An brief tour of Differential Privacy

Your guide:

Avrim Blum

Computer Science Dept

Itinerary

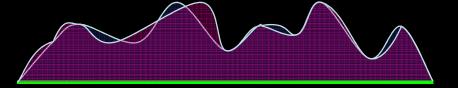
- Stop 1: A motivating example. Why seemingly similar notions from crypto aren't sufficient.
- Stop 2: Definition of differential privacy and a basic mechanism for preserving it.
- Stop 3: Privacy/utility tradeoffs: ask a silly (sensitive) question, get a silly answer.
- Stop 4: Other kinds of mechanisms, releasing sanitized databases, more privacy/utility tradeoffs, and discussion.

A preliminary story

- A classic cool result from theoretical crypto:
 - Say you want to figure out the average salary of people in the room, without revealing anything about your own salary other than what is inherent in the answer.
- Turns out you can actually do this. In fact, any function at all. "secure multiparty computation".
 - It's really cool. Want to try?
- Anyone have to go to the bathroom?
 - What happens if we do it again?

Differential Privacy [Dwork et al.]

- · "Lets you go to the bathroom in peace"
 - What we want is a protocol that has a probability distribution over outputs

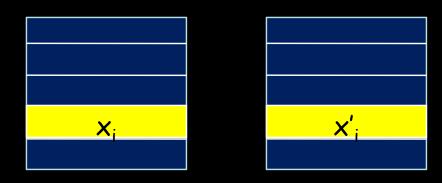


such that if person i changed their input from x_i to any other allowed x_i , the relative probabilities of any output do not change by much.

- So, for instance, can pretend your input was any other allowed value you want.
- Can view as model of "plausible deniability".
 - Even if no bad intent, who knows what prior info people have?

It's a property of a protocol A which you run on some dataset X producing some output A(X).

• A is ϵ -differentially private if for any two neighbor datasets X, X' (differ in just one element $x_i \rightarrow x_i$ '),



for all outcomes v,

$$e^{-\epsilon} \leq \Pr(A(X)=v)/\Pr(A(X')=v) \leq e^{\epsilon}$$



It's a property of a protocol A which you run on some dataset X producing some output A(X).

• A is ϵ -differentially private if for any two neighbor datasets X, X' (differ in just one element $x_i \to x_i$ '),

View as model of plausible deniability

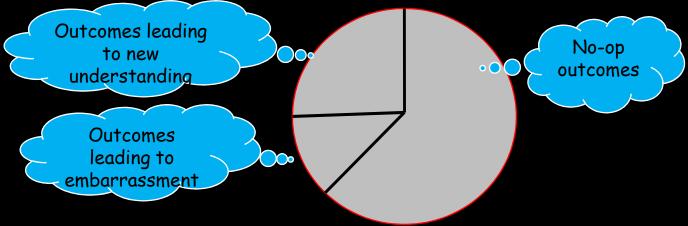
(pretend after the fact that my input was really x_i)

for all outcomes v,

$$e^{-\epsilon} \leq \Pr(A(X)=v)/\Pr(A(X')=v) \leq e^{\epsilon}$$

It's a property of a protocol A which you run on some dataset X producing some output A(X).

• A is ϵ -differentially private if for any two neighbor datasets X, X' (differ in just one element $x_i \to x_i$ '),



for all outcomes v,

$$e^{-\epsilon} \leq \Pr(A(X)=v)/\Pr(A(X')=v) \leq e^{\epsilon}$$

It's a property of a protocol A which you run on some dataset X producing some output A(X).

• A is ϵ -differentially private if for any two neighbor datasets X, X' (differ in just one element $x_i \to x_i$ '),

What if you participate in two protocols A and B?

$$e^{-2\epsilon} \leq \Pr(A(X)=v \& B(X)=w)/\Pr(A(X')=v \& B(X')=w) \leq e^{2\epsilon}$$

for all outcomes v,

$$e^{-\epsilon} \leq \Pr(A(X)=v)/\Pr(A(X')=v) \leq e^{\epsilon}$$

So, combination is 2ϵ -DP.

It's a property of a protocol A which you run on some dataset X producing some output A(X).

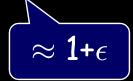
• A is ϵ -differentially private if for any two neighbor datasets X, X' (differ in just one element $x_i \to x_i$ '),

OK, great. How can we achieve it? What kind of ϵ can we get with reasonable utility?

Silly algorithm: A(X)=0 no matter what. Or A(X)=unif[0,b]

for all outcomes v,

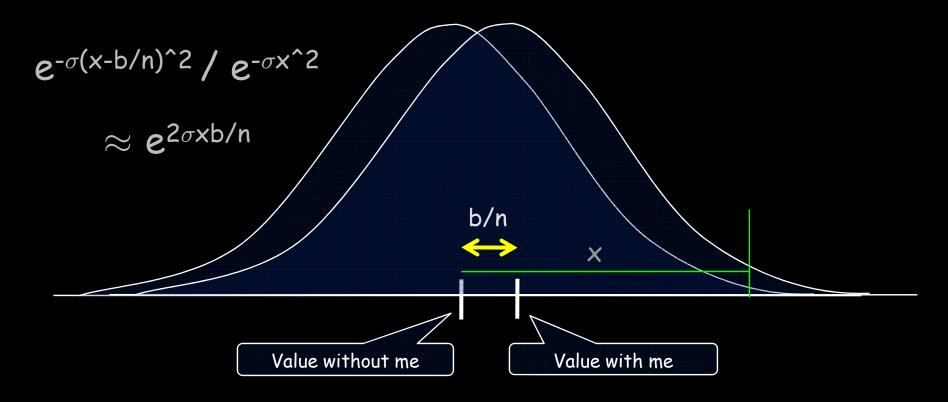
$$e^{-\epsilon} \leq \Pr(A(X)=v)/\Pr(A(X')=v) \leq e^{\epsilon}$$



Differential Privacy via output perturbation

Say have n inputs in range [0,b]. Want to release average while preserving privacy.

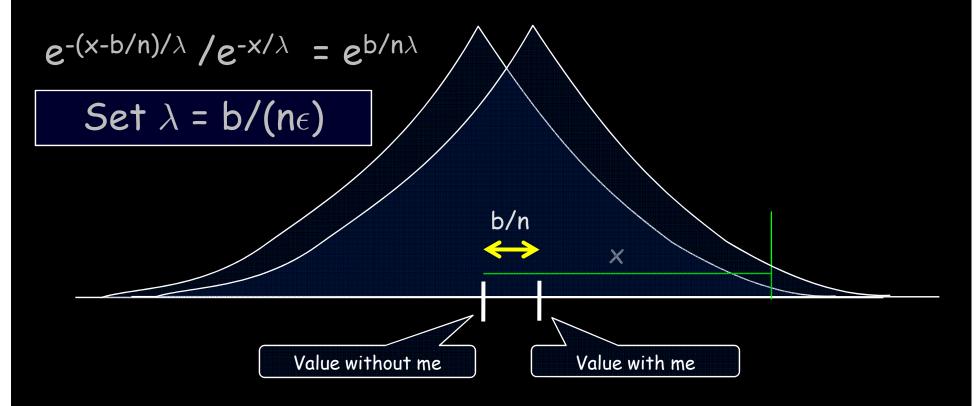
- Natural idea: take output and perturb with noise.
- First thought: add Gaussian noise.



Differential Privacy via output perturbation

Say have n inputs in range [0,b]. Want to release average while preserving privacy.

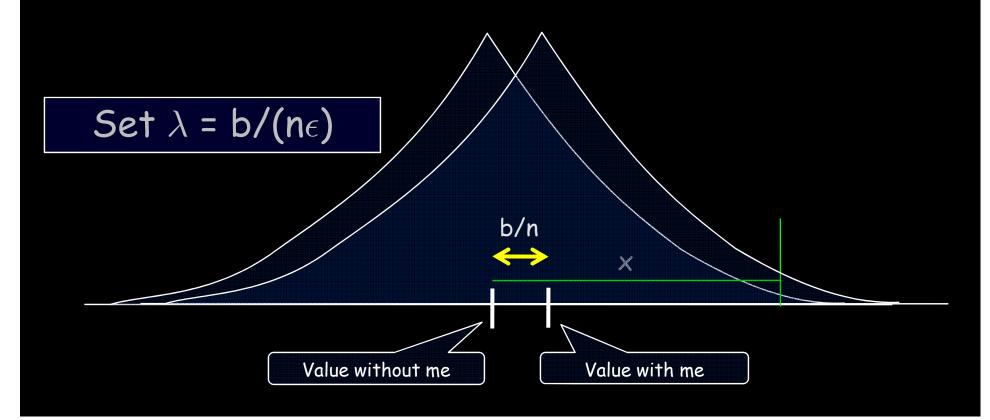
- Natural idea: take output and perturb with noise.
- Better: Laplace (or geometric) distrib $p(x) \propto e^{-|x|/\lambda}$



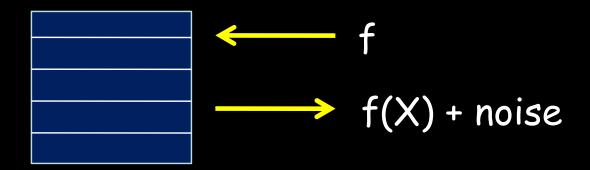
"Laplace mechanism"

So, add noise roughly $1/\epsilon \times$ (effect any individual can have on outcome) gives desired ratio $e^{\epsilon} \approx (1+\epsilon)$.

If want answer within $\pm \alpha b$, need n $\geq 1/(\epsilon \alpha)$. Utility/privacy/database-size tradeoff



Laplace mechanism more generally



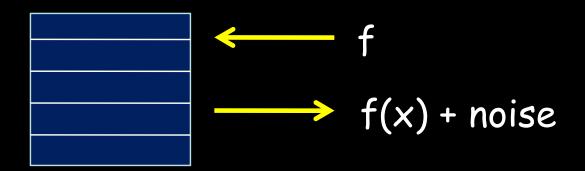
- E.g., f = standard deviation of income
- E.g., f = result of some fancy computation.

```
Global Sensitivity of f:

GS_f = \max_{\text{neighbors } X,X'} |f(X) - f(X')|
```

• Just add noise Lap(GS_f/ϵ).

What can we do with this?



- Interface to ask questions
- Run learning algorithms by breaking down interaction into series of queries.
- But, each answer leaks some privacy:
 - If k questions and want total privacy loss of ϵ , better answer each with ϵ/k .

Remainder of talk

- Local sensitivity / Smooth sensitivity [Nissim-Raskhodnikova-Smith '07]
- Objective perturbation [Chaudhuri-Monteleoni-Sarwate '08]
- Sample and Aggregate [NRS '07]
- Exponential Mechanism [McSherry-Talwar '07]
- What can you say about publishing a sanitized database?

Local Sensitivity

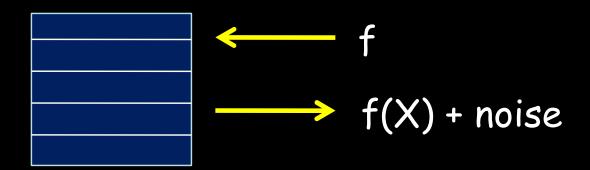
$$f$$

$$f(X) + noise$$

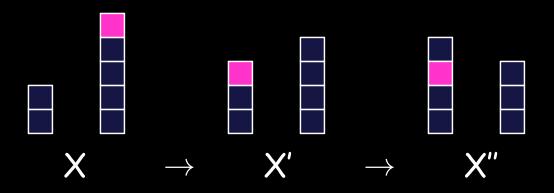
- Consider f = median income
 - On some databases, f could be *very* sensitive. E.g., 3 people at salary=0, 3 people at salary=b, and you.
 - But on many databases, it's not.
 - If f is not very sensitive on the actual input X, does that mean we don't need to add much noise?

$$LS_f(X) = \max_{nbrs X'} |f(X)-f(X')|$$

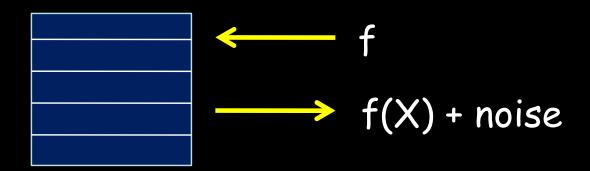
Local Sensitivity



- Consider f = median income
 - If f is not very sensitive on the actual input X, does that mean we don't need to add much noise?
- Be careful: what if sensitivity itself is sensitive?



Smooth Sensitivity



 [NRS07] prove can instead use (roughly) the following smooth bound instead:

$$Max_y [LS_f(Y) \cdot e^{-\epsilon d(X,Y)}]$$

 With Anupam Datta, Jeremiah Blocki, Or Sheffet: looking at how to efficiently compute for various graph quantities in networks.

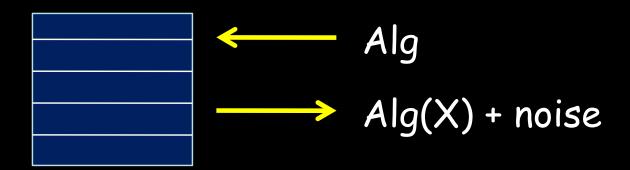
Aside...

$$f$$

$$f(X) + noise$$

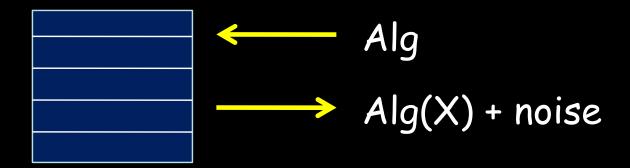
- What should differential privacy mean in a networks context?
 - You can plausibly claim your actual set of neighbors was anything you want
 - Too stringent? How about "subject to being a non-celebrity?"
 - Too risky? Impact of your presence in network on other parts of network structure?

Smooth Sensitivity



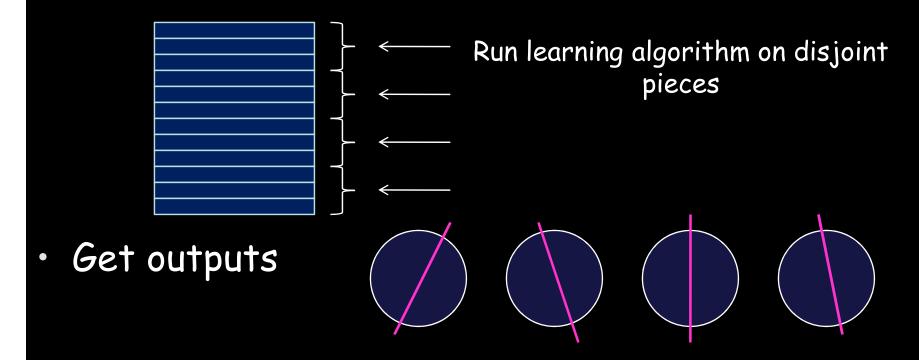
- In principle, could apply sensitivity idea to any learning algorithm (say) that you'd like to run on your data.
- But might be hard to figure out or might give really bad bounds.

Sample-and-aggregate (also [NRS07])



- Say you have some learning algorithm and hard to tell how sensitive it would be to changing a single input.
- Some way to run it privately anyway?

Sample-and-aggregate (also [NRS07])



Then average these outputs.

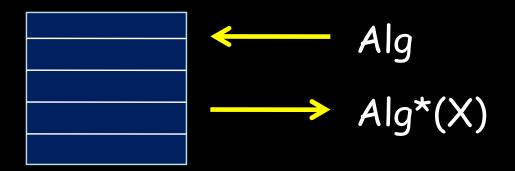
Objective perturbation [CMS08]

$$Alg^* = Alg + noise$$

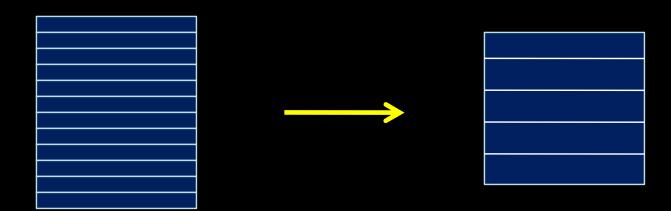
$$Alg^*(X)$$

- Idea: add noise to the <u>objective function</u> used by the learning algorithm.
- Natural for algorithms like SVMs that have regularization term.
- [CMS] show how to do this, if use a smooth loss function.
- Also show nice experimental results.

Exponential Mechanism [MT07]

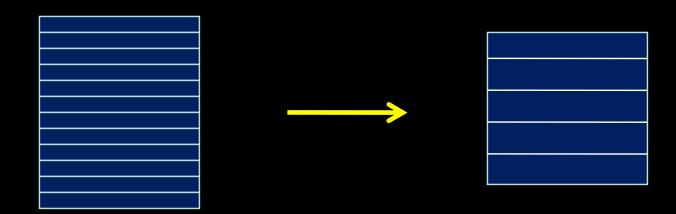


- What about running some generic optimization algorithm?
- [[skip for now]]

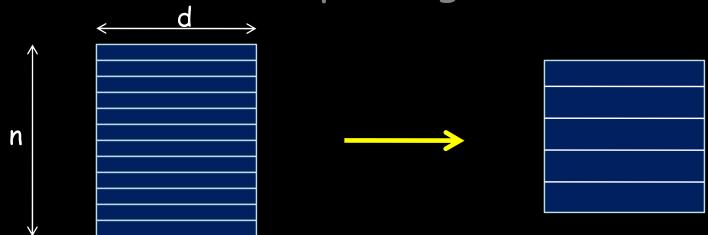


- So far, just question-answering. Each answer leaks some privacy - at some point, have to shut down.
- What about outputting a sanitized database that people could then examine as they wish?

And is related to the original database...



- Could ask a few questions (using previous mechs) and then engineer a database that roughly agrees on these answers.
- But really, we want a database that matches on questions we haven't asked yet.
- Do you need to leak privacy in proportion to number of questions asked?



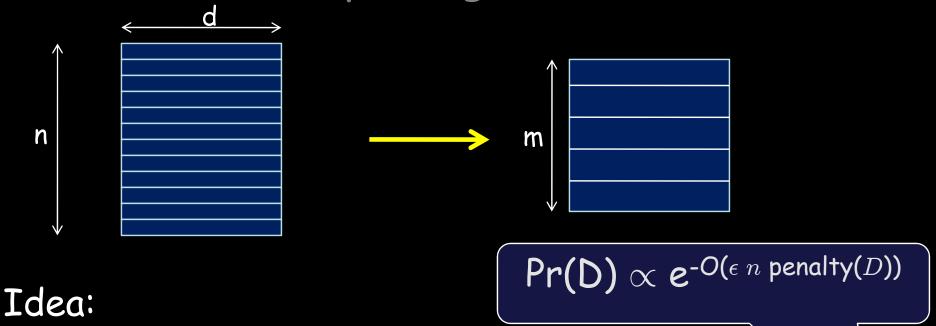
Actually, no you don't [B-Ligett-Roth]

(At least not for count-queries)

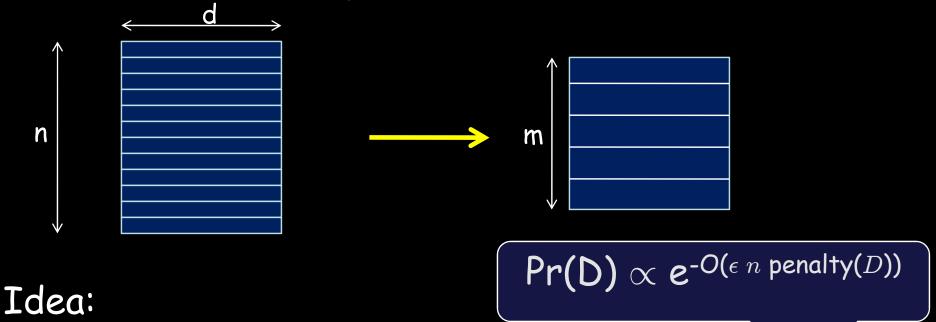
- Fix a class C of quantities to preserve. E.g., fraction of entries with $x[i_1]=1$, $x[i_2]=0...x[i_k]=1$.
- Want ϵ -privacy and preserve all $q \in C$ up to $\pm \alpha$.
- [BLR] show: in principle, can do with database of size only $n = O(d \log |C|)$.

 Allowing exponentially-

many questions!



- Standard results from learning/statistics say that there exist small databases that apx preserve all quantities in C. $m = O(\log |C|)$ is sufficient.
- Put explicit distribution on them, using exponential mechanism of [McSherry-Talwar]
- Solve to get n \approx (d log C)/($\epsilon \alpha^3$)



- Standard results from learning/statistics say that there exist small databases that apx preserve all quantities in C. $m = O(\log |C|)$ is sufficient.
- Put explicit distribution on them, using exponential mechanism of [McSherry-Talwar]
- But, seems extremely hard to get efficient alg.

Differential Privacy summary & discussion

Positives:

- Clear semantic definition. Any event (anything an adversary might do to you) has nearly same prob if you join or don't join, lie or tell the truth.
- · Nice composability properties.
- Variety of mechanisms developed for question answering in this framework.
- *Some* work on sanitized database release.

Differential Privacy summary & discussion

Negatives / open issues

- It's a pessimistic/paranoid quantity, so may be more restrictive than needed.
- " ϵ " is not zero. Privacy losses add up with most mechanisms (but see, e.g., [RR10],[HR10])
- Doesn't address group information.
- Notion of "neighboring database" might need to be different in network settings.

•