:

fun square (x:int) : int Θx * x
binds the identifier square to a closure.
The closure consists of two parts:

- A lambda expression (code):

keyword

argument name \& type

CAUTION: Do NOT write return type.

- An environment (all prior bindings).

Closures

Function declarations also create value bindings:
fun square (x:int) : int $=\mathbf{x}$ * \mathbf{x} binds the identifier square to a closure:

Course Tasks

- Assignments
- Labs
- Midterm 1
- Midterm 2
- Final

45\%
10%
10%
15\%
20\%

Roughly one assignment per week, one lab per week.

Collaboration

Be sure to read the

course and university webpages regarding academic integrity.

TO DO TONIGHT

Go to 150's Canvas. Select Assignments. Do the Setup Lab.

(Important preparation before Wednesday's lab.)
(If you have questions, ask on 150's Piazza.)

That is all.

Have a good lab tomorrow.

See you Thursday.

