

Wireless Location Privacy: Depersonalization Techniques and Connected Vehicle Applications

> Marco Gruteser WINLAB, Electrical and Computer Engineering Department

Ehe New York Eimes

September 1, 2009 EDITORIAL OBSERVER A Casualty of the Technology Revolution: 'Locational Privacy'

When I woke up the other day, I went straight to my computer to catch up on the news and read e-mail. About 20 minutes later, I walked half a block to the gym, where I exercised for 45 minutes. I took the C train to The New York Times building, and then at the end of the day, I was back on the C train. I had dinner on my friends Elisabeth and Dan's rooftop, then walked home seven I'm not giving away any secrets here — nothing I did was secret to begin with. Verizon online knows when I logged on, and New York Sports Club knows blocks. when I swiped my membership card. The M.T.A. could trace (through the MetroCard I bought with a credit card) when and where I took the subway, and The Times knows when I used my ID to enter the building. AT&T could follow me along the way through my iPhone.

Controversy about Human Mobility Article

- Analyzed human mobility patterns based on cell phone handoff data
 - 100,000 users for 6 months
 - Cell tower location recorded for each call / msg
 - Avg tower covered 3 km^2
- Data was obtained outside US, country not specified
 - Phone identifiers were replaced with pseudonyms

Location Analytics Trends

AIRSAGE

Sense Networks

Depersonalizing Location Data

Fair Information Principles

- Notice / Awareness
 Purpose specification
- Choice & Consent
- Access/Participation
- Integrity/Security
- Enforcement/Redress

When collecting personally identifiable information

Inference/Insider Attacks Compromise Location Privacy

Tracking algorithms recover individual trace [Hoh05] (Median trip time only 15min)

Home Identification [Hoh06]

GPS often precise enough to identify home

De-identification in the medical community

- Health Insurance Portability and Accountability Act (HIPAA) defines accepted procedures for de-personalization of health records
- Mandates removal of 18 specified (pseudo)identifiers, e.g.
 - Names
 - Geographic subdivision smaller than a state (city, street, etc.)
 - Any elements of dates related to an individual other than a year
 - Any age greater than 89 years
 - Account numbers
 - IP addresses
 - Biometric identifiers
- Custom techniques allowed if vetted by a qualified statistician

Spatial and Temporal Cloaking

(MobiSys 2003)

Originally Developed for Sporadic Location-Based Queries

Location Identification Risks

Sensitive query, from driveway [515110X 4300483Y 13Z]

Aerial imagery (e.g. Goole Earth)

Geocoded Address Database (TIGER/LINE): John Doe 1234 Main St Anywhere, US (515110X 4300483Y, 13Z)

Correlation Attacks

- Automatic Toll Booth
- Customer Loyalty Cards
- Records from other location-based services ...

Assumptions

- How can we share sensitive location information with untrusted applications?
- Assumptions
 - Location broker trustworthy
 - Location broker and client secure, adversary has only access to application data
 - Location broker knows positions of all users
 - Adversary knows privacy algorithms
 - Users issue only sporadic queries

Exploiting User Density Information to Reduce Resolution

- Key idea: Reduce granularity of query location at location broker in low density areas
- Why not just use zip codes?
 - Unnecessary loss of precision
- How much should we reduce resolution?
 - Depends on population density, time of day, ...

Anonymity Criterion

RUTGERS

- k-Anonymity: Area equally likely to be chosen by k-1 other subjects
- Problem: Lower resolution yields more anonymity but reduces service quality

Location represented through spatial and temporal intervals (uncertainty range) ([x1,x2], [y1,y2], [t1,t2])

kmin=5

kmin=5

Example Accuracy Evaluation: USGS Road Maps & Traffic Models

Dependency on Area Characteristics

Uncertainty-Aware Path Cloaking – A Centralized Algorithm

(CCS 2007)

Stronger De-identification for Location Traces: Filtering based on Tracking Model

Algorithm: Uncertainty-Aware Path Cloaking $H = -\sum p_i \log p_i$

Algorithm: Uncertainty-Aware Path Cloaking $H = -\sum p_i \log p_i$

Algorithm: Uncertainty-Aware Path Cloaking $H = -\sum p_i \log p_i$

Algorithm: Uncertainty-Aware Path Cloaking $H = -\sum p_i \log p_i$

Algorithm: Uncertainty-Aware Path Cloaking $H = -\sum p_i \log p_i$

Algorithm: Uncertainty-Aware Path Cloaking $H = -\sum p_i \log p_i$

Rutgers

Algorithm Details: User Interdependency and Pruning Process

Location samples of user ALocation samples of user B

- The algorithm calculates uncertainty only with
 Revealed samples
 - Initialize the candidate set with all location samples at time t
 - The algorithm subsequently prunes the candidate set until only vehicles remain who meet the uncertainty threshold using the candidate set samples
 - The algorithm reveals all location samples in the candidate set

Evaluation

- Data set: 24-hour GPS traces of 2000 probe vehicles area (built from ~200 actual vehicles)
- 70km-by-70km
- Metrics: Tracking time and (relative) road coverage

Evaluation: Protection against Target Tracking

Privacy-filtered GPS Traces

Virtual Trip Lines and Secret Splitting – A Distributed Architecture

with Nokia Research Center, UC Berkeley (Mobisys 2008)

Lightweight Vehicular Networking with Smartphones

- Vehicular network applications:
 - Safety
 - Traffic Information / Management
 - Entertainment
- Phones increasingly
 - openly programmable
 - Equipped with GPS
- Phone-based solutions can quickly achieve sufficient penetration rates
- Challenge: Privacy

Virtual Trip Lines (VTLs) - Sampling in Space

- Crossing Virtual Trip Lines trigger Location Updates, rather than periodic update
- Local VTLs stored in phone

• Allows generating (anonymous) updates only from key roads, presumably less sensitive areas !

Placement Privacy Constraints: Minimum Spacing

 Tracking uncertainty is dependent on the spacing between VTLs, the penetration rate, and speed variations of vehicles

Placement Privacy Constraints: Exclusion Areas

- Low speed samples are likely generated by vehicles that just entered after the ramp
- Suppress sampling on on-/off-ramps

Split-Secret VTL Architecture

Cloaking Extensions and Secret Splitting

- Distributed VTL-Based Temporal Cloaking
 - Traffic estimation is relatively *immune to temporal error*
- No single entity (except handset) has access to both location and time

Entity	Role	Identity	Location	Time
Handset	Sensing	Yes	Accurate	Accurate
Location Verifier	Distributing VTL ID updates	Yes	Coarse	Accurate
ID proxy	Anonymizing and Cloaking	Yes	Not available	Accurate
Traffic Server	Computing Traffic Congestion	No	Accurate	Cloaked

Virtual Trip Lines

Temporal Cloaking

Experiment (20-cars, 1~2% penetration rate)

Travel Time Accuracy

• Even few probe vehicles (1~2%) achieve travel time estimates with less than 15% error

Guaranteed Privacy

• Applying the cloaking techniques reduces travel time estimation accuracy by less than 5% compared to a standard periodic sampling approach

Identifying Transmitters via Radiometric Signatures – Can Transmitters be Tracked at the Physical Layer?

with Univ of Wisconsin (MobiCom' 08)

Trends

Always-on, transmitting background apps

Waveform Impairments in Analog Frontend

Transmitter Identification via Classification

• Training phase: collect fingerprint (waveform error metrics) of each transmitter

Error type	unit	reference	range	definition			
frequency	Hz	$2142 \mathrm{~MHz}$	± 60.3	$\pm 25 ppm f_c$			
phase	0	ideal symb	± 10	$\operatorname{asin}(E_{max})$			
magnitude	n/a	ideal symb	± 0.17	$\pm E_{max}$			
EVM	n/a	ideal symb	[0, .35]	upto $2E_{max}$			
I/Q offset	n/a	ideal origin	[0, 0.17]	upto E_{max}			
SYNC	%	max corr.	[0, 1]	$\operatorname{correlation}$			
f_c – channel frequency E_{max} – max I/Q error							

• Identification phase: measure error metrics for candidate transmitter and use classification algorithm to match with training set

Identification Results

- Using ORBIT testbed radios and vector signal analyzer for data collection
- K-Nearest Neighbor and Support Vector Machine classifiers

	NIC population	Bin	Training	Reported	Equivalent performance of	
Approach	size	size	fraction	$error rate^1$	PARADIS-kNN	PARADIS-SVM
Franklin et. al. $[13]^2$	17	8	5%	15%	0%	0%
Hall et. al. $[18]^3$	30	10	33%	8%	0%	0%
PARADIS	138	4	20%	-	3%	0.34%

Security Analysis of In-Car Wireless Systems

with Univ of South Carolina (Security 2010)

Tire-Pressure Monitoring Systems

 First wireless sensor system built into (nearly) every car

Reverse Engineering

- Determine
 - Frequencies
 - Modulation
 - Packet format

Security and Privacy Concerns

- Privacy concerns
 - 32 bit static identifiers
 - Activation signal
 - Achieved up to 40m range
- Security concerns
 - Ineffective input validation allows spoofing
 - Bricked the TPMS ECU

Summary: Mechanisms for Depersonalizing Location Traces

Thank you