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Motivation: Scalability and privacy



Results
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• Bounds on number of projections for accurate estimation

• Analysis of risk consistency

• Upper bounds on information rate of compressed data



Time

52.5 minutes = one µ-century
Goal for this talk: 1

2 µ-century



Linear Regression




Y




n

=




X




n×p




β




p

+




ǫ




n

Without compression

• The design matrix X is n × p, where p grows with n

• The response vector Y = Xβ + ǫ is in R
n. Lasso solves:

(P0) min
1

2n
‖Y − Xβ‖

2
2 + λn ‖β‖1



Compressed Linear Regression
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Let Φm×n be a (hidden) random Gaussian matrix. Observe

• compressed design matrix X = ΦX in R
m×p and

• compressed response Y = ΦY = ΦXβ + Φǫ in R
m.

(P1) min
1

2m
‖Y − Xβ‖

2
2 + λm ‖β‖1

• Complication: elements in noise vector E = Φǫ not i.i.d.



Sparsistency: Model selection consistency

Given the set of optimal solutions Ωm to (P1)

Ωm = arg min
β∈Rp

1

2m
‖Y − Xβ‖

2
2 + λm ‖β‖1

Definition: A set of estimators Ωm is sparsistent if

P(∃βm ∈ Ωm, s.t. supp(βm) = supp(β)) → 1 as m → ∞.

Stronger condition: sign consistency

P (∃βm ∈ Ωm s.t. sign(βm) = sign(β)) → 1 as m → ∞



Sparsistency: S-Incoherence

Sign consistency for compressed sparse linear regression is possible
when the design matrix X is “sufficiently nice”

Let β be the true model, S = supp(β), and Sc = {1, .., p}\S

S-Incoherence:
∥∥∥∥

1

n
X T

ScXS

∥∥∥∥
∞

+

∥∥∥∥
1

n
X T

S XS − I|S|

∥∥∥∥
∞

≤ 1 − η, some η ∈ (0, 1]



Sparsistency Result

Theorem. Suppose that before compression, we have

Y = Xβ∗ + ǫ, where ǫ ∼ N(0, σ2In),

• Xn×p is S-incoherent, where S = supp(β∗), ρm = mini∈S |β∗
i |, and

• columns ‖Xj‖
2
2 = n, ∀j ∈ {1, ..., p}.

Let s = |S| and Φm×n consist of i.i.d. Φij ∼ N(0, 1
n ). Suppose that

(
16C1s

2

η2
+

4sC2

η

)
log 2pn2(s + 1) ≤ m ≤

√
n

16 log n

with C1 ≈ 2.5044 and C1 ≈ 7.6885, and λm → 0 satisfies

mη2λ2
m

log(p − s)
→ ∞, and

1

ρm

{√
log s

m
+ λm

∥∥∥∥(
1

n
XT

S XS)−1

∥∥∥∥
∞

}
→ 0.

Then the compressed Lasso is sparsistent.



Sparsistency: Ingredients

By excluding the bad events, we can consider Xm×p as a fixed matrix

• Similar conditions imposed on deterministic design matrix X for
(P0) in Wainwright (2006), and Zhao and Yu (2007).

• The S-Incoherence condition is stronger.

• But we are in (P1), where E = Φǫ, unlike ǫ in (P0), is not i.i.d.

Concentration Lemma. E(ΦΦT ) = I; with high probability, each entry

of ΦΦT − Im×m is at most O

(√
log n

n

)
.

• Important in adapting Wainwright’s proof in the (P0) setting for a
fixed design to the compressed setting of (P1).



Cost of Compression

n = Ω(s log p) (uncompressed)

m = Ω(s2 log pn) (compressed)



Compressed Lasso Sparsistency
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Risk Consistency

Roughly speaking, persistence means that the procedure predicts well.
Given a sequence of sets of estimators Bn, the sequence of estimators
β̂n ∈ Bn is called persistent (Greenshtein and Ritov, 2004) if

R(β̂n) − inf
β∈Bn

R(β)
P
→ 0,

where R(β) = E(Y − XT β)2 is the prediction risk of a new pair (X, Y ).

• Linear model not assumed correct

• Answers the asymptotic question: How large may the set Bn be, so
that it is still possible to empirically select a predictor whose risk is
close to that of the best predictor in the set?

• Lasso is persistent when the order of magnitude for ℓ1 radius Ln of
Bn is restricted to o

(
(n/ log n)1/4

)
.



Compressed Lasso is Persistent

Theorem. Suppose p = O(enc

), c < 1
2 and log2(np) ≤ m ≤ n. Let

Ln,m = o

(
m

log(npn)

)1/4

.

Then the sequence of compressed lasso estimators

β̂n,m = arg min
‖β‖1≤Ln,m

‖Y − Xβ‖2
2

is persistent with respect to Bn,m = {β : ‖β‖1 ≤ Ln,m}:

R(β̂n,m) − inf
‖β‖1≤Ln,m

R(β)
P
−→ 0, as n → ∞.



Cost of Compression

For simplicity take Ln = O(1), Ln,m = O(1), p = nc and m = Ω(log2 n).
Then

R(β̂n) − inf
‖β‖1≤Ln

R(β) = OP

(√
log n

n

)

R(β̂n,m) − inf
‖β‖1≤Ln,m

R(β) = OP

(√
1

log n

)

Ratio of compressed to uncompressed excess risks is O(
√

m/n).



Compressed Lasso Persistence
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Privacy Analysis

General “matrix masking” takes the form X = AXB + C

• Represents many possible schemes: subsampling, adding noise...

• Limited analysis of such schemes in privacy literature.



Multiple Wireless Antenna Model

Our setup corresponds to standard model for multiple antenna wireless
communication (Marzetta and Hochwald, 1999).

• Have n transmitter and m receiver antennas over p time periods

• Allows model X̃ = ΦX + ∆

• When capacity of channel decays to zero, little information is
conveyed about original data X from the compressed data X



Privacy Analysis

Theorem. If E(X2
j ) ≤ P , the maximum information rate satisfies

rn,m = sup
p(X)

I(X;X )

np
≤

m

2n
log (2πeP )

• With m = O(log np) this gives the upper bound

rn,m = O

(
log np

2n

)
→ 0

• If compression matrix Φ is “leaked,” compressed sensing may
allow reconstruction of sparse variables.

• Average case analysis.



Summary of Tradeoffs

• Variable selection: extra factor of s in sample complexity

• Excess risk rates: O(
√

m/n) uncompressed to compressed

• Information per symbol: O(m/n)



Summary

• Compressing the design matrix across rows has little impact on
effectiveness of sparse regression

• Expect similar results hold for nonparametric regression

• Privacy guarantees are information-theoretic, average case.

For all the details, please see S. Zhou, J. Lafferty and L. Wasserman,
“Compressed and privacy-sensitive sparse regression,” IEEE Trans.
Info. Theory, Vol 55, No. 2, 2009


