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Motivation: Scalability and privacy
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e Bounds on number of projections for accurate estimation
e Analysis of risk consistency

e Upper bounds on information rate of compressed data



Time

52.5 minutes = one pu-century
Goal for this talk: £ p-century



Linear Regression

Without compression
e The design matrix X is n x p, where p grows with n

e The response vector Y = X3 + e isin R™. Lasso solves:

o1 2
(PO)  min [V — XBI3+ A, 81,



Compressed Linear Regression

- dp
Let ®,,«, be a (hidden) random Gaussian matrix. Observe
e compressed design matrix X = &X in R™*P and

e compressed response YV = Y = & X3 + e in R™,
.1 2
(P1)  min o— | = X85 + A 151,

e Complication: elements in noise vector ¢ = $¢ not 1.1.d.



Sparsistency. Model selection consistency

Given the set of optimal solutions €2,,, to (P1)

Q,, —argﬁm%Rn—Hy XﬁH2+)\mH5H1

Definition: A set of estimators (2,,, is sparsistent if
P(36,, € Qum, s.t. supp(B,m) = supp(B)) — 1 as m — oc.

Stronger condition: sign consistency

P (38, € Qu s.t. sign(B,,) = sign(F)) — 1 as m — oo



Sparsistency:. S-Incoherence

Sign consistency for compressed sparse linear regression is possible
when the design matrix X is “sufficiently nice”

Let 5 be the true model, S = supp(8), and S¢ = {1,...p}\S

S-Incoherence:

<1l-—mn, somene(0,1]

o

1
“xix
n S S

1
+Hﬁxgxy—qﬂ

o



Sparsistency Result

Theorem. Suppose that before compression, we have
Y = X3* +¢€ where e~ N(0,0°1,),
e X, x, IS S-incoherent, where S = supp(8*), pm, = min,eg |57|, and
e columns HXj||§ =n,Vj €{l,...,p}.

Let s = |S| and ®,, ., consist of i.i.d. ®;; ~ N(0, +). Suppose that
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Then the compressed Lasso is sparsistent.



Sparsistency: Ingredients

By excluding the bad events, we can consider &, «, as a fixed matrix

e Similar conditions imposed on deterministic design matrix X for
(PO) in Wainwright (2006), and Zhao and Yu (2007).

e The S-Incoherence condition is stronger.

e But we are in (P1), where ¢ = ®¢, unlike € in (PO), is not i.i.d.

Concentration Lemma. E(®®1) = Z; with high probability, each entry

of &7 — 7, ... is at most O (\/10%)

e Important in adapting Wainwright’s proof in the (PO) setting for a
fixed design to the compressed setting of (P1).



Cost of Compression

n = Q(slogp) (uncompressed)

m = Q(s*logpn)  (compressed)



Compressed Lasso Sparsistency

o
- 2 4‘76@%%’/_f
5512 /U
o0 |
o ] | /
2 o ’
S S
(@]
>
7]
2 < —e— Uncompressed
9 o f=20
- —— =40
—-— =120
(q\}
N
o |
o T T T T
200 300 400 500

Compressed dimension m

Probability of correctly recovering true sparsity pattern, p = 126, 256, 512.



Risk Consistency

Roughly speaking, persistence means that the procedure predicts well.
Given a sequence of sets of estimators B,,, the sequence of estimators
B, € B, Is called persistent (Greenshtein and Ritov, 2004) if

R(Ba) — jnf R(5) =0,

where R(3) = E(Y — X1 3)? is the prediction risk of a new pair (X,Y).
e Linear model not assumed correct

e Answers the asymptotic question: How large may the set B,, be, so
that it is still possible to empirically select a predictor whose risk is
close to that of the best predictor in the set?

e Lasso is persistent when the order of magnitude for ¢, radius L,, of
B,, is restricted to o ((n/logn)/%).



Compressed Lasso Is Persistent

Theorem. Suppose p = O(e™"), ¢ < % and log”(np) < m < n. Let

- 1/4
Lym=o0 ( ) :
log(npy)

Then the sequence of compressed lasso estimators

Brm = argmin || ¥ — X3
||IB||1SL’I’L,?’)”L

IS persistent with respectto B, ,, = {0 : [|B]1 < Lnm}:
= P
RO, m) — inf R — 0, asn — oo.
(/8 , ) ||B||1§Ln,m (/8)



Cost of Compression

For simplicity take L,, = O(1), Ly, = O(1), p = n¢ and m = Q(log” n).
Then
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Ratio of compressed to uncompressed excess risks is O(1/m/n).

R(B,) — inf R(B) = op< 10g'”’>




Compressed Lasso Persistence
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Each point corresponds to the mean empirical risk, over 100 trials. For
each trial, randomly draw X, x,, with z; ~ N(0,7(0.1)), with

T(p)iy = pl—L.



Privacy Analysis

General “matrix masking” takes the form X = AXB + C
e Represents many possible schemes: subsampling, adding noise...

e Limited analysis of such schemes in privacy literature.



Multiple Wireless Antenna Model

Our setup corresponds to standard model for multiple antenna wireless
communication (Marzetta and Hochwald, 1999).

e Have n transmitter and m receiver antennas over p time periods
e Allows model X = ®X + A

e When capacity of channel decays to zero, little information is
conveyed about original data X from the compressed data X



Privacy Analysis

Theorem. If E(X?) < P, the maximum information rate satisfies

I(X: X
Frm = SUP (X5 ) < log (2weP)
p(X) NP 2n

e With m = O(lognp) this gives the upper bound

|
’ 2n

e |f compression matrix @ is “leaked,” compressed sensing may
allow reconstruction of sparse variables.

e Average case analysis.



Summary of Tradeoffs

e Variable selection: extra factor of s in sample complexity
e Excessrisk rates: O(1/m/n) uncompressed to compressed

e Information per symbol: O(m/n)



Summary

e Compressing the design matrix across rows has little impact on
effectiveness of sparse regression

e EXxpect similar results hold for nonparametric regression

e Privacy guarantees are information-theoretic, average case.

For all the detalls, please see S. Zhou, J. Lafferty and L. Wasserman,
“Compressed and privacy-sensitive sparse regression,” IEEE Trans.
Info. Theory, Vol 55, No. 2, 2009



