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One goal of statistical privacy research is to construct a data release mechanism that protects individual privacy while preserving informa-
tion content. An example is a random mechanism that takes an input database X and outputs a random database Z according to a distribution
Qn(·|X). Differential privacy is a particular privacy requirement developed by computer scientists in which Qn(·|X) is required to be insen-
sitive to changes in one data point in X. This makes it difficult to infer from Z whether a given individual is in the original database X. We
consider differential privacy from a statistical perspective. We consider several data-release mechanisms that satisfy the differential privacy
requirement. We show that it is useful to compare these schemes by computing the rate of convergence of distributions and densities con-
structed from the released data. We study a general privacy method, called the exponential mechanism, introduced by McSherry and Talwar
(2007). We show that the accuracy of this method is intimately linked to the rate at which the probability that the empirical distribution
concentrates in a small ball around the true distribution.
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1. INTRODUCTION

One goal of data privacy research is to derive a mechanism
that takes an input database X and releases a transformed data-
base Z such that individual privacy is protected yet information
content is preserved. This is known as disclosure limitation. In
this paper we will consider various methods for producing a
transformed database Z and we will study the accuracy of in-
ferences from Z under various loss functions.

There are numerous approaches to this problem. The litera-
ture is vast and includes papers from computer science, statis-
tics, and other fields. The terminology also varies considerably.
We will use the terms “disclosure limitation” and “privacy guar-
antee” interchangeably.

Disclosure limitation methods include clustering (Sweeney
2002; Aggarwal et al. 2006), �-diversity (Machanavajjhala et al.
2006), t-closeness (Li, Li, and Venkatasubramanian 2007),
data swapping (Fienberg and McIntyre 2004), matrix mask-
ing (Ting, Fienberg, and Trottini 2008), cryptographic ap-
proaches (Pinkas 2002; Feigenbaum et al. 2006), data perturba-
tion (Warner 1965; Fienberg, Makov, and Steele 1998; Kim and
Winkler 2003; Evfimievski et al. 2004), and distributed data-
base methods (Sanil et al. 2004; Fienberg et al. 2007). Statisti-
cal references on disclosure risk and limitation include Duncan
and Lambert (1986, 1989), Duncan and Pearson (1991), Reiter
(2005), Hwang (1986). We refer to Reiter (2005) and Sanil et al.
(2004) for further references.

One approach to defining a privacy guarantee that has re-
ceived much attention in the computer science literature is
known as differential privacy (Dwork 2006; Dwork et al. 2006).
There is a large body of work on this topic including, for ex-
ample, Dinur and Nissim (2003), Dwork and Nissim (2004),
Blum et al. (2005), Dwork, McSherry, and Talwar (2007),
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Nissim, Raskhodnikova, and Smith (2007), Barak et al. (2007),
McSherry and Talwar (2007), Blum, Ligett, and Roth (2008),
Kasiviswanathan et al. (2008). Blum, Ligett, and Roth (2008)
gives a machine learning approach to inference under differen-
tial privacy constraints and to some extent our results are in-
spired by that paper. Smith (2008) shows how to provide effi-
cient point estimators while preserving differential privacy. He
constructs estimators for parametric models with mean squared
error (1 + o(1))/(nI(θ)) where I(θ) is the Fisher information.
Machanavajjhala et al. (2008) consider privacy for histograms
by sampling from the posterior distribution of the cell prob-
abilities. We discuss Machanavajjhala et al. (2008) further in
Section 4. After submitting the first draft of this paper, new
work has appeared on differential privacy that is also statisti-
cal in nature, namely, Ghosh, Roughgarden, and Sundararajan
(2009), Dwork and Lei (2009), Dwork et al. (2009), Feldman
et al. (2009).

The goals of this paper are to explain differential privacy in
statistical language, to show how to compare different privacy
mechanisms by computing the rate of convergence of distribu-
tions and densities based on the released data Z, and to study a
general privacy method, called the exponential mechanism, due
to McSherry and Talwar (2007). We show that the accuracy of
this method is intimately linked to the rate at which the proba-
bility that the empirical distribution concentrates in a small ball
around the true distribution. These so-called “small ball proba-
bilities” are well studied in probability theory. To the best of our
knowledge, this is the first time a connection has been made be-
tween differential privacy and small ball probabilities. We need
to make two disclaimers. First, the goal of our paper is to in-
vestigate differential privacy. We will not attempt to review all
approaches to privacy or to compare differential privacy with
other approaches. Such an undertaking is beyond the scope of
this paper. Second, we focus only on statistical properties here.
We shall not concern ourselves in this paper with computational
efficiency.

In Section 2 we define differential privacy and provide mo-
tivation for the definition. In Section 3 we discuss conditions
that ensure that a privacy mechanism preserves information. In
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Table 1.

Data-release mechanism

Distance
Smoothed
histogram

Perturbed
histogram

Exponential
mechanism

Minimax
rate

L2 n−2/(2r+3) n−2/(2+r) NA n−2/(2+r)

Kolmogorov–Smirnov
√

log n × n−2/(6+r) log n × n−2/(2+r) n−1/3 n−1/2

Section 4 we consider two histogram based methods. In Sec-
tions 5 and 6, we examine another method known as the expo-
nential mechanism. Section 7 contains a small simulation study
and Section 8 contains concluding remarks. All technical proofs
appear in Section 9.

1.1 Summary of Results

We consider several different data-release mechanisms that
satisfy differential privacy. We evaluate the utility of these
mechanisms by evaluating the rate at which d(P,PZ) goes to 0,
where P is the distribution of the data X ∈ X , PZ is the empir-
ical distribution of the released data Z, and d is some distance
between distributions. This gives an informative way to com-
pare data-release mechanisms. In more detail, we consider the
Kolmogorov–Smirnov (KS) distance: supx∈X |F(x) − F̂Z(x)|,
where F, F̂Z denote the cumulative distribution function (cdf)
corresponding to P and the empirical distribution function cor-
responding to PZ , respectively. We also consider the squared L2
distance:

∫
(p(x) − p̂Z)2, where p̂Z is a density estimator based

on Z. Our results are summarized in the following tables, where
n denotes the sample size.

Table 1 concerns the case where the data are in R
r and the

density p of P is Lipschitz. Also reported are the minimax rates
of convergence for density estimators in KS and in squared L2
distances. We see that the accuracy depends both on the data-
releasing mechanism and the distance function d. The results
are from Sections 4 and 5 of the paper. (The exponential mech-
anism under L2 distance is marked NA but is in the second table
in case r = 1. We note that the rate for KS distance for perturbed
histogram is

√
log n/n for r = 1.)

Table 2 summarizes the results for the case where the di-
mension of X is r = 1 and the density p is assumed to be in
a Sobolev space of order γ . We only consider the squared L2
distance between the true density p and the estimated density
p̂Z in this case. The results are from Section 6 of the paper.

Our results show that, in general, privacy schemes seem not
to yield minimax rates. Two exceptions are perturbation meth-
ods evaluated under L2 loss which do yield minimax rates. An
open question is whether the slower than minimax rates are in-
trinsic to the privacy methods. It is possible, for example, that
our rates are not tight. This question could be answered by es-
tablishing lower bounds on these rates. We consider this an im-
portant topic for future research.

Table 2.

Exponential
mechanism

Perturbed orthogonal
series estimator

Minimax
rate

L2 n−γ /(2γ+1) n−2γ /(2γ+1) n−2γ /(2γ+1)

2. DIFFERENTIAL PRIVACY

Let X1, . . . ,Xn be a random sample (independent and identi-
cally distributed) of size n from a distribution P where Xi ∈ X .
To be concrete, we shall assume that X ≡ [0,1]r = [0,1] ×
[0,1] × · · · × [0,1] for some integer r ≥ 1. Extensions to more
general sample spaces are certainly possible but we focus on
this sample space to avoid unnecessary technicalities. (In par-
ticular, it is difficult to extend differential privacy to unbounded
domains.) Let μ denote Lebesgue measure and let p = dP/dμ

if the density exists. We call X = (X1, . . . ,Xn) a database. Note
that X ∈ X n = [0,1]r × · · · × [0,1]r . We focus on mechanisms
that take a database X as input and output a sanitized database
Z = (Z1, . . . ,Zk) ∈ X k for public release. In general, Z need not
be the same size as X. For some schemes, we shall see that large
k can lead to low privacy and high accuracy while while small k
can lead to high privacy and low accuracy. We will let k ≡ k(n)

change with n. Hence, any asymptotic statements involving n
increasing will also allow k to change as well.

A data-release mechanism Qn(·|X) is a conditional distrib-
ution for Z = (Z1, . . . ,Zk) given X. Thus, Qn(B|X = x) is the
probability that the output database Z is in a set B ∈ B given
that the input database is x, where B are the measurable subsets
of X k. We call Z = (Z1, . . . ,Zk) a sanitized database. Schemat-
ically:

input database X = (X1, . . . ,Xn)

Qn(Z|X)−−−−−→
sanitize

output database Z = (Z1, . . . ,Zk).

The marginal distribution of the output database Z induced by
P and Qn is Mn(B) = ∫

Qn(B|X = x)dPn(x) where Pn is the
n-fold product measure of P.

Example 2.1. A simple example to help the reader have a
concrete example in mind is adding noise. In this case, Z =
(Z1, . . . ,Zn) where Zi = Xi + εi and ε1, . . . , εn are mean 0 in-
dependent observations drawn from some known distribution
H with density h. Hence Qn has density qn(z1, . . . , zn|x1, . . . ,

xn) = ∏n
i=1 h(zi − xi).

Definition 2.2. Given two databases X = (X1, . . . ,Xn) and
Y = (Y1, . . . ,Yn), let δ(X,Y) denote the Hamming distance be-
tween X and Y : δ(X,Y) = #{i : Xi �= Yi}.

A general data-release mechanism is the exponential mecha-
nism (McSherry and Talwar 2007) which is defined as follows.
Let ξ : X n × X k :→ [0,∞) be any function. Each such ξ defines
a different exponential mechanism. Let

� ≡ �n,k = sup
x,y∈X n

δ(x,y)=1

sup
z∈X k

|ξ(x, z) − ξ(y, z)|, (1)
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that is, �n,k is the maximum change to ξ caused by altering a
single entry in x. Finally, let (Z1, . . . ,Zk) be a random vector
drawn from the density

h(z|x) = exp(−αξ(x, z)/(2�n,k))∫
X k exp(−αξ(x, s)/(2�n,k))ds

, (2)

where α ≥ 0, z = (z1, . . . , zk), and x = (x1, . . . , xn). In this case,
Qn has density h(z|x). We will discuss the exponential mecha-
nism in more detail later.

There are many definitions of privacy but in this paper we
focus on the following definition due to Dwork et al. (2006)
and Dwork (2006).

Definition 2.3. Let α ≥ 0. We say that Qn satisfies α-
differential privacy if

sup
x,y∈X n

δ(x,y)=1

sup
B∈B

Qn(B|X = x)

Qn(B|X = y)
≤ eα, (3)

where B are the measurable sets on X k. The ratio is interpreted
to be 1 whenever the numerator and denominator are both 0.

The definition of differential privacy is based on ratios of
probabilities. It is crucial to measure closeness by ratios of
probabilities since that protects rare cases which have small
probability under Qn. In particular, if changing one entry in the
database X cannot change the probability distribution Qn(·|X =
x) very much, then we can claim that a single individual cannot
guess whether he is in the original database or not. The closer
eα is to 1, the stronger privacy guarantee is. Thus, one typically
chooses α close to 0. See Dwork et al. (2006) for more dis-
cussion on these points. Indeed, suppose that two subjects each
believe that one of them is in the original database. Given Z and
full knowledge of P and Qn can they test who is in X? The an-
swer is given in the following result. (In this result, we drop the
assumption that the user does not know Qn.)

Theorem 2.4. Suppose that Z is obtained from a data re-
lease mechanism that satisfies α-differential privacy. Any level
γ test which is a function of Z, P, and Qn of H0 : Xi = s versus
H1 : Xi = t has power bounded above by γ eα .

Thus, if Qn satisfies differential privacy then it is virtually
impossible to test the hypothesis that either of the two subjects
is in the database since the power of such a test is nearly equal
to its level. A similar calculation shows that if one does a Bayes
test between H0 and H1 then the Bayes factor is always between
e−2α and e2α . For more detail on the motivation for the defin-
ition as well as consequences, see Dwork et al. (2006), Dwork
(2006), Ganta, Kasiviswanathan, and Smith (2008), Rastogi
et al. (2009).

The following result, which is proved in McSherry and Tal-
war (2007, theorem 6), shows that the exponential mechanism
always preserves differential privacy.

Theorem 2.5 (McSherry and Talwar 2007). The exponential
mechanism satisfies the α-differential privacy.

To conclude this section we record a few useful facts. Let
T(X,R) be a function of X and some auxiliary random vari-
able R which is independent of X. After including this auxil-
iary random variable we define differential privacy as before.

Specifically, T(X,R) satisfies differential privacy if for all B,
and all x, x′ with δ(x, x′) = 1 we have that P(T(X,R) ∈ B|X =
x) ≤ eα

P(T(X,R) ∈ B|X = x′). The third part is proposition 1
from Dwork et al. (2006).

Lemma 2.6. We have the following:

1. If T(X,R) satisfies differential privacy then U = h(T(X,

R)) also satisfies differential privacy for any measurable
function h.

2. Suppose that g is a density function constructed from a
random vector T(X,R) that satisfies differential privacy.
Let Z = (Z1, . . . ,Zk) be k iid draws from g. This defines
a mechanism Qn(B|X) = P(Z ∈ B|X). Then Qn satisfies
differential privacy for any k.

3. (Proposition 1 from Dwork et al. 2006.) Let f (x) be a
function of x = (x1, . . . , xn) and define S(f ) =
supx,x′:δ(x,x′)=1 ‖f (x) − f (x′)‖1 where ‖a‖1 = ∑

j |aj|. Let

R have density g(r) ∝ e−α|r|/S(f ). Then T(X,R) = f (X) +
R satisfies differential privacy.

3. INFORMATIVE MECHANISMS

A challenge in privacy theory is to find Qn that satisfies dif-
ferential privacy and yet yields datasets Z that preserve infor-
mation. Informally, a mechanism is informative if it is possible
to make precise inferences from the released data Z1, . . . ,Zk.
Whether or not a mechanism is informative will depend on the
goals of the inference. From a statistical perspective, we would
like to infer P or functionals of P from Z. Blum, Ligett, and
Roth (2008) show that the probability content of some classes
of intervals can be estimated accurately while preserving pri-
vacy. Their results motivated the current paper. We will assume
throughout that the user has access to the sanitized data Z but
not the mechanism Qn. The question of how a data analyst can
use knowledge of Qn to improve inferences is left to future
work.

There are many ways to measure the information in Z. One
way is through distribution functions. Let F denote the cu-
mulative distribution function (cdf) on X corresponding to P.
Thus F(x) = P(X ∈ (−∞, x1] × · · · × (−∞, xr]) where x =
(x1, . . . , xr). Let F̂ ≡ F̂X denote the empirical distribution func-
tion corresponding to X and similarly let F̂Z denote the empir-
ical distribution function corresponding to Z. Let ρ denote any
distance measure on distribution functions.

Definition 3.1. Qn is consistent with respect to ρ if ρ(F,

F̂Z)
P→ 0. Qn is εn-informative if ρ(F, F̂Z) = OP(εn).

An alternative to requiring ρ(F, F̂Z) to be small is to require
ρ(F̂, F̂Z) to be small. Or one could require Qn(ρ(F̂, F̂Z) >

ε|X = x) be small for all x as in Blum, Ligett, and Roth (2008).
These requirements are similar. Indeed, suppose ρ satisfies the
triangle inequality and that F̂ is consistent in the ρ distance, that

is, ρ(F̂,F)
P→ 0. Assume further that ρ(F̂,F) = OP(εn). Then

ρ(F, F̂Z) = OP(εn) implies that

ρ(F̂, F̂Z) ≤ ρ(F̂,F) + ρ(F, F̂Z) = OP(εn);
similarly, ρ(F̂, F̂Z) = OP(εn) implies that ρ(F, F̂Z) = OP(εn).

Let EP,Qn denote the expectation under the joint distribu-
tion defined by Pn and Qn. Sometimes we write E when there
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is no ambiguity. Similarly, we use P to denote the marginal
probability under Pn and Qn: P(A) = ∫

A dQn(z1, . . . , zk|x1, . . . ,

xn)dP(x1) · · · dP(xn) for A ∈ X k.
There are many possible choices for ρ. We shall mainly

focus on the Kolmogorov–Smirnov (KS) distance ρ(F,G) =
supx |F(x) − G(x)| and the squared L2 distance ρ(F,G) =∫
(f (x) − g(x))2 dx where f = dF/dμ and g = dG/dμ. How-

ever, our results can be carried over to other distances as well.
Before proceeding let us note that we will need some as-

sumptions on F otherwise we cannot have a consistent scheme
as shown in the following theorem. The following result—
essentially a reexpression of a result in Blum, Ligett, and Roth
(2008) in our framework—makes this clear.

Theorem 3.2. Suppose that Qn satisfies differential privacy
and that ρ(F,G) = supx |F(x) − G(x)|. Let F be a point mass
distribution. Thus F(y) = I(y ≥ x) for some point x ∈ [0,1].
Then F̂Z is inconsistent, that is, there is a δ > 0 such that
lim infn→∞ Pn(ρ(F, F̂Z) > δ) > 0.

4. SAMPLING FROM A HISTOGRAM

The goal of this section is to give two concrete, simple data-
release methods that achieve differential privacy. The idea is
to draw a random sample from a histogram. The first scheme
draws observations from a smoothed histogram. The second
scheme draws observations from a randomly perturbed his-
togram. We use the histogram for its familiarity and simplicity
and because it is used in applications of differential privacy. We
will see that the histogram has to be carefully constructed to
ensure differential privacy. We then compare the two schemes
by studying the accuracy of the inferences from the released
data. We will see that the accuracy depends both on how the
histogram is constructed and on what measure of accuracy we
use.

Let L > 0 be a constant and suppose that p = dP/dμ ∈ P
where

P = {
p : |p(x) − p(y)| ≤ L‖x − y‖} (4)

is the class of Lipschitz functions. We assume throughout this
section that p ∈ P . The minimax rate of convergence for den-
sity estimators in squared L2 distance for P is n−2/(2+r) (Scott
1992).

Let h = hn be a binwidth such that 0 < h < 1 and such that
m = 1/hr is an integer. Partition X into m bins {B1, . . . ,Bm}
where each bin Bj is a cube with sides of length h. Let I(·)
denote the indicator function. Let f̂m denote the corresponding
histogram estimator on X , namely,

f̂m(x) =
m∑

j=1

p̂j

hr
I(x ∈ Bj),

where p̂j = Cj/n and Cj = ∑n
i=1 I(Xi ∈ Bj) is the number of

observations in Bj. Recall that f̂m is a consistent estimator of
p if h = hn → 0 and nhr

n → ∞. Also, the optimal choice of
m = mn for L2 error under P is mn  nr/(2+r), in which case∫
(p − f̂m)2 = OP(n−2/(2+r)) (Scott 1992). Here, an  bn means

that both an/bn and bn/an are bounded for large n.

4.1 Sampling From a Smoothed Histogram

The first method for generating released data Z from a his-
togram while achieving differential privacy proceeds as fol-
lows. Recall that the sample space is [0,1]r . Fix a constant
0 < δ < 1 and define the smoothed histogram

f̂m,δ(x) = (1 − δ)f̂m(x) + δ. (5)

Theorem 4.1. Let Z = (Z1, . . . ,Zk) where Z1, . . . ,Zk are k
iid draws from f̂m,δ(x). If

k log

(
(1 − δ)m

nδ
+ 1

)
≤ α (6)

then α-differential privacy holds.

Note that for δ → 0 and m
nδ

→ 0, log(
(1−δ)m

nδ
+ 1) = m

nδ
(1 +

o(1)) ≈ m
nδ

. Thus (6) is approximately the same as requiring

mk

δ
≤ nα. (7)

Equation (7) shows an interesting tradeoff between m, k, and
δ. We note that sampling from the usual histogram correspond-
ing to δ = 0 does not preserve differential privacy.

Now we consider how to choose m, k, δ to minimize E(ρ(F,

F̂Z)) while satisfying (6). Here, E is the expectation under the
randomness due to sampling from P and due to the privacy
mechanism Qn. Thus, for any measurable function h,

E(h(Z)) =
∫ ∫

h(z1, . . . , zk)dQn(z1, . . . , zk|
x1, . . . , xn)dP(x1) · · · dP(xn).

Now we give a result that shows how accurate the inferences
are in the KS distance using the smoothed histogram sampling
scheme.

Theorem 4.2. Suppose that Z1, . . . ,Zk are drawn as de-
scribed in the previous theorem. Suppose (4) holds. Let ρ be the
KS distance. Then choosing m  nr/(6+r), k  m4/r = n4/(6+r)

and δ = (mk/nα) minimizes Eρ(F, F̂Z) subject to (6). In this

case, Eρ(F, F̂Z) = O(
√

log n
n2/(6+r) ).

In this case we see that we have consistency since ρ(F, F̂Z) =
oP(1) but the rate is slower than the minimax rate of conver-
gence for density estimators in KS distance, which is n−1/2.
Now let q̂j = #{Zi ∈ Bj}/k and

ρ(F, F̂Z) =
∫

(p(x) − f̂Z(x))2 dx, where

(8)

f̂Z(x) = h−r
m∑

j=1

q̂jI(x ∈ Bj).

Theorem 4.3. Assume the conditions of the previous theo-
rem. Let ρ be the squared L2 distance as defined in (8). Then
choosing

m  nr/(2r+3), k  n(r+2)/(2r+3), δ  n−1/(r+3)

minimizes Eρ(F, F̂Z) subject to (6). In this case, Eρ(F, F̂Z) =
O(n−2/(2r+3)).

Again, we have consistency but the rate is slower than the
minimax rate which is n−2/(2+r) (Scott 1992).
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4.2 Sampling From a Perturbed Histogram

The second method, which we call the sampling from a per-
turbed histogram, is due to Dwork et al. (2006). Recall that Cj

is the number of observations in bin Bj. Let Dj = Cj + νj where
ν1, . . . , νm are independent, identically distributed draws from
a Laplace density with mean 0 and variance 8/α2. Thus the
density of νj is g(ν) = (α/4)e−|ν|α/2. Dwork et al. (2006) show
that releasing D = (D1, . . . ,Dm) preserves differential privacy.
However, our goal is to release a database Z = (Z1, . . . ,Zk)

rather than just a set of counts. Now define

D̃j = max{Dj,0} and q̂j = D̃j

/∑
s

D̃s.

Since D preserves differential privacy, it follows from Lem-
ma 2.6 that (q̂1, . . . , q̂m) also preserve differential privacy;
Moreover, any sample Z = (Z1, . . . ,Zk) from f̃ (x) = h−r ×∑m

j=1 q̂jI(x ∈ Bj) preserve differential privacy for any k.

Theorem 4.4. Let Z = (Z1, . . . ,Zk) be drawn from f̃ (x) =
h−r ∑m

j=1 q̂jI(x ∈ Bj). Assume that there exists a constant 1 ≤
C < ∞ such that supx p(x) = C.

(1) Let ρ be the L2 distance and f̂Z be as defined in (8). Let
m  nr/(2+r) and let k ≥ n. Then we have Eρ(F, F̂Z) =
O(n−2/(2+r)).

(2) Let ρ be the KS distance. Let m  nr/(2+r). Then

Eρ(F, F̂Z) = O(min(
log n

n2/(2+r) ,

√
log n

n )).

Hence, this method achieves the minimax rate of conver-
gence in L2 while the first data-release method does not. This
suggests that the perturbation method is preferable for the L2

distance. The perturbation method does not achieve the mini-
max rate of convergence in KS distance; in fact, the exponential
mechanism based method achieves a better rate as we shown in
Section 5 (Theorem 5.4). We examine this method numerically
in Section 7.

Another approach to histograms is given by Machanavajjhala
et al. (2008). They put a Dirichlet (a1, . . . ,am) prior on the
cell probabilities p1, . . . ,pm where pj = P(Xi ∈ Bj). The cor-
responding posterior is Dirichlet (a1 + C1, . . . ,am + Cm).
Next they draw q = (q1, . . . ,qm) from the posterior and fi-
nally they sample new cell counts D = (D1, . . . ,Dm) from a
Multinomial(k,q). Thus, the distribution of D given X is

P(D = d|X) =
∏m

j=1 �(dj + aj + Cj)

�(k + n + ∑
j aj)

.

They show that differential privacy requires aj + Cj ≥
k/(eα − 1) for all j. If we take a1 = a2 = · · · = am then this
is similar to the first histogram-based data-release method we
discussed in this section. They also suggest a weakened version
of differential privacy.

5. EXPONENTIAL MECHANISM

In this section we will consider the exponential mechanism
in some detail. We will derive some general results about accu-
racy and apply the method to the mean, and to density estima-
tion. Specifically, we will show the following for exponential
mechanisms:

1. Choosing the size k of the released database is delicate.
Taking k too large compromises privacy. Taking k too
small compromises accuracy.

2. The accuracy of the exponential scheme can be bounded
by a simple formula. This formula has a term that mea-
sures how likely it is for a distribution based on sample
size k, to be in a small ball around the true distribution. In
probability theory, this is known as a small ball probabil-
ity.

3. The formula can be applied to several examples such as
the KS distance, the mean, and nonparametric density es-
timation using orthogonal series. In each case we can use
our results to choose k and to find the rate of convergence
of an estimator based on the sanitized data.

In light of Theorem 3.2, we know that some assumptions are
needed on P. We shall assume throughout this section that P
has a bounded density p; note that this is a weaker condition
than (4).

Recall the exponential mechanism. We draw the vector Z =
(Z1, . . . ,Zk) from h(z|x) where

h(z|x) = gx(z)∫
[0,1]k gx(s)ds

, where

gx(z) = exp

(
−αρ(F̂x, F̂z)

2�n,k

)
and (9)

� ≡ �n,k = sup
x,y∈X n

δ(x,y)=1

sup
z∈X k

|ρ(F̂x, F̂z) − ρ(F̂y, F̂z)|.

Lemma 5.1. For KS distance �n,k ≤ 1
n .

This framework is used in Blum, Ligett, and Roth (2008). For
the rest of this section, assume that Z = (Z1, . . . ,Zk) are drawn
from an exponential mechanism Qn.

Definition 5.2. Let F denote the cumulative distribution
function on X corresponding to P. Let Ĝ denote the empiri-
cal cdf from a sample of size k from P, and let

R(k, ε) = Pk(ρ(F, Ĝ) ≤ ε).

R(k, ε) is called the small ball probability associated with ρ.

The following theorem bounds the accuracy of the estimator
from the sanitized data by a simple formula involving the small
ball probability.

Theorem 5.3. Assume that P has a bounded density p, and
that there exists εn → 0 such that

P

(
ρ(F, F̂X) >

εn

16

)
= O

(
1

nc

)
(10)

for some c > 1. Further suppose that ρ satisfies the triangle in-
equality. Let Z = (Z1, . . . ,Zk) be drawn from gx(z) given in (9).
Then,

P(ρ(F, F̂Z) > εn)

≤ (supx p(x))k exp (−3αεn/(16�))

R(k, εn/2)
+ O

(
1

nc

)
. (11)

Thus, if we can choose k = kn in such a way that the right-
hand side of (11) goes to 0, then the mechanism is consistent.
We now show some examples that satisfy these conditions and
we show how to choose kn.
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5.1 The KS Distance

Theorem 5.4. Suppose that P has a bounded density p and
let B := log supx p(x) > 0. Let Z = (Z1, . . . ,Zk) be drawn from
gx(z) given in (9) with ρ being the KS distance. By requiring
that kn  ( 3α

B )2/3n2/3, we have for εn = 2( B
3α

)1/3n−1/3, and for
ρ being the KS distance,

ρ(F, F̂Z) = OP(εn). (12)

Note that ρ(F, F̂Z) converges to 0 at a slower rate than
ρ(F, F̂X). We thus see that the rate after sanitization is n−1/3

which is slower than the optimal rate of n−1/2. It is an open
question whether this rate can be improved.

5.2 The Mean

It is interesting to consider what happens when ρ(F, F̂Z) =
‖μ − Z‖2 where μ = ∫

x dP(x) and Z is the sample mean of Z.

In this case � ≤ r/n. Thus, h(u|x) ≈ e−n‖X−Z‖2/(2α) so, approx-
imately, Z1, . . . ,Zk ∼ N(X, kα/n). Indeed, it suffices to take
k = 1 in this case since then Z = X + OP(1/

√
n). Thus Z con-

verges at the same rate as X. This is not surprising: preserving
a single piece of information requires a database of size k = 1.

6. ORTHOGONAL SERIES DENSITY ESTIMATION

In this section, we develop an exponential scheme based on
density estimation and we compare it to the perturbation ap-
proach. For simplicity we take r = 1. Let {1,ψ1,ψ2, . . .} be an
orthonormal basis for L2(0,1) = {f :

∫ 1
0 f 2(x)dx < ∞} and as-

sume that p ∈ L2(0,1). Hence

p(x) = 1 +
∞∑

j=1

βjψj(x), where βj =
∫ 1

0
ψj(x)p(x)dx.

We assume that the basis functions are uniformly bounded so
that

c0 ≡ sup
j

sup
x

|ψj(x)| < ∞. (13)

Let B(γ,C) denote the Sobolev ellipsoid

B(γ,C) =
{

β = (β1, β2, . . .) :
∞∑

j=1

β2
j j2γ ≤ C2

}
,

where γ > 1/2. Let

P (γ,C) =
{

p(x) = 1 +
∞∑

j=1

βjψj(x) :β ∈ B(γ,C)

}
.

The minimax rate of convergence in L2 norm for P (γ,C) is
n−2γ /(2γ+1) (Efromovich 1999). Thus

inf
p̂

sup
P∈P (γ,C)

E
∫

(p̂(x) − p(x))2 dx ≥ c1n−2γ /(2γ+1)

for some c1 > 0. This rate is achieved by the estimator

p̂(x) = 1 +
mn∑
j=1

β̂jψj(x), (14)

where mn = n1/(2γ+1) and β̂j = n−1 ∑n
i=1 ψj(Xi). See Efromo-

vich (1999).

For a function u ∈ L2(0,1), let us define ‖u‖�2 =
(
∫ 1

0 |u(x)|2 dx)1/2, which is a norm on L2(0,1). Now consider
an exponential mechanism based on

ξ(X,Z) =
(∫

(p̂(x) − p̂∗(x))2 dx

)1/2

:= ‖p̂ − p̂∗‖�2, (15)

where

p̂∗(x) = 1 +
mk∑
j=1

β̂∗
j ψj(x) for

(16)

mk = k1/(2γ+1) and β̂∗
j = k−1

k∑
i=1

ψj(Zi).

Lemma 6.1. Under the above scheme we have � ≤ 2c2
0mn

n for
c0 as defined in (13). Hence,

g(z|x) = exp

(
−α‖p̂∗ − p̂‖�2

�

)

≤ exp

(
−αn‖p̂∗ − p̂‖�2

2c2
0mn

)
almost surely. (17)

Theorem 6.2. Let Z = (Z1, . . . ,Zk) be drawn from gx(z)
given in (17). Assume that γ > 1. If we choose k  √

n then

ρ2(p, p̂∗) = OP
(
n−γ /(2γ+1)

)
.

We conclude that the sanitized estimator converges at a
slower rate than the minimax rate. Now we compare this to the
perturbation approach. Let Z = (Z1, . . . ,Zk) be an iid sample
from

q̂(x) = 1 +
mn∑
j=1

(β̂j + νj)ψj(x),

where ν1, . . . , νm are iid draws from a Laplace distribution with
density g(ν) = (nα/(2c0m))e−nα|ν|/(c0m). Thus, in the notation
of Lemma 2.6, R = (ν1, . . . , νm). It follows from Lemma 2.6
that, for any k, this preserves differential privacy. If q̂(x) < 0
for any x then we replace q̂ by q̂(x)I(q̂(x) > 0)/

∫
q̂(s)I(q̂(s) >

0)ds as in Hall and Murison (1993).

Theorem 6.3. Let Z = (Z1, . . . ,Zk) be drawn from q̂. As-
sume that γ > 1. If we choose k ≥ n, then

ρ2(p, p̂Z) = OP
(
n−2γ /(2γ+1)

)
where p̂Z is the orthogonal series density estimator based on Z.

Hence, again, the perturbation technique achieves the mini-
max rate of convergence and so appears to be superior to the
exponential mechanism. We do not know if this is because the
exponential mechanism is inherently less accurate, or if our
bounds for the exponential mechanism are not tight enough.
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7. EXAMPLE

Here we consider a small simulation study to see the effect
of perturbation on accuracy. We focus on the histogram pertur-
bation method with r = 1. We take the true density of X to be a
Beta(10,10) density. We considered sample sizes n = 100 and
n = 1000 and privacy levels α = 0.1 and α = 0.01. We take ρ

to be squared error distance. Figure 1 shows the results of 1000
simulations for various numbers of bins m.

As expected, smaller values of α induce a larger information
loss which manifests itself as a larger mean squared error. De-
spite the fact that the perturbed histogram achieves the minimax
rate, the error is substantially inflated by the perturbation. This
means that the constants in the risk are important, not just the
rate. Also, the risk of the sanitized histograms is much more
sensitive to the choice of the number of cells than the original
histogram is.

We repeated the simulations with a bimodal density, namely,
p(x) being an equal mixture of a Beta(10,3) density and
Beta(3,10) density. The results turned out to be nearly iden-
tical to those above.

8. CONCLUSION

Differential privacy is an important type of privacy guaran-
tee when releasing data. Our goal has been to present the idea in
statistical language and then to show that loss functions based
on distributions and densities can be useful for comparing pri-
vacy mechanisms.

We have seen that sampling from a histogram leads to dif-
ferential privacy as long as either the histogram is shifted away
from 0 by a factor δ or if the cells are perturbed appropriately.
The latter method achieves a faster rate of convergence in L2
distance. But, the simulation showed that the risk can nonethe-
less be quite large. This suggests that more work is needed to
get precise finite sample risk bounds. Also, the choice of the

Figure 1. Top two plots n = 100. Bottom two plots n = 1000. Each
plot shows the mean integrated squared error of the histogram. The
lower line is from the histogram based on the original data. The upper
line is based on the perturbed histogram. A color version of this figure
is available in the electronic version of this article.

smoothing parameter (number of cells in the histogram) has a
larger effect on the sanitized histogram than on the original his-
togram.

We also studied the exponential mechanism. Here we derived
a formula for assessing the accuracy of the method. The for-
mula involves small ball probabilities. As far as we know, the
connection between differential privacy and small ball proba-
bilities has not been observed before.

Minimaxity is desirable for any statistical procedure. We
have seen that in some cases the minimax rate is achieved and
in some cases it is not. We do not yet have a complete mini-
max theory for differential privacy and this is the focus of our
current work. We close with some open questions.

1. When is it possible for ρ(F, F̂Z) to have the same rate as
ρ(F, F̂X)?

2. When adaptive minimax methods are used, such as adapt-
ing to γ in Section 6 or when using wavelet estimation
methods, is some form of adaptivity preserved after sani-
tization?

3. Many statistical methods involve some sort of risk min-
imization. A example is choosing a bandwidth by cross-
validation. What is the effect of sanitization on these pro-
cedures?

4. Are there other, better methods of sanitization that pre-
serve differential privacy?

9. PROOFS

9.1 Proof of Theorem 2.4

Without loss of generality take i = 1. Let M0(B) = ∫
Q(B|s,

x2, . . . , xn)dP(x2, . . . , xn) and M1(B) = ∫
Q(B|t, x2, . . . ,

xn)dP(x2, . . . , xn). By the Neyman–Pearson lemma, the high-
est power test is to reject H0 when U > u where U(z) =
(dM1/dM0)(z) and u is chosen so that

∫
I(U(z) > u)dM0(z) ≤

γ . Since (s, x2, . . . , xn) and (t, x2, . . . , xn) differ in only one co-
ordinate, M1(B) ≤ eαM0(B) and so the power is M1(U > u) ≤
eαM0(U > u) ≤ γ eα .

9.2 Proof of Lemma 2.6

For the first part simply note that P(h(T(X,R)) ∈ B|X =
x) = P(T(X,R) ∈ h−1(B)|X = x) ≤ eα

P(T(X,R) ∈ h−1(B)|X =
x′) = eα

P(h(T(X,R)) ∈ B|X = x′).
For the second part, let Z = (Z1, . . . ,Zk) and note that Z is

independent of X given T(X,R). Let H be the distribution of
T(X,R). Hence,

P(Z ∈ B|X = x)

=
∫

P(Z ∈ B|X = x,T = t)dH(t|X = x)dt

=
∫

P(Z ∈ B|T = t)dH(t|X = x)dt

=
∫

P(Z ∈ B|T = t)
dH(t|X = x)

dH(t|X = x′)
dH(t|X = x′)

≤ eα

∫
P(Z ∈ B|T = t)dH(t|X = x′)

= eα
P(Z ∈ B|X = x′).
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9.3 Proof of Theorem 3.2

Our proof is adapted from an argument given in theorem 5.1
of Blum, Ligett, and Roth (2008). Let r = 1 so that X = [0,1].
Let P = δ0 where δ0 denotes a point mass at 0. Then Pn(X =
X(0)) = 1 where X(0) ≡ {0, . . . ,0}. Assume that Qn is consis-
tent. Since F(0) = 1, it follows that for any δ > 0, P(F̂Z(0) >

1 − δ) → 1. But since P(·) = EPQn(·|X) and since Pn(X =
X(0)) = 1, this implies that Qn(F̂Z(0) > 1 − δ|X = X(0)) → 1.

Let v > 0 be any point in [0,1] such that Qn(Z = v|X =
X(0)) = 0. Let X(1) = {v,0, . . . ,0}, X(2) = {v, v,0, . . . ,0}, . . . ,
X(n) = {v, v, . . . , v}. By assumption, Qn(Z = X(j)|X = X(0)) = 0
for all j ≥ 1. Differential privacy implies that Qn(Z = X(j)|X =
X(1)) = 0 for all j ≥ 1. Applying differential privacy again im-
plies that Qn(Z = X(j)|X = X(2)) = 0 for all j ≥ 1. Continuing
this way, we conclude that Qn(Z = X(j)|X = X(n)) = 0 for all
j ≥ 1.

Next let P = δv. Arguing as before, we know that Qn(F̂Z(v) <

1 − δ|X = X(n)) → 0. And since F(v−) = 0 we also have that
Qn(F̂Z(v−) > δ|X = X(n)) → 0. Here, F(v−) = limi→∞ F(vi)

where v1 < v2 < · · · and vi → v. Hence, for j/n > 1−δ, Qn(Z =
X(j)|X = X(n)) > 0 which is a contradiction.

9.4 Proof of Theorem 4.1

Suppose that X differs from Y in at most one observation.
Let f̂ denote the perturbed histogram f̂m,δ based on X and let
ĝm,δ denote the histogram based on Y , such that X and Y differ
in one entry. We also use p̂j(X) and p̂j(Y) for cell proportions.
Note that |p̂j(X)− p̂j(Y)| < 1/n by definition. It is clear that the
maximum density ratio for a single draw xi, or all i, occurs in
one bin Bj. Now consider x = (x1, . . . , xi) such that for all i =
1, . . . , k, we have xi ∈ Bj ⊂ [0,1]r and the following bounds:

1. Let p̂j(Y) = 0; then in order to maximize f̂ (x)/ĝ(x), we
let p̂j(X) = 1/n and obtain

f̂ (x)

ĝ(x)
=

k∏
i=1

f̂m,δ(xi)

ĝm,δ(xi)
≤

(
(1 − δ)m(1/n) + δ

δ

)k

=
(

(1 − δ)m

nδ
+ 1

)k

;

2. Otherwise, we let p̂j(Y) ≥ 1/n (as by definition of p̂j,
it takes z/n for nonnegative integers z) and let p̂j(X) =
p̂j(Y) ± 1/n. Now it is clear that in order to maximize the
density ratio at x, we may need to reverse the role of X
and Y ,

max

(
ĝ(x)

f̂ (x)
,

f̂ (x)

ĝ(x)

)

≤ max

((
(1 − δ)mp̂j + δ

(1 − δ)m(p̂j − (1/n)) + δ

)k

,

(
(1 − δ)m(p̂j + 1/n) + δ

(1 − δ)mp̂j + δ

)k)

≤ max

(
(1 − δ)m(1/n)

(1 − δ)m(p̂j − (1/n)) + δ
+ 1

)k

≤
(

(1 − δ)m

nδ
+ 1

)k

,

where the maximum is achieved when p̂j(Y) = 1/n and
p̂j(X) = 0, given a fixed set of parameters m,n, δ.

Thus we have

sup
x∈([0,1]r,...,[0,1]r)

f̂ (x)

ĝ(x)
≤

(
(1 − δ)m

nδ
+ 1

)k

,

and the theorem holds.

9.5 Proof of Theorem 4.2

Recall that F̂Z denotes the empirical distribution function
corresponding to Z = (Z1, . . . ,Zk), where Zi ∈ [0,1]r for all
i are iid draws from density function f̂m,δ(x) as in (5) given
X = (X1, . . . ,Xn). Let U denote the uniform cdf on [0,1]r .
Given X = (X1, . . . ,Xn) drawn from a distribution whose cdf
is F, let f̂m denote the histogram estimator on X and let
F̂m(x) = ∫ x

0 f̂m(s)ds and F̂m,δ(x) = (1 − δ)F̂m(x) + δU(x). De-

fine Fm(x) = E(F̂m(x)) and f̄m(x) = E(f̂m(x)).
The Vapnik–Chervonenkis dimension of the class of sets of

the form {(−∞, x1]×· · ·×(−∞, xr] is r and so by the standard
Vapnik–Chervonenkis bound, we have for ε > 0 that

P

(
sup

t∈[0,1]r
|F̂X(t) − F(t)| > ε

)
≤ 8nr exp

{
−nε2

32

}

≤ exp

{
−nε2

64

}
(18)

for large n. Hence, E supt∈[0,1]r |F̂X(t) − F(t)| = O(

√
r log n

n ).

Given X, we have Z1, . . . ,Zk ∼ F̂m,δ and so E sup[0,1]r |F̂Z(t) −
F̂m,δ(t)| = O(

√
r log k

k ). Thus,

E sup
x∈[0,1]r

|F̂Z(x) − F(x)|

≤ E sup
x

|F̂Z(x) − F̂m,δ(x)| + E sup
x

|F̂m,δ(x) − F(x)|

≤ E sup
x

|F̂Z(x) − F̂m,δ(x)| + E sup
x

|F̂m(x) − F(x)| + δ

≤ E sup
x

|F̂Z(x) − F̂m,δ(x)| + E sup
x

|F̂m(x) − F(x)| + δ

= O

(√
r log k

k

)
+ E sup

x
|F̂m(x) − F(x)| + δ.

By the triangle inequality, we have for all x ∈ [0,1]r ,

|F̂m(x) − F(x)| ≤ |F̂m(x) − Fm(x)| + |Fm(x) − F(x)|,
and hence

E sup
x∈[0,1]r

|F̂m(x) − F(x)|

≤ E sup
x∈[0,1]r

|F̂m(x) − Fm(x)| + E sup
x∈[0,1]r

|Fm(x) − F(x)|

= O

(√
r log n

n

)
+ E sup

x∈[0,1]r
|Fm(x) − F(x)|, (19)

where the last step follows from the VC bound as in (18) for
Fm(x).

Next we bound supx∈[0,1]r |Fm(x) − F(x)|. Now F(x) =
P(A) where A = {(s1, . . . , sr) : si ≤ xi, i = 1, . . . , r}. If x =
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(j1h, . . . , jrh) for some integers j1, . . . , jr then F(x) − Fm(x) =
0. For x not of this form, let x̃ = (j1h, . . . , jrh) where ji =
�xi/h�. Let R = {(s1, . . . , sr) : si ≤ x̃i, i = 1, . . . , r}. So

F(x) − Fm(x) = P(A) − Pm(A)

= P(R) − Pm(R) + P(A \ R) − Pm(A \ R)

= P(A \ R) − Pm(A \ R), (20)

where Pm(B) = ∫
B dFm(u) and the set A \ R intersects at most

rh/hr number of cubes in {B1, . . . ,Bm}, given that Vol(A \ R) ≤
1 − (1 − h)r ≤ rh. Now by the Lipschitz condition (4), we have
supx∈[0,1]r |p(x) − f̄m(x)| ≤ Lh

√
r and

|P(A \ R) − Pm(A \ R)|
≤ number of cubes intersecting (A \ R)

× maximum density discrepancy

× volume of cube

≤ (rh/hr) · (Lh
√

r) · hr ≤ Lr3/2m−2/r. (21)

Thus we have by (19), (20), and (21)

E sup
x

|F̂m(x) − F(x)| = O

(√
r log n

n

)
+ Lr3/2m−2/r. (22)

Hence,

E sup
x

|F̂Z(x) − F(x)| = O

(√
r log k

k

)
+ O

(√
r log n

n

)

+ Lr3/2m−2/r + δ.

Set m  nr/(6+r), k  m4/r = n4/(6+r) and δ = (mk/nα) we get

for all n large enough, E supx |F̂Z(x) − F(x)| = O(
√

log n
n2/(6+r) ).

9.6 Proof of Theorem 4.3

Let f̂Z be the histogram based on Z as in (8). Then

(f̂Z(u) − p(u))2 � (1 − δ)2(p(u) − f̂m(u))2

+ δ2(p(u) − 1)2 + (f̂m,δ(u) − f̂Z)2,

where � means less than, up to constants. Hence,

E

∫
(f̂Z(u) − p(u))2 du � Rm + δ2 + E

∫
(f̂m,δ(u) − f̂Z(u))2 du,

where Rm is the usual L2 risk of a histogram under the Lipschitz
condition (4), namely, m−2/r + m/n. Conditional on X, f̂Z is an
unbiased estimate of f̂m with integrated variance m/k. So,

E

∫
(f̂Z(u) − p(u))2 du � m−2/r + m

n
+ δ2 + m

k
.

Minimizing this, subject to (6) yields

m  nr/(2r+3), k  n(r+2)/(2r+3), δ  n−1/(2r+3)

which yields E
∫
(f̂Z(u) − p(u))2 du = O(n−2/(2r+3)).

9.7 Proof of Theorem 4.4

(1) Note that p − f̂Z = p − f̃ + f̃ − f̂Z = p − f̃ + OP(m
k ). When

k ≥ n, the latter error is lower order than the other terms and
may be ignored. Now,

p(x) − f̃ (x) = p(x) − f̂m(x) + f̂m(x) − f̃ (x).

Thus∫
(p(x) − f̃ (x))2 dx �

∫
(p(x) − f̂m(x))2 dx

+
∫

(f̂m(x) − f̃ (x))2 dx.

The expected value of the first term is the usual risk, namely,
O(m−2/r + m/n).

For the second term, we proceed as follows. Let p̂j = Cj/n
and

q̂j = (Cj + νj)+∑m
s=1(Cs + νs)+

.

We claim that

max
j

|q̂j − p̂j| = O

(
log m

n

)

almost surely, for all large n. We have

q̂j = (Cj + νj)+
n

(
n∑m

s=1(Cs + νs)+

)
= (Cj + νj)+

n

1

Rn
,

where Rn = (
∑m

s=1(Cs + νs)+)/n. Now

p̂j − |νj|
n

≤ p̂j + νj

n
= (Cj + νj)

n
≤ (Cj + νj)+

n
≤ p̂j + |νj|

n
.

Therefore, ∣∣∣∣ (Cj + νj)+
n

− p̂j

∣∣∣∣ ≤ |νj|
n

≤ M

n
,

where M = max{|ν1|, . . . , |νm|}. Let A > 0. The density for νj

has the form f (ν) = (β/2)e−β|ν|. So,

P(M > A log m) ≤ mP(|νj| > A log m)

= βm
∫ ∞

A log m
e−β|ν| dν = 1

mAβ−1
.

By choosing A large enough we have that M < A log m a.s. for
large n, by the Borel–Cantelli lemma. Therefore,∣∣∣∣ (Cj + νj)+

n
− p̂j

∣∣∣∣ ≤ log m

n
.

Now we bound Rn. We have

1 −
∑

s |νs|
n

≤ 1 +
∑

s νs

n
≤ Rn =

∑m
s=1(Cs + νs)+

n

≤ 1 +
∑

s |νs|
n

so that

|Rn − 1| ≤
∑

s |νs|
n

≤ Mm

n
= O

(
m log m

n

)
a.s.
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Therefore, 1/Rn = (1 + O(m log m/n)) and thus

q̂j =
(

p̂j + O

(
log m

n

))(
1 + O

(
m log m

n

))

= p̂j + p̂jO

(
m log m

n

)
+ O

(
log m

n

)
+ O

(
m(log m)2

n2

)
.

Next we claim that p̂j = O(1/m) a.s. To see this, note that
pj ≤ C/m, by definition of C: 1 ≤ C = supx p(x) < ∞. Hence,
by Bernstein’s inequality,

P

(
p̂j >

2C

m

)
= P

(
p̂j − pj >

2C

m
− pj

)

≤ exp

{
−1

2

n((2C/m) − pj)
2

pj + (1/3)((2C/m) − pj)

}

≤ exp

{
−1

2

nC2/m2

(4C/3m)

}
= e−3nC/(8m) ≤ 1

n2

for all n ≥ 16m log n/3C. Thus p̂j = O(1/m) a.s. for all large n.
Thus, q̂j − p̂j = O(log m/n) almost surely for all large n. Hence,

E

∫
(f̂m(x) − f̃ (x))2 dx = O

(
m log m

n

)2

.

So the risk is

O

(
m−2/r + m

n
+

(
m log m

n

)2)
= O

(
m−2/r + m

n

)

for n ≥ m log2 m. This is the usual risk. Hence, we can choose
m  nr/(2+r) to achieve risk n−2/(2+r) for all n large enough.

(2) Let F̂m be the cdf based on the original histogram and let
F̃m be the cdf based on the perturbed histogram. We have

E sup
x

|F(x) − F̂Z(x)|

≤ E sup
x

|F(x) − F̂m(x)| + E sup
x

|F̂m(x) − F̃m(x)|

+ E sup
x

|F̃m(x) − F̂Z(x)|

≤ E sup
x

|F(x) − F̂m(x)| + E sup
x

|F̂m(x) − F̃m(x)|

+ O

(√
r log k

k

)
.

Since we may take k as large as we like, we can make the last
term arbitrarily small. From (22),

E sup
x

|F(x) − F̂m(x)| = O

(√
r log n

n

)
+ Lr3/2m−2/r.

Let f̂ (x) = h−r ∑m
j=1 p̂jI(x ∈ Bj) and let f̃ (x) = h−r ×∑m

j=1 q̂jI(x ∈ Bj). Let x′ = (u1h, . . . ,urh) where ui = �xi/h�,
∀i = 1, . . . , r. Recall that B1, . . . ,Bm are the m bins of X with
sides of length of h. Let Bx denote the cube with the left-most
corner being 0 and the right-most corner being x. Then for all
x, we have

|F̂m(x) − F̃m(x)|

=
∣∣∣∣
∫ x

0
f̂ (s) − f̃ (s)ds

∣∣∣∣ ≤
∫ x

0
|f̂ (s) − f̃ (s)|ds

≤
∫ x′

0
|f̂ (s) − f̃ (s)|ds

=
∑

�:B�⊆Bx′
|p̂� − q̂�| ≤

m∑
�=1

|p̂� − q̂�|,

where we use the fact that there are at most m cubes. Hence,

E sup
x∈[0,1]r

|F̂m(x) − F̃m(x)| ≤ m log m

n
,

where we use the fact that maxj |p̂j − q̂j| = O(log m/n) a.s. So,

E sup
x

|F(x) − F̂Z(x)| = O

(√
r log n

n

)

+ Lr3/2m−2/r + O

(
m log m

n

)
.

Setting m  nr/(2+r) yields

E sup
x

|F(x) − F̂Z(x)| = O

(
min

(
log n

n2/(2+r)
,

√
log n

n

))
.

Hence for r = 1, the rate is O(

√
log n

n ). For r ≥ 2, the rate is
dominated by the first term inside O(·), and hence the rate is
O(log n × n−2/(2+r)).

9.8 Proof of Theorem 5.3

Let Bε = {u = (u1, . . . ,uk) :ρ(F, F̂u) ≤ ε}, where F̂u is the
empirical distribution based on u = (u1, . . . ,uk) ∈ X k. Also,
let An = {ρ(F̂X,F) ≤ εn/16}. For notational simplicity set � =
�n,k. Then

P(ρ(F, F̂Z) > εn)

= P(ρ(F, F̂Z) > εn,An) + P(ρ(F, F̂Z) > εn,Ac
n)

≤ P(ρ(F, F̂Z) > εn,An) + P(Ac
n)

= P(ρ(F, F̂Z) > εn,An) + O

(
1

nc

)
. (23)

By the triangle inequality ρ(F̂u, F̂X) ≥ ρ(F̂u,F) − ρ(F̂X,F).
Then,

∫
Bc

ε

gx(u)du =
∫

Bc
ε

exp

(−αρ(F̂X, F̂u)

2�

)
du

≤
∫

Bc
ε

exp

(−α(ρ(F̂u,F) − ρ(F̂X,F))

2�

)
du

= exp

(
αρ(F̂X,F)

2�

)∫
Bc

ε

exp

(−αρ(F̂u,F)

2�

)
du

≤ exp

(
αρ(F̂X,F)

2�

)
exp

(−αε

2�

)∫
Bc

ε

du

≤ exp

(
αρ(F̂X,F)

2�

)
exp

(−αε

2�

)
.
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By the triangle inequality, we also have ρ(F̂u, F̂X) ≤ ρ(F̂u,F)+
ρ(F̂X,F) and

∫
gx(u)du ≥

∫
Bε/2

gx(u)du =
∫

Bε/2

exp

(−αρ(F̂X, F̂u)

2�

)
du

≥ exp

(−αρ(F̂X,F)

2�

)

×
∫

Bε/2

exp

(−αρ(F, F̂u)

2�

)
du

≥ exp

(−αρ(F̂X,F)

2�

)
exp

(−αε

4�

)∫
Bε/2

du

= exp

(−2αρ(F̂X,F) − αε

4�

)

×
∫

Bε/2

p(u1) · · ·p(uk)

p(u1) · · ·p(uk)
du

≥ exp ((−2αρ(F̂X,F) − αε)/(4�))

(supx p(x))k

× P(ρ(F, Ĝ) ≤ ε/2),

where Ĝ is the empirical cdf from a sample of size k drawn
from P. Thus we have∫

Bc
ε

h(u|x)du

≤ (supx p(x))k exp (αρ(F̂X,F)/�) exp (−αε/(4�))

P(ρ(F, Ĝ) ≤ ε/2)
.

Thus, from (23),

P(ρ(F, F̂Z) > ε) ≤ P

(
ρ(F̂X,F) ≥ ε

16

)

+ (supx p(x))k exp (−3αε/(16�))

P(ρ(F, Ĝ) ≤ ε/2)

= (supx p(x))k exp (−3αε/(16�))

P(ρ(F, Ĝ) ≤ ε/2)
+ O

(
1

nc

)
.

Thus the theorem holds.

9.9 Proof of Lemma 5.1

We start with KS. By the triangle inequality, we have for all
z ∈ X k and for all x, y ∈ X n,

|ρ(F̂x, F̂z) − ρ(F̂y, F̂z)| ≤ ρ(F̂x, F̂y).

Notice that changing one entry in x will change F̂x(t) by at most
1
n at any t by definition, that is,

sup
t∈[0,1]r

|F̂x(t) − F̂y(t)| = 1

n
.

Thus the conclusion holds for the KS distance.

9.10 Proof of Theorem 5.4

We need the following small ball result; see Li and Shao
(2001).

Theorem 9.1. Let r ≥ 3, and {Xt, t ∈ [0,1]r} be the Brownian
sheet. Then there exists 0 < Cr < ∞ such that for all 0 < ε ≤ 1,

logP

(
sup

t∈[0,1]r
|Xt| ≤ ε

)
≥ −Crε

−2 log2r−1(1/ε),

where Cr depends only on r. The same bound holds for a
Brownian bridge.

The Vapnik–Chervonenkis dimension of the class of sets of
the form {(−∞, x1]×· · ·×(−∞, xr] is r and so by the standard
Vapnik–Chervonenkis bound, we have for εn, kn as specified in
the theorem statement,

P

(
sup
[0,1]r

|F̂X(t) − F(t)| > εn

16

)

≤ 8nr exp

{
−n(εn/16)2

32

}

≤ 8 exp

{
−c5

(
B

3α

)2/3

n1/3 + r log n

}

= 8 exp

{
−c6

√
kn

(
B

3α

)
+ c7r log kn

}

= 8 exp

{
−C2

√
kn

(
B

3α

)}
(24)

for some constants c5, c6, c7,C2 > 0 for n large enough. Thus
(10) holds. Now we compute the small ball probability. Note
that

√
k(F̂k − F) converges to a Brownian bridge Bk on [0,1]r .

More precisely, from Csörgő and Révész (1975) there exist a
sequence of Brownian bridges Bk such that

sup
t

|√k(F̂k − F)(t) − Bk(t)| = O

(
(log k)3/2

kγ

)
a.s., (25)

where γ = 1/(2(r + 1)). It is clear that the RHS of (25) is o(1)

a.s. given a fixed r. Hence we have for k = kn and εn as chosen
in the theorem statement, and for all ε ≥ εn, it holds that

log P

(
sup

t
|F̂Z(t) − F(t)| ≤ ε/2

)

= logP

(
sup

t

√
k|F̂Z(t) − F(t)| ≤ √

kε/2
)

≥ log P

(
sup

t
|Bk(t)| ≤

√
kε − O

(
k−γ (log k)3/2)) (26)

≥ log P

(
sup

t
|Bk(t)| ≤

√
kε

4

)
(27)

for all large n, where (26) follows from (25) and (27) holds
given that

√
kε ≥ √

knεn ≥ c for some constant c > 1/2 due to
our choice of kn and εn. Also, � ≤ 1/n for KS distance. Hence,
by Theorem 5.3 and (24), we have for B = log supx p(x) > 0,

P(ρ(F, F̂Z) > εn)

≤ C0 exp

{
−n

(
3αεn

16
− Bkn

n
− C1| log(

√
knεn/4)|2r−1

nknε2
n

)}
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+ 8 exp

{
−C2

B
√

kn

3α

}

≤ C0 exp(−C3Bkn/2) + 8 exp

{
−C2

(
B

3α

)√
kn

}
→ 0 (28)

for some constants C0,C1,C2, and C3, where (28) holds when
we take w.l.o.g. kn = 1

16 ( 3α
B )2/3n2/3 and εn ≥ 2( B

3α
)1/3n−1/3,

given that εn ≥ 2( B
3α

)1/3n−1/3 = 32knB
3nα

and hence 3αεn
16 ≥ 2Bkn

n .
Thus the result follows.

Remark 9.2. The constants taken in the proof are arbi-
trary; indeed, when we take kn = C4(

3α
B )2/3n2/3 and εn =

32C4(
B

3α
)1/3n−1/3 with some constant C4 ≥ 1/16, (28) will

hold with slightly different constants C2,C3. For kn and εn as
chosen above, it holds that

√
knεn  1.

9.11 Proofs of Lemma 6.1 and Theorem 6.2

Throughout this section, we let p̂X denote the estimator as
defined in (14), which is based on a sample of size n drawn in-
dependently from F. Similarly, we let p̂k denote the same esti-
mator based on an iid sample (Y1, . . . ,Yk) of size k drawn from
F, with mk = k1/(2γ+1) replacing mn and β̂j = k−1 ∑k

i=1 ψj(Yi)

in (14). We let p̂Z denote the estimator as in (16), based on
an iid sample Z = (Z1, . . . ,Zk) of size k drawn from gx(z) as
in (17).

Proof of Lemma 6.1. Without loss of generality, let X =
(x,X2, . . . ,Xn) and Y = (y,X2, . . . ,Xn) so that δ(X,Y) = 1 and
let Z ∈ X k. Recall that

ξ(X,Z) =
(∫

(p̂X(x) − p̂Z(x))2 dx

)1/2

,

ξ(Y,Z) =
(∫

(p̂Y(x) − p̂Z(x))2 dx

)1/2

.

In particular, let us define u = p̂X − p̂Z and v = p̂Y − p̂Z and thus

|ξ(X,Z) − ξ(Y,Z)| =
∣∣∣∣
(∫

(p̂X(x) − p̂Z(x))2 dx

)1/2

−
(∫

(p̂Y(x) − p̂Z(x))2 dx

)1/2∣∣∣∣
= ∣∣‖u‖�2 − ‖v‖�2

∣∣ ≤ ‖u − v‖�2

= ‖p̂X − p̂Z − (p̂Y − p̂Z)‖�2

= ‖p̂X − p̂Y‖�2 ≤ 2c2
0mn

n
,

where the first inequality is due to the triangle inequality for the
‖ · ‖�2 and the last step is due to

|p̂X(x) − p̂Y(x)| = 1

n

∣∣∣∣∣
mn∑
j=1

(
n∑

i=1

ψj(Xi) −
n∑

i=1

ψj(Yi)

)
ψj(x)

∣∣∣∣∣
= 1

n

∣∣∣∣∣
mn∑
j=1

(ψj(X1) − ψj(Y1))ψj(x)

∣∣∣∣∣

≤ 1

n

mn∑
j=1

(|ψj(X1)| + |ψj(Y1)|
)|ψj(x)|

≤ 2c2
0mn

n
.

Hence � ≤ 2c2
0mn

n .

Proof of Theorem 6.2. For u = (u1, . . . ,uk) ∈ X k, we let

p̂u(x) = 1 +
mk∑
j=1

β̂jψj(x),

where mk = k1/(2γ+1) and β̂j = k−1 ∑k
i=1 ψj(ui).

Let F̂u be the empirical distribution based on u. Our proof
follows that of Theorem 5.3, with

ρ(F, F̂u) = ‖p − p̂u‖�2 and ρ(FX, F̂u) = ‖p̂X − p̂u‖�2

as defined in (15) for X = (X1, . . . ,Xn). Now

Bε = {
u = (u1, . . . ,uk) :‖p − p̂u‖�2 < ε

}
.

Thus the corresponding triangle inequalities that we use to re-
place that in Theorem 5.3 are:

‖p̂u − p̂X‖�2 ≥ ‖p̂u − p‖�2 − ‖p̂X − p‖�2 and

‖p̂u − p̂X‖�2 ≤ ‖p̂u − p‖�2 + ‖p − p̂X‖�2 .

Standard risk calculations show that (10) holds for some c >

0 with ρ(F, F̂X) being replaced with ‖p̂X − p‖�2 . That is, by
Markov’s inequality,

P
(‖p̂X − p‖�2 > ε

) ≤ E‖p̂X − p‖2
�2

ε2

and (10) follows from the polynomial decay of the mean
squared error E‖p̂X − p‖2. Thus, from (23), for p̂Z = p̂∗ as in
(16),

P
(‖p − p̂Z‖�2 > ε

)
≤ P

(
‖p̂X − p‖�2 ≥ ε

16

)
+ (supx p(x))k exp (−3αε/(16�))

P(‖p − p̂k‖�2 ≤ ε/2)

= (supx p(x))k exp (−3αε/(16�))

P(‖p − p̂k‖�2 ≤ ε/2)
+ O

(
1

nc

)
.

We need to compute the small ball probability. Recall that p̂k

denote the estimator based on a sample of size k. By Parseval’s
relation,∫

(p(x) − p̂k(x))
2 dx =

mk∑
j=1

(β̂j − βj)
2 +

∞∑
mk+1

β2
j

≤
mk∑
j=1

(β̂j − βj)
2 + ck−2γ /(2γ+1).

Let Ui = (ψ1(Xi)−β1, . . . ,ψmk(Xi)−βmk)
T and Yi = �

−1/2
k Ui

where �k is the covariance matrix of Ui. Hence, Yi has mean 0
and identity covariance matrix. Let λk denote the largest eigen-
value of �k. From Lemma 9.3 below, λ = lim supk→∞ λk < ∞.
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Let Q = ∑mk
j=1(β̂j − βj)

2 and let S = k−1/2 ∑k
i=1 Yi. Then, for

all large k, and any δ > 0,

P(Q ≤ δ2) = P(ST�kS ≤ kδ2)

≥ P

(
ST S ≤ kδ2

λk

)
≥ P

(
STS ≤ kδ2

2λ

)
.

From theorem 1.1 of Bentkus (2003) we have that

sup
c

∣∣P(STS ≤ c) − P
(
χ2

mk
≤ c

)∣∣ = O

(√
m3

k

k

)

= O
(
k−(γ−1)/(2γ+1)

)
.

Next we use the fact (see, e.g., Rohde and Duembgen 2008)
that P(χ2

m ≤ m + a) ≥ 1 − e−a2/(4(m+a)). Let k = √
n, εn =

c1n−γ /(2γ+1) where c1 ≥ 4(2λ + 1)(C2 + 1)

a = k(εn/4 − C2k−2γ /(2γ+1))

2λ
− mk

≥ (C2 + 1)n1/2(2γ+1) − mk ≥ C2mk,

since mk = k1/(2γ+1) = n1/2(2γ+1). We see that for all large k

P

(
‖p − p̂k‖�2 ≤

√
εn

2

)

= P

(∫
(p(x) − p̂k(x))

2 dx ≤ εn

4

)

≥ P

( mk∑
j=1

(β̂j − βj)
2 ≤ εn

4
− C2k−2γ /(2γ+1)

)

= P

(
χ2

mk
≤ k(εn/4 − C2k−2γ /(2γ+1))

2λ

)

− O
(
k−(γ−1)/(2γ+1)

)
≥ 1 − exp

( −a2

4(mk + a)

)
− O(k−(γ−1)/(2γ+1))

≥ 1

2
− O

(
k−(γ−1)/(2γ+1)

)
.

Hence

P
(‖p − p̂Z‖�2 >

√
εn

)
≤ P

(
‖p̂X − p‖�2 ≥

√
εn

16

)

+ (supx p(x))k exp (−3α
√

εn/(16�))

P(‖p − p̂k‖�2 ≤ √
εn/2)

= (supx p(x))k exp (−3α
√

εn/(16�))

P(‖p − p̂k‖�2 ≤ √
εn/2)

+ O

(
1

nc

)

≤ (supx p(x))k exp (−3αn
√

εn/(32c2
0mn))

P(‖p − p̂k‖�2 ≤ √
εn/2)

+ O

(
1

nc

)

and so for γ > 1,

P

(∫
(p̂Z − p)2 ≤ εn

)

≤ c2 exp
(

k log sup
x

p(x)
)

exp

( −3
√

c1αn

n1/(2γ+1)nγ /2(2γ+1)

)

= c2 exp
(
n1/2 log sup

x
p(x) − αc3n3γ /(2(2γ+1))

)
= c2 exp

(−αc4n3γ /(2(2γ+1))
) → 0,

as n → ∞ since 3γ
2(2γ+1)

> 1/2, where c2, c3, c4 are some con-
stants. Hence the theorem holds.

Lemma 9.3. Let λ = lim supk→∞ λk. Then λ < ∞.

Proof. Recall that the orthonormal basis is ψ0,ψ1, . . . ,

where ψ0 = 1 and ψj(x) = √
2 cos(π jx). Also p(x) = 1 +∑∞

j=1 βjψj(x) and
∑

j β
2
j j2γ < ∞. Note that

∑∞
j=1 |βj|k =

O(1) for k ≥ 1; see Efromovich (1999). Note that �k is
the covariance matrix of β̂ times n. We will use the stan-
dard identities cos2(u) = (1 + cos(2u))/2 and cos(u) cos(v) =
cos(u−v)+cos(u+v)

2 . It follows that ψ2
j (x) = 1 + 1√

2
ψ2j(x) and

ψj(x)ψk(x) = ψj−k(x)+ψj+k(x)√
2

. Now E(β̂j) = βj. And

n Var(β̂j) = Var(ψj(X)) =
∫

ψ2
j (x)p(x)dx − β2

j .

Now
∫

ψ2
j (x)p(x)dx = ∫

ψ2
j (x)(1 + ∑∞

�=1 β�ψ�(x))dx = 1 +∑∞
�=1 β�

∫
ψ�(x)ψ2

j (x)dx = 1 + 1
2

∑∞
�=1 β�

∫
ψ�(x)(1 +

ψ2j(x)√
2

)dx = 1 + β2j√
2
. Thus, �jj = 1 + β2j√

2
− β2

j . Now consider
j �= k. Then

E(ψj(X)ψk(X))

=
∫

ψj(x)ψk(x)p(x)dx

=
∑

�

β�

∫
ψj(x)ψk(x)dx

= βj

∫
ψ2

j (x)ψk(x)dx + βk

∫
ψ2

k (x)ψj(x)dx

+
∑
��=j,k

β�

∫
ψj(x)ψk(x)ψ�(x)dx

= βj√
2

∫
ψ2j(x)ψk(x)dx + βk√

2

∫
ψ2k(x)ψj(x)dx

+ 1√
2

∑
��=j,k

β�

∫
(ψj−k(x) + ψj+k(x))ψ�(x)dx

= βj√
2

I(2j = k) + βk√
2

I(2k = j)

+ β�√
2

I(� = |j − k| & j �= 2k) + β�√
2

I(� = j + k)

= βk√
2

I(2k = j) + β|j−k|√
2

I(j �= 2k) + βj+k√
2

= β|j−k|√
2

+ βj+k√
2

,

where we used the fact that ψ−j(x) = ψj(x) for all j = 1,2, . . .

and
∫

ψj(x)dx = 0 for all j > 0. So, we have for all j ∈
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{1, . . . ,p},
p∑

k=1

|�jk| = |�jj| +
∑
j�=k

∣∣∣∣β|j−k|√
2

+ βj+k√
2

− βjβk

∣∣∣∣
≤ 1 +

∣∣∣∣ β2j√
2

∣∣∣∣ + |βj|
∑

k

|βk| +
∑
j�=k

∣∣∣∣β|j−k|√
2

∣∣∣∣ +
∣∣∣∣βj+k√

2

∣∣∣∣
≤ 1 +

∣∣∣∣ β2j√
2

∣∣∣∣ + (|βj| +
√

2)

∞∑
k=1

|βk|

= O(1).

Hence, lim supk→∞ λmax(�k) ≤ ‖�k‖∞ = O(1) and the lemma
holds.

9.12 Proof of Theorem 6.3

The proof is similar to the proof of Theorem 4.4, so we pro-
vide a short outline. In particular, the effect of truncation can be
shown to be negligible as in the proof of Theorem 4.4. We have
p− p̂Z = p− q̂+ q̂− p̂Z = p− q̂+OP(m/k) and the latter term is
negligible for k ≥ n. Now p− q̂ = p− p̂+ p̂− q̂. The term p− p̂
is the usual error term and contributes O(n−2γ /(2γ+1)) to the
risk. For the second term,

∫
(p̂ − q̂)2 = ∑m

j=1 ν2
j = OP(m/n) =

OP(n−2γ /(2γ+1)).
[Received November 2008. Revised October 2009.]
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Csörgő, M., and Révész, P. (1975), “A New Method to Prove Strassen Type
Laws of Invariance Principle. II,” Probability Theory and Related Fields,
31, 261–269. [385]

Dinur, I., and Nissim, K. (2003), “Revealing Information While Preserving Pri-
vacy,” in Proceedings of the 22nd ACM SIGMOD–SIGACT–SIGART Sym-
posium on Principles of Database Systems, New York: Association for
Computing Machinery, pp. 202–210. [375]

Duncan, G., and Lambert, D. (1986), “Disclosure-Limited Data Dissemina-
tion,” Journal of the American Statistical Association, 81, 10–28. [375]

(1989), “The Risk of Disclosure for Microdata,” Journal of Business
& Economic Statistics, 7, 207–217. [375]

Duncan, G., and Pearson, R. (1991), “Enhancing Access to Microdata While
Protecting Confidentiality: Prospects for the Future,” Statistical Science, 6,
219–232. [375]

Dwork, C. (2006), “Differential Privacy,” in The 33rd International Colloquium
on Automata, Languages and Programming, New York: Springer, pp. 1–12.
[375,377]

Dwork, C., and Lei, J. (2009), “Differential Privacy and Robust Statistics,” in
Proceedings of the 41st ACM Symposium on Theory of Computing, New
York: Association for Computing Machinery, pp. 371–380. [375]

Dwork, C., and Nissim, K. (2004), “Privacy-Preserving Datamining on Verti-
cally Partitioned Databases,” in Proceedings of the 24th Annual Interna-
tional Cryptology Conference—CRYPTO, New York: Springer, pp. 528–
544. [375]

Dwork, C., McSherry, F., Nissim, K., and Smith, A. (2006), “Calibrating Noise
to Sensitivity in Private Data Analysis,” in Proceedings of the 3rd Theory
of Cryptography Conference, New York: Springer, pp. 265–284. [375,377,
379]

Dwork, C., McSherry, F., and Talwar, K. (2007), “The Price of Privacy and
the Limits of LP Decoding,” in Proceedings of the 39th Annual ACM Sym-
posium on Theory of Computing, New York: Association for Computing
Machinery, pp. 85–94. [375]

Dwork, C., Naor, M., Reingold, O., Rothblum, G., and Vadhan, S. (2009), “On
the Complexity of Differentially Private Data Release,” in Proceedings of
the 41st ACM Symposium on Theory of Computing, New York: Association
for Computing Machinery, pp. 381–390. [375]

Efromovich, S. (1999), Nonparametric Curve Estimation: Methods, Theory and
Applications, New York: Springer-Verlag. [380,387]

Evfimievski, A., Srikant, R., Agrawal, R., and Gehrke, J. (2004), “Privacy Pre-
serving Mining of Association Rules,” Information Systems, 29, 343–364.
[375]

Feigenbaum, J., Ishai, Y., Malkin, T., Nissim, K., Strauss, M. J., and Wright,
R. N. (2006), “Secure Multiparty Computation of Approximations,” ACM
Transactions on Algorithms, 2, 435–472. [375]

Feldman, D., Fiat, A., Kaplan, H., and Nissim, K. (2009), “Private Coresets,”
in Proceedings of the 41st ACM Symposium on Theory of Computing, New
York: Association for Computing Machinery, pp. 361–370. [375]

Fienberg, S., and McIntyre, J. (2004), “Data Swapping: Variations on a Theme
by Dalenius and Reiss,” Privacy in Statistical Databases, 3050, 14–29.
[375]

Fienberg, S. E., Karr, A. F., Nardi, Y., and Slavkovic, A. (2007), “Secure Lo-
gistic Regression With Distributed Databases,” in Bulletin of the ISI, New
York: Springer. [375]

Fienberg, S. E., Makov, U. E., and Steele, R. J. (1998), “Disclosure Limitation
Using Perturbation and Related Methods for Categorial Data” (with discus-
sion), Journal of Official Statistics, 14, 485–511. [375]

Ganta, S., Kasiviswanathan, S., and Smith, A. (2008), “Composition Attacks
and Auxiliary Information in Data Privacy,” in Proceedings of 14th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, New York: Association for Computing Machinery, pp. 265–273.
[377]

Ghosh, A., Roughgarden, T., and Sundararajan, M. (2009), “Universally
Utility-Maximizing Privacy Mechanisms,” in Proceedings of the 41st ACM
Symposium on Theory of Computing, New York: Association for Comput-
ing Machinery, pp. 351–360. [375]

Hall, P., and Murison, R. D. (1993), “Correcting the Negativity of High-Order
Kernel Density Estimators,” Journal of Multivariate Analysis, 47, 103–122.
[380]

Hwang, J. (1986), “Multiplicative Errors-in-Variables Models With Applica-
tions to Recent Data Released by the United-States-Department-of-Energy,”
Journal of the American Statistical Association, 81, 680–688. [375]

Kasiviswanathan, S., Lee, H., Nissim, K., Raskhodnikova, S., and Smith, A.
(2008), “What Can We Learn Privately?” in Proceedings of the 49th An-
nual IEEE Symposium on Foundations of Computer Science, New York:
Springer, pp. 531–540. [375]

Kim, J. J., and Winkler, W. E. (2003), “Multiplicative Noise for Masking Con-
tinuous Data,” technical report, Statistical Research Division, U.S. Bureau
of the Census, Washington, DC. [375]

Li, W., and Shao, Q.-M. (2001), “Gaussian Processes: Inequalities, Small Ball
Probabilities and Applications,” in Stochastic Processes: Theory and Meth-
ods. Handbook of Statistics, Vol. 19, eds. C. Rao and D. Shanbhag, Amster-
dam, The Netherlands: Elsevier, pp. 533–598. [385]

Li, N., Li, T., and Venkatasubramanian, S. (2007), “t-Closeness: Privacy Be-
yond k-Anonymity and l-Diversity,” in Proceedings of the 23rd Interna-
tional Conference on Data Engineering, Istanbul, Turkey, pp. 106–115.
[375]

Machanavajjhala, A., Gehrke, J., Kifer, D., and Venkitasubramaniam, M.
(2006), “�-Diversity: Privacy Beyond Kappa-Anonymity,” in Proceedings
of the 22nd International Conference on Data Engineering, New York: As-
sociation for Computing Machinery, p. 24. [375]

Machanavajjhala, A., Kifer, D., Abowd, J., Gehrke, J., and Vilhuber, L. (2008),
“Privacy: Theory Meets Practice on the Map,” in Proceedings of the 24th
International Conference on Data Engineering, Istanbul, Turkey, pp. 277–
286. [375,379]

McSherry, F., and Talwar, K. (2007), “Mechanism Design via Differential Pri-
vacy,” in Proceedings of the 48th Annual IEEE Symposium on Foundations
of Computer Science, New York: Springer, pp. 94–103. [375-377]

Nissim, K., Raskhodnikova, S., and Smith, A. (2007), “Smooth Sensitivity and
Sampling in Private Data Analysis,” in Proceedings of the 39th Annual ACM
Symposium on Theory of Computing, New York: Association for Comput-
ing Machinery, pp. 75–84. [375]



Wasserman and Zhou: A Statistical Framework for Differential Privacy 389

Pinkas, B. (2002), “Cryptographic Techniques for Privacy-Preserving Data
Mining,” ACM SIGKDD Explorations Newsletter, 4, 12–19. [375]

Rastogi, V., Hay, M., Miklau, G., and Suciu, D. (2009), “Relationship Privacy:
Output Perturbation for Queries With Joins,” in Proceedings of the 28th
ACM SIGMOD–SIGACT–SIGART Symposium on Principles of Database
Systems, PODS 2009, New York: Association for Computing Machinery,
pp. 107–116. [377]

Reiter, J. (2005), “Estimating Risks of Identification Disclosure for Microdata,”
Journal of the American Statistical Association, 100, 1103–1113. [375]

Rohde, A., and Duembgen, L. (2008), “Confidence Sets for the Optimal Ap-
proximating Model—Bridging a Gap Between Adaptive Point Estimation
and Confidence Regions,” available at arXiv:0802.3276v2 [math.ST]. [387]

Sanil, A. P., Karr, A., Lin, X., and Reiter, J. P. (2004), “Privacy Preserv-
ing Regression Modelling via Distributed Computation,” in Proceedings of
10th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, New York: Association for Computing Machinery, pp. 677–
682. [375]

Scott, D. W. (1992), Multivariate Density Estimation: Theory, Practice, and
Visualization, New York: Wiley. [378]

Smith, A. (2008), “Efficient, Differentially Private Point Estimators,” available
at ArXiv:0809.4794v1. [375]

Sweeney, L. (2002), “k-Anonymity: A Model for Protecting Privacy,” Inter-
national Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,
10, 557–579. [375]

Ting, D., Fienberg, S. E., and Trottini, M. (2008), “Random Orthogonal Ma-
trix Masking Methodology for Microdata Release,” International Journal
of Information and Computer Security, 2, 86–105. [375]

Warner, S. (1965), “Randomized Response: A Survey Technique for Eliminat-
ing Evasive Answer Bias,” Journal of the American Statistical Association,
60, 63–69. [375]

http://arxiv.org/abs/0802.3276v2
http://arxiv.org/abs/0809.4794v1

	A Statistical Framework for Differential Privacy
	Introduction
	Summary of Results

	Differential Privacy
	Informative Mechanisms
	Sampling From a Histogram
	Sampling From a Smoothed Histogram
	Sampling From a Perturbed Histogram

	Exponential Mechanism
	The KS Distance
	The Mean

	Orthogonal Series Density Estimation
	Example
	Conclusion
	Proofs
	Proof of Theorem 2.4
	Proof of Lemma 2.6
	Proof of Theorem 3.2
	Proof of Theorem 4.1
	Proof of Theorem 4.2
	Proof of Theorem 4.3
	Proof of Theorem 4.4
	Proof of Theorem 5.3
	Proof of Lemma 5.1
	Proof of Theorem 5.4
	Proofs of Lemma 6.1 and Theorem 6.2
	Proof of Lemma 6.1
	Proof of Theorem 6.2

	Proof of Theorem 6.3

	References


