
Planning, Execution & Learning: POMDP Simmons, Veloso : Fall 20011

Planning, Execution & Learning:Planning, Execution & Learning:
Planning with POMDPsPlanning with POMDPs

Reid Simmons

Planning, Execution & Learning: POMDP Simmons, Veloso : Fall 20012

Markov ModelsMarkov Models
• A Markov node represents complete state of the world

• Markov Property implies that current state is sufficient

• Plan is a Policy
– Stationary policy: Best action is fixed
– Non-stationary policy: Best action depends on time

• Categories of Markov Models

POMDPHMMHidden State

MDPMarkov ModelsFully Observable

Choose ActionsPassive

Planning, Execution & Learning: POMDP Simmons, Veloso : Fall 20013

TradeoffsTradeoffs
• MDP

+ Tractable to solve
+ Relatively easy to specify
– Assumes perfect knowledge of state

• POMDP
+ Treats all sources of uncertainty (action, sensing,

environment) in a uniform framework
+ Allows for taking actions that gain information
– Difficult to specify all the conditional probabilities
– Hugely intractable to solve optimally

Planning, Execution & Learning: POMDP Simmons, Veloso : Fall 20014

POMDP ModelsPOMDP Models
• What is a POMDP?

– Basically an MDP, except that state is not known with
certainty

• Probability distribution (belief state) over world states

– Model sensors using conditional probabilities
• pi(o | s, a)
• pleft(small_opening | junction, move_forward) = 0.20

– Action update rule:
• pposterior(s) = ∑s' ∈S, a∈A(s) p(s|a, s') ⋅ p(s')/k

– Observation update rule:
• pposterior(s) = pi(o | s, a) ⋅ p(s)/k'

Planning, Execution & Learning: POMDP Simmons, Veloso : Fall 20015

POMDP ConversionPOMDP Conversion
• Equivalent MDP Model

– Each MDP state is probability distribution (continuous belief
state b) over the states of the original POMDP

– State transitions are product of actions and observations

– MDP rewards are expected rewards of original POMDP

R(a, b) = ∑ s ∈S r(a, s) ⋅ b(s)

p(s' | a, o, b) = p(o | s', a, b) ⋅ p(s' | a, b)/p(o | a, b)

p(o | s', a, b) = p(o | s')

p(s' | a, b) = ∑ s ∈S p(s' | a, s) ⋅ b(s)

p(o | a, b) = ∑ s' ∈S (p(o | s') ⋅ ∑ s ∈S p(s' | a, s) ⋅ b(s))
= ∑ s' ∈S p(o | s') ⋅ p(s' | a, b)

Planning, Execution & Learning: POMDP Simmons, Veloso : Fall 20016

POMDP Conversion Example (I)POMDP Conversion Example (I)
Original POMDP

S1 S2

A1

A1

A2

A2

0.40.6

0.70.3 0.2
0.8

0.1

0.9

r(A1, S1) = 2
r(A2, S1) = 1
r(A1, S2) = 1
r(A2, S2) = 3

p(O1 | S1) = 0.9
p(O2 | S1) = 0.1
p(O1 | S2) = 0.5
p(O2 | S2) = 0.5

Transformed MDP (Parametric Form: b = [p1, p2])

[p121, p221]

[p122, p222]

A2

O1

O2

[p111, p211]

[p112, p212]

A1

O1

O2

[p1, p2]

Planning, Execution & Learning: POMDP Simmons, Veloso : Fall 20017

POMDP Conversion Example (II)POMDP Conversion Example (II)
• Transformed Rewards

• Transformed Action Transition Probabilities

R(A1, b) = 2p1 + p2 = 2p1 + (1 - p1) = (p1+ 1)

R(A2, b) = p1 + 3p2 = p1 + 3(1 - p1) = (3 - 2p1)

p(S1 | A1, b) = p(S1 | A1, S2) ⋅ p(S1) + P(S1 | A1, S2) ⋅ p(S2)
= 0.3p1 + 0.6p2 = 0.3p1 + 0.6(1 – p1)
= 0.6 – 0.3p1

p(S2 | A1, b) = 0.7p1 + 0.4p2 = 0.4 + 0.3p1

p(S1 | A2, b) = 0.1p1 + 0.8p2 = 0.8 - 0.7p1

p(S2 | A2, b) = 0.9p1 + 0.2p2 = 0.2 + 0.7p1

Planning, Execution & Learning: POMDP Simmons, Veloso : Fall 20018

POMDP Conversion Example (III)POMDP Conversion Example (III)
• Transformed Observation Probabilities

p(O1 | A1, b) = p(O1 | S1) ⋅ p(S1 | A1, b) + P(O1 | S2) ⋅ p(S2 | A1, b)
= 0.9(0.6 – 0.3p1) + 0.5(0.4 + 0.3p1)
= 0.74 – 0.12p1

p(O2 | A1, b) = p(O2 | S1) ⋅ p(S1 | A1, b) + P(O2 | S2) ⋅ p(S2 | A1, b)
= 0.1(0.6 – 0.3p1) + 0.5(0.4 + 0.3p1)
= 0.26 + 0.12p1

p(O1 | A2, b) = p(O1 | S1) ⋅ p(S1 | A2, b) + P(O1 | S2) ⋅ p(S2 | A2, b)
= 0.9(0.8 – 0.7p1) + 0.5(0.2 + 0.7p1)
= 0.82 – 0.28p1

p(O2 | A2, b) = p(O2 | S1) ⋅ p(S1 | A2, b) + P(O2 | S2) ⋅ p(S2 | A2, b)
= 0.1(0.8 – 0.7p1) + 0.5(0.2 + 0.7p1)
= 0.18 + 0.28p1

Planning, Execution & Learning: POMDP Simmons, Veloso : Fall 20019

POMDP Conversion Example (IV)POMDP Conversion Example (IV)
• State Transition Probabilities (Actions and Observations)

p(s | a, o, b) = p(o | s) ⋅ p(s | a, b) / p(o | a, b)

p(S2 | A1, O1, b) = (0.20 + 0.15p1)/(0.74 – 0.12p1)
p(S1 | A2, O1, b) = (0.72 – 0.63p1)/(0.82 – 0.28p1)
p(S2 | A2, O1, b) = (0.10 + 0.35p1)/(0.82 – 0.28p1)
p(S1 | A1, O2, b) = (0.06 – 0.03p1)/(0.26 + 0.12p1)
p(S2 | A1, O2, b) = (0.20 + 0.15p1)/(0.26 + 0.12p1)
p(S1 | A2, O2, b) = (0.08 – 0.07p1)/(0.18 + 0.28p1)
p(S2 | A2, O2, b) = (0.10 + 0.35p1)/(0.18 + 0.28p1)

p(S1 | A1, O1, b) = p(O1 | S1) ⋅ p(S1 | A1, b) / p(O1 | A1, b)
= 0.9(0.6 – 0.3p1)/(0.74 – 0.12p1)
= (0.54 – 0.27p1)/(0.74 – 0.12p1)

Planning, Execution & Learning: POMDP Simmons, Veloso : Fall 200110

Solving POMDPsSolving POMDPs
• Maximize Expected Reward Over Belief Space: V(b)
• Representational Choices

– Exact V, exact b
• Optimal solutions, but intractable

– Approximate V, exact b
• Differentiable function approximators (higher-order

polynomials, neural nets, …)
– Exact V, Approximate b

• Dynamic Bayes Net, Particle Filters
– Approximate V, Approximate b

• Combos of above
• Greedy Approaches Based on Solving Underlying MDP

Planning, Execution & Learning: POMDP Simmons, Veloso : Fall 200111

Exact Solution to POMDP (I)Exact Solution to POMDP (I)
• Convert to MDP, and Use Value Iteration

– V(b) = maxa{R(a, b) + γ ∑ b' p(b' | a, b) V(b')}

• Use Fact that Value Function is Piece-Wise Linear Convex
– V(b) = maxv ∈Ψ (v • b)

p(b' | a, b) = p(o | a, b)

b' = [p(S1 | a, o, b), p(S2 | a, o, b), …]

b' = [p(o | S1)p(S1 | a, b)/p(o | a, b), p(o | S2)p(S2 | a, b)/p(o | a, b), …]

b' = [p(o | S1)p(S1 | a, b), p(o | S2)p(S2 | a, b), …]

V(b) = maxa{R(a, b) + γ ∑ b' p(o | a, b) maxv ∈Ψ (v • b')/p(o | a, b)}

V(b) = maxa{R(a, b) + γ ∑ b' maxv ∈Ψ (v • b')}

Planning, Execution & Learning: POMDP Simmons, Veloso : Fall 200112

Exact Solution to POMDP (II)Exact Solution to POMDP (II)

Horizon-Zero Solution: V0(b) = 0

Horizon-One Solution:
V1

A1(b) = R(A1, b) + γ ⋅ 0 = (p1 + 1)
V1

A2(b) = R(A2, b) + γ ⋅ 0 = (3 - 2p1)

Ψ1 = {[2, 1], [1, 3]}

V(b)

p1

A2

A1

V1 ([0.5, 0.5]) = max([2, 1] • [0.5, 0.5],
[1, 3] • [0.5, 0.5])

= max(1.5, 2) = 2 0.667
Crossover Point:
[2, 1] • [p1, p2] = [1, 3] • [p1, p2]
2 p1 + 1(1 - p1) = p1 + 3(1 - p1)

3p1 = 2

Planning, Execution & Learning: POMDP Simmons, Veloso : Fall 200113

Exact Solution to POMDP (III)Exact Solution to POMDP (III)
Horizon-Two Solution:
Value Function for Action A1:
V2

A1(b) = R(A1, b) + γ ⋅ ∑ b' maxv ∈Ψ (v • b')

b'1 = [p(O1 | S1)p(S1 | A1, b), p(O1 | S2)p(S2 | A1, b)]
= [(0.54 – 0.27p1), (0.20 + 0.15p1)]

b'2 = [(0.06 – 0.03p1), (0.20 + 0.15p1)]

V2
A1(b)a = (p1 + 1) + γ ⋅ ([2, 1] • b'1 + [2, 1] • b'2)

= (p1 + 1) + γ ⋅ {2(0.54 – 0.27p1) + (0.20 + 0.15p1) +
2(0.06 – 0.03p1) + (0.20 + 0.15p1)}

= (p1 + 1) + γ ⋅ (1.6 – 0.3p1)
V2

A1(b)b = (p1 + 1) + γ ⋅ ([2, 1] • b'1 + [1, 3] • b'2) = (p1 + 1) + γ ⋅ (1.94 + 0.03p1)
V2

A1(b)c = (p1 + 1) + γ ⋅ ([1, 3] • b'1 + [2, 1] • b'2) = (p1 + 1) + γ ⋅ (1.46 + 0.27p1)
V2

A1(b)d = (p1 + 1) + γ ⋅ ([1, 3] • b'1 + [1, 3] • b'2) = (p1 + 1) + γ ⋅ (1.86 + 0.6p1)

A2

O1

O2

A1
O1

O2
b

= (p1 + 1) + γ ⋅ {maxv ∈Ψ (v • b'1) + maxv ∈Ψ (v • b'2)}

Planning, Execution & Learning: POMDP Simmons, Veloso : Fall 200114

Exact Solution to POMDP (IV)Exact Solution to POMDP (IV)

Find Value Vectors (Assume γ = 0.9):
V2

A1(b)a = (p1 + 1) + γ ⋅ (1.6 – 0.3p1)
= 2.44 + 0.73p1
= [3.17, 2.44]

V2
A1(b)b = 2.746 + 1.027p1 = [3.773, 2.746]

V2
A1(b)c = 2.314 + 1.243p1 = [3.557, 2.314]

V2
A1(b)d = 2.62 + 1.54p1 = [4.16, 2.62]

A1(A1/A1)

A1(A1/A2)
A1(A2/A1)

A1(A2/A2)

A2

O1

O2

A1
O1

O2
b

V(b)

p1

Planning, Execution & Learning: POMDP Simmons, Veloso : Fall 200115

Exact Solution to POMDP (V)Exact Solution to POMDP (V)

V2
A2(b)a = (3 – 2p1) + γ ⋅ (1.8 – 0.7p1)

= [1.99, 4.62]
V2

A2(b)b = 2.746 + 1.027p1 = [2.791, 4.728]
V2

A2(b)c = 2.314 + 1.243p1 = [2.719, 4.152]
V2

A2(b)d = 2.62 + 1.54p1 = [3.52, 4.26]

A1(A1/A1)

A1(A1/A2)
A1(A2/A1)

A1(A2/A2)

A2

O1

O2

A1
O1

O2
b

V(b)

p1

Combining Value Function for Actions A1 and A2

A2(A1/A1)

A2(A1/A2)

A2(A2/A1)

A2(A2/A2)

Horizon-Two Value Function:
Ψ2 = {[2.791, 4.728], [3.52, 4.26], [4.16, 2.62]}

Planning, Execution & Learning: POMDP Simmons, Veloso : Fall 200116

Witness Algorithm (Littman, 1994)Witness Algorithm (Littman, 1994)
• A Witness is a Counter-Example

– Idea: Find places where the value function is suboptimal
– Operates action-by-action and observation-by-observation to

build up value vectors

• Algorithm
– Start with value vectors for known (“corner”) states
– Define a linear program (based on Bellman’s equation) that

finds a point in the belief space where the value of the
function is incorrect

– Add a new vector (a linear combination of the old value
function)

– Iterate

Planning, Execution & Learning: POMDP Simmons, Veloso : Fall 200117

Witness Algorithm: ExampleWitness Algorithm: Example
• Choose some belief that has the wrong value

(by solving system of linear equations)

• Create new value vector using support vectors: [1, 3], [1, 3]

Choose: b1 = [0.5, 0.5]
V(b1) = max([2, 1] • [0.5, 0.5], [1, 3] • [0.5, 0.5]) = 2

V2
A1(b) = (p1 + 1) + γ ⋅ {maxv ∈Ψ (v • b'1) + maxv ∈Ψ (v • b'2)}

= (p1 + 1) + γ ⋅ {max([2, 1] • [(0.54 – 0.27p1), (0.20 + 0.15p1)],
[1, 3] • [(0.54 – 0.27p1), (0.20 + 0.15p1)]) +

max([2, 1] • [(0.06 – 0.03p1), (0.20 + 0.15p1)],
[1, 3] • [(0.06 – 0.03p1), (0.20 + 0.15p1)])}

V2
A1(b) = 1.5 + γ ⋅ {max([2, 1] • [0.405, 0.275], [1, 3] • [0.405, 0.275]) +

max([2, 1] • [0.045, 0.275], [1, 3] • [0.045, 0.275])}
= 1.5 + γ ⋅ {max(1.085, 1.23) + max(0.365, 0.87)}

Planning, Execution & Learning: POMDP Simmons, Veloso : Fall 200118

Policy Iteration for POMDPsPolicy Iteration for POMDPs
• Policy Iteration

– Choose a policy
– Determine the value function, based on the current policy
– Update the value function, based on Bellman’s equation
– Update the policy and iterate (if needed)

• Policy Iteration for POMDPs
– Original algorithm (Sondik) very inefficient and complex
– Mainly due to evaluation of value function from policy!
– Represent policy using finite-state controller (Hansen 1997):

• Easy to evaluate
• Easy to update

Planning, Execution & Learning: POMDP Simmons, Veloso : Fall 200119

POMDP Policy Iteration (Hansen 1997)POMDP Policy Iteration (Hansen 1997)
• Key Idea: Represent Policy as Finite-State Controller

– Explicitly represents: “do action then continue with given
policy”

– Nodes correspond to vectors in value function
– Edges correspond to transitions based on observations

V(b)

p1

1

2

1
a2

2
a1 O1, O2

O1

O2

Planning, Execution & Learning: POMDP Simmons, Veloso : Fall 200120

POMDP Policy IterationPOMDP Policy Iteration
V(b) = maxa{R(a, b) + γ ∑ b' p(b' | a, b) V(b')}

• Associate actions with initial vectors: π(vi) = a

• Determine the value function, based on the current policy
– Solve system of linear equations

vi(s) = r(s, π(vi)) + γ ∑ s‘, o p(o | π(vi), s') vl(vi,o)(s')

• Update the value function, based on Bellman’s equation
– Can use any standard dynamic-programming method

• Update the Policy …

Planning, Execution & Learning: POMDP Simmons, Veloso : Fall 200121

POMDP Policy IterationPOMDP Policy Iteration
• Update the Policy

– Ignore new vectors that are point-wise dominated by other vectors
– new vectors that duplicate current vectors (same actions and

observation links; point-wise equal)
– Replace current vectors that are dominated by new vectors
– Add new controller state otherwise

1
a2

2
a1 O1, O2

O1

O2

3

V(b)

p1

1

2
4

4
a2

O1

O2 5
a1

O2

O1

5

