
Towards Reliable Autonomous Agents

Reid Simmons

School of Computer Science/Robotics Institute

Carnegie Mellon University

5000 Forbes Avenue

Pittsburgh, PA 15241

(reids@cs.cmu.edu)

Abstract

We are interested in producing reliable au-

tonomous robots that can operate for extended pe-

riods of time in uncertain, dynamic environments.

We have been developing methodologies and soft-

ware tools to facilitate this, including the Task

Control Architecture and probabilistic methods for

representing and reasoning about uncertainty. The

aim is to incrementally produce reliable behavior

by adding (perhaps automatically) execution mon-

itors and exception handlers that can detect when

expectations are being violated and react appropri-

ately. We have been developing and testing these

ideas on a number of mobile robot platforms, in-

cluding a six-legged planetary rover, a wheeled Lu-

nar rover, and an o�ce-navigation robot.

Introduction

Reliability is a key aspect of autonomous agents, es-

pecially those that operate in uncertain and dynamic

environments. They need to know their capabilities

and limitations, when they are getting into trouble,

and how to recover from exceptional situations. We

have been developing methodologies and software tools

to facilitate the development of reliable mobile robotic

systems. This includes an architecture (the Task Con-

trol Architecture) that combines deliberative and re-

active control and that enables the incremental addi-

tion of task-speci�c execution monitors and exception

handlers. It is our contention that such a capability

is essential, given that one cannot hope to determine,

a priori, all the things that could go wrong with an

autonomous agent. Instead, we desire to equip robots

with the ability to detect general lack of progress to-

ward their goals, and with enough domain knowledge

to learn how to monitor for speci�c anomalous situa-

tions and recover from them.

Our methodology has several components. First, we

have developed the Task Control Architecture (TCA),

a general-purpose architecture for building distributed,

concurrent robot systems. TCA combines both deliber-

ative and reactive control in a paradigm we call struc-

tured control [9]. The idea is that one starts with de-

liberative (planned) behavior that is expected to work

correctly in nominal situations, and then adds reactive

behaviors (in particular, monitors and exception han-

dlers) to deal with exceptional situations. We believe

(and our experience to date bears this out [6, 8]) that

the separation of nominal and exceptional behaviors in-

creases system reliability. In particular, understand-

ability is increased by isolating di�erent concerns: the

robot's behavior during normal operation is readily ap-

parent, and strategies for handling exceptions can be

developed in isolation. Furthermore, complex interac-

tions are minimized by constraining the applicability of

reactive behaviors to speci�c situations, so that only

manageable, predictable subsets of the behaviors will

be active at any one time.

Another aspect of our methodology is to make the

robot explicitly aware of why it is pursuing particular

goals. This knowledge is supplied in the form of expecta-

tions about the likely/desired results of actions [7]. For

example, depending on the type of terrain it is crossing,

a Lunar rover might expect its inclinometers to indicate

level, steady ground, or pitched, rough terrain. If the

readings fall outside of the expectations, then it is an

exceptional situation and must be attended to [4]. The

idea is that these expectations provide a context for in-

terpreting sensor readings. This stands in contrast to

more purely reactive architectures, in which the behav-

iors are always active, and so the way sensor readings

are interpreted is largely context-independent. We be-

lieve that the use of expectations provides an added

measure of reliability, since the robot can now explic-

itly reason about its progress (or lack thereof) towards

achieving its goals.

A third aspect of our methodology is that robotic

systems need to be developed incrementally. In par-

ticular, the reactive part of the system, to detect and

handle exceptional situations, must be layered on to

the deliberative part in an evolutionary fashion. This

stems from the belief that the ways robots interact

with their environments are too complex and uncer-

tain to analyze completely beforehand. The best that

can be done is to start with a plan of action that usu-

ally works, along with some reactive strategies that can



be derived from a known understanding of the environ-

ment, and then to add new reactive strategies as ex-

perience dictates (whether that means adding by hand,

or through automated learning). We have had posi-

tive experience with this methodology. For example,

for a walking robot we added successive monitors and

exception handlers that enabled the robot to handle in-

creasingly rugged terrain without tipping over [6]. For

an indoor o�ce-navigation robot, we added monitors

and exception handlers that increased the success rate

of the robot in traversing corridors [8]. These strategies

helped the robot deal with sensor noise, dead-reckoning

inaccuracies, and even topological di�erences between

its map and the actual environment.

The Task Control Architecture

The Task Control Architecture (TCA) was designed to

facilitate the development of task-level control systems

for autonomous and semi-autonomous robots operat-

ing in uncertain, dynamic environments [5, 6, 9]. The

term task-level control refers to the problem of coordi-

nating perception, planning, and actuation to achieve

a given set of goals. TCA provides a language for ex-

pressing task-level control decisions, and software util-

ities for ensuring that the decisions are correctly real-

ized. In essence, TCA is a high-level robot operating

system that provides an integrated set of commonly

needed control constructs, including distributed com-

munications, task decomposition, task sequencing, re-

source management, execution monitoring, and excep-

tion handling.

A robot system built using TCA consists of a number

of distributed, robot-speci�c modules (processes) that

communicate by sending messages. The modules spec-

ify control information by indicating how to decompose

tasks into subtasks, when to monitor for speci�c situa-

tions, and how to handle exceptions. TCA provides a li-

brary of communication tools and a robot-independent

central control module that is responsible for routing

messages and maintaining the task control information

speci�ed by the modules. In particular, TCA main-

tains a hierarchical task tree (Figure 1) that represents

the robot's intended plan of action. The task tree is

used, in turn, to schedule and coordinate the actions

of the other modules. The idea is that all modules op-

erate concurrently, by default, unless control informa-

tion speci�es otherwise. TCA has been used to control

about a dozen robotic systems at CMU and elsewhere,

in particular a six-legged planetary rover [10], a Lunar

rover [3], and an autonomous indoor mobile robot [8].

TCA provides several mechanisms for integrating de-

liberative and reactive control. Support for delibera-

tive control is provided by constructs for decomposing

tasks into subtasks and for scheduling and sequencing

subtasks, which TCA uses to create its task trees. A

novel feature of TCA is that the planning (task decom-

position) of tasks can also be scheduled via temporal

constraints on nodes in the task tree. This provides

a 
exible way to encode interleaving of planning and

execution.

Support for reactive control is provided by constructs

for monitoring and handling exceptions. TCA monitors

consist of a trigger condition, and an action that is per-

formed whenever the trigger condition is perceived (for

example, the robot levels itself whenever its inclinome-

ters exceed a given threshold). Monitors are context-

dependent: they are constrained to operate concur-

rently with particular subtasks, and they cease to be

active when the associated subtasks complete. This en-

ables the robot systems to utilize resources most e�-

ciently, for instance, by not monitoring for situations

that do not apply in the current context (e.g., not look-

ing for hallway features when trying to pick up a piece

of trash).

Exception handlers are also context-dependent, and

are maintained in a hierarchy. This is done by associat-

ing separate exception handlers with nodes in the task

tree. When an exception is raised, TCA searches up the

task hierarchy to �nd the �rst exception handler that

matches the given exception. If that handler cannot,

in fact, handle the exception, the search continues up

the tree. In this way, local exception handlers can be

tried �rst (which, presumably, make minimal changes

to the existing plan), but if those strategies fail other,

more global, exception strategies can be tried. Excep-

tion handlers typically act by modifying the existing

plan (the task tree) by adding, removing, or rearrang-

ing subtrees [6, 9]. For example, if a leg move fails,

a low-level exception handler might retry the motion;

a higher-level exception handler can replan the trajec-

tory; and an even higher-level handler might give up

and try achieving a di�erent goal altogether (see Fig-

ure 1).

Both monitors and exception handlers can be added

incrementally, even while the robot is running, without

the need to change the existing system. This enables

reliability to be added incrementally, as the need arises.

It is our contention that it is di�cult, if not impossi-

ble, to pre-specify all the exceptional situations that

will be relevant to an autonomous robot. The best that

can be done is to de�ne general purpose monitors (e.g.,

progress monitors, proximity detectors) that will pre-

vent the robot from injuring itself or others. Then, on

a case-by-case basis, additional monitors and exception

handlers can be added to handle speci�c cases that arise

in practice [8]. While, currently, we add such reactive

components by hand, we are investigating techniques

for learning such strategies, based on the robot's ex-

pectations of its behavior and its experiences in the

world.

Testbeds

While many TCA-based robot systems have been de-

veloped, to date we have used three main testbeds for

developing our ideas. The Ambler is a six-legged robot

developed for planetary exploration of very rugged ar-



DP
Traverse Arc

Terminate

Traverse Arc

Terminate

DP

Place Leg Take Steps

Replan

Move Body

Place Leg Take Steps

Replan

Move Body Achieved
Position?

Take Steps

Replan

Achieved
Position?

Footfall
Monitor

Move Leg

Stability
Monitor

Stability
Monitor

Retry

Retry

Legend:

Monitor Command Goal Temporal
Constraint

Child/
SubtaskFigure 1: Task Tree for a Walking Rover

eas [10]. While it has a great deal of mobility, it is

also somewhat unstable. Thus, in addition to making

it walk, we have to be careful not to let it tip over. The

main problem is that our terrain information (garnered

from a laser range scanner) is noisy, and so sometimes

the robot steps on rocks, from which it might slip o�.

Thus, the architecture we developed included a plan-

ning algorithm that usually found acceptable footfalls

for the robot, and a collection of monitors that looked

for exceptional situations (mainly tilt readings and force

readings in the feet that indicated imminent slippage).

In addition, we added specialized heuristics for getting

out of situations that the main planner could not han-

dle. For example, it was usually possible to move the

feet into a standard con�guration, after which the nom-

inal planning algorithm could �nd a good footfall.

Another major testbed is the Ratler, a wheeled Lunar

rover that was originally developed at Sandia National

Laboratories (Figure 2). The Ratler is a prototype rover

for a semi-autonomous lunar mission that will feature

long-term operation and will be driven by novice users

[3]. To achieve these goals, the rover must be extremely

reliable, able to detect hazardous situations, and pre-

vent users from driving the rover into danger. In ad-

dition, the rover needs to monitor its own health and

safety, performing many diagnostic and fault recovery

procedures on its own. TCA is being used as the under-

lying architecture for the rover, with speci�c attention

being paid to issues of monitoring internal and external

environmental conditions.

The third main testbed is Xavier, an indoor mobile

robot that autonomously navigates the corridors of our

building (Figure 3). Xavier is a synchro-drive robot

with bump, sonar, laser, and camera sensors. It mainly

uses landmark-based navigation, where landmarks are

doorways, corridor intersections, and walls in front of

it (although, we have recently implemented a more re-

liable probabilistic navigation scheme). Since the land-

mark detector is not completely reliable, the robot oc-

casionally misses a landmark and gets lost (sometimes

the landmark itself disappears, for instance, when peo-

ple are standing in front of an open doorway). Xavier

has a number of reactive strategies for dealing with such

problems, including searching more carefully the area

in which the landmark should have appeared, turn-

ing around if necessary to get another look [8]. Cur-

rent plans include having Xavier navigate all day in the

building, performing delivery tasks and recycling tasks

(an arm will be added to Xavier this Winter).

Current Work

While we are relatively happy with the overall archi-

tecture and development methodology, there are still

a number of technology gaps that we are working on.

Mainly, these relate to two problems: 1) ensuring that

the concurrent reactive behaviors do not interact badly,

and 2) determining what new reactive strategies to add.

The �rst problem arises because, even though we im-

pose a structure on when monitors and other behaviors

are active, there are still behaviors that operate concur-

rently. The problem can be exacerbated by incremen-

tal system development, since there is more chance for

the behaviors not to share common assumptions (and,

hence, interact badly) if they are developed at separate



Figure 2: Ratler Lunar Rover

times. Our approach here is to attempt to use formal

languages to model the systems and their interactions,

and to use analysis tools to determine attributes of the

system, such as the potential for deadlock, resource con-

tention, etc. We have been looking at various modeling

languages, such as Petri Nets, Z, state charts, and tem-

poral logic to model TCA-based systems. While this

work is still in its infancy [1], we believe that it is a

fruitful direction to explore.

Along the same vein, we are developing software tools

to help automate the design, and analyze the perfor-

mance, of TCA-based systems. The design tools will

take abstract, high-level descriptions of the communi-

cations interface and task decomposition strategies of a

robot system and automatically generate code, or code

stubs. These tools will include a semantic component to

catch obvious errors in interface speci�cations and sub-

task interactions. The analysis tools will analyze logs of

the TCA message tra�c and graphically display perti-

nent information, such as resource utilization, schedul-

ing constraints, and task interdependencies. Currently,

we have prototypes of an interface de�nition tool and

two analysis tools to chart resource utilization and task-

tree dependencies.

The second problem is more fundamental: where do

the monitors and exception handlers come from? We

want to move from hand-coding them to learning such

reactive strategies based on experience. The idea is that

Figure 3: Xavier Mobile Robot

one would have general progress monitors that would be

good at detecting when things were really going badly

(such as noticing that the robot has bumped something,

or that it is not moving forward, as expected). The

problem with such monitors is that they are too coarse

{ they eventually catch all problems, but not necessar-

ily in time to allow the robot to extricate itself easily.

Thus, we would like more task-speci�c, �ner-grained

monitors that are tuned to the expectations inherent

in the particular task, or subtask, currently being per-

formed. When one of the general-purpose monitors trig-

ger, it indicates that no more specialized monitor exists

for that situation, and thus it presents an opportunity

for learning. The vision is that the robot would use the

actual experience it is in, plus the plan it was pursuing,

to determine what it was expecting to sense in that sit-

uation, and from that to determine what it could have

sensed to predict that it would be getting into that sit-

uation (and, presumably, take action to avoid getting

into that situation).

Before we can move in that direction, however, we feel

that we must move from representations and plans that

are mainly discrete and deterministic, to more prob-

abilistic representations and more conditional plans.

This will enable us to reason more robustly about what

went wrong and why it did so (for instance, it is often

di�cult to determine whether the root cause of a prob-

lem is sensor, planning, or execution error). In addition,



we have found that it is often hard to make rational

planning decisions (e.g., deciding where to place a foot,

or when the robot is lost) when the sensor data and

world models are so fraught with uncertainty. While

we do not wish to give up on the power of symbolic

representation and planning, we also do not want to

use it when inappropriate.

We present two examples of this. We originally de-

veloped a symbolic, landmark-based navigation scheme

for Xavier [8]. It navigates by planning a path (us-

ing A*) through a node-and-arc topological map of the

environment. Based on the map, it determines which

landmarks it expects to �nd at the intersections where

it wants to turn. While, as described above, there are

a number of monitors and exception handlers for sit-

uations where it makes a mistake, it still has only a

discrete idea of where it is at any one time, and so

must be fairly conservative before it decides that it has

truly made a mistake. In contrast, we have recently de-

veloped a navigation system for Xavier that uses par-

tially observable Markov models to explicitly represent

the robot's uncertainty in its position. When the robot

gets a new sensor reading, it uses an uncertainty model

of its sensors to determine how likely it is to have ob-

served that reading at various places in the map, and

conditions that with the probability that it currently

believes that it is at that place. A planner associates

di�erent actions with each Markov node, and the robot

continually executes the action with the largest total

probability mass.

In our simulation tests, this method has worked quite

well, even with relatively noisy sensor models (on the

order of 20% false positives and negatives). We are

now testing this scheme on Xavier itself. We also in-

tend to replace the current path-planning algorithm

with one that develops a policy, that is, a speci�ca-

tion of which action to take from any location in order

to reach the goal optimally. This policy will take into

account the probability that pertinent landmarksmight

be missed, so that, for instance, the robot might pre-

fer to take slightly longer routes (distance-wise) if those

routes have a higher probability of success.

For the Lunar rover, local obstacle avoidance is done

using a planner adapted from the Unmanned Ground

Vehicle (UGV) program [2]. The planner merges ter-

rain maps derived from stereo data, and evaluates the

traversability of a discrete number of potential arcs that

the rover could follow. Although it has had great suc-

cess in the UGV program, we have found problems that

stem mainly from the inaccuracies in the stereo data

and dead-reckoning, which cause the merged maps to

be less than reliable. Also, the current planner depends

on a detailed model of the vehicle response to predict

its traverses over the terrain. If that model is not accu-

rate, the overall system performance su�ers. We intend

to overcome some of these problems by explicitly rep-

resenting the uncertainty in the data and vehicle mod-

els, and having the planner take that uncertainty into

account. For example, we can augment the terrain ele-

vation maps with the variance in the measurement, as

predicted by a model of the stereo system. This will give

us a model of the con�dence we should have in using

that data, and hence our con�dence in the evaluation

of the traversability of an arc. Similarly, we can use

uncertainty models of the vehicle performance to pre-

dict the likely area that the vehicle will traverse, rather

than assuming it will follow a single arc.

Lessons Learned

We have developed the Task Control Architecture,

which combines deliberative and reactive control, to

help design and implement concurrent distributed

robotic systems, and have used the architecture to de-

velop about a dozen robot systems, including a six-

legged planetary rover, a Lunar rover, and an indoor

autonomous mobile robot. TCA uses task decompo-

sition and task sequencing for its deliberative aspects,

and execution monitoring and exception handling for

its reactive aspects. The idea is to layer the reactive

behaviors onto the nominal plans, thus incrementally

increasing system reliability. To further increase reli-

ability, we are currently working on formalizing TCA-

based systems, to detect unwanted interactions between

behaviors, and are developing probabilistic representa-

tions and planning algorithms, to aid in the automated

learning of monitors and exception handlers.

What lessons has this experience taught us about

designing reliable autonomous robots? First and fore-

most, reliability does not just \emerge" from a collec-

tion of behaviors, even if each behavior is individually

fairly reliable. Reliability needs to be structured into

the basic system architecture in order to prevent un-

wanted interactions, resource over-utilization, etc. We

have had good success through the hierarchical struc-

turing of systems | task/subtask hierarchies, hierar-

chies of coarse-to-�ne monitoring strategies, and hier-

archies of local-to-global exception handling strategies.

While this added structuring introduces some run-time

overhead, it is nonetheless worthwhile overall because

it makes it easier to keep components modular and in-

dependent.

Second, we have learned the importance of incre-

mental system development. It is usually impossible

to pre-specify everything that could possibly go wrong

with a mobile robot that operates in a complex envi-

ronment. It is a �ction to believe that primitive behav-

iors can be designed that \do the right thing" in every

conceivable situation. The agent architecture must al-

low for incremental development, and it must facilitate

this by enabling components to be added without the

need to modify existing components. TCA does this,

to a large extent, through its constructs for specifying

monitors, exception handlers, and task decomposition

strategies. While the original aim in developing TCA

was to make it possible to have these components be

learned and added automatically, the same philosophy



facilitates building these systems by hand.

Third, we have learned the di�culty of automating

the acquisition of such components. The main di�cul-

ties are in determining when a problem has occurred

and determining what information is relevant to the

problem. We need to encode expectations about why

the robot is performing particular actions. These ex-

pectations provide a measure to determine when things

are going wrong, and can be used to analyze what

must be done to make them right again. Unfortu-

nately, we have found that symbolic, discrete represen-

tations alone are insu�cient to capture the subtleties

of the world needed for making such distinctions. We

have therefore been led towards investigating proba-

bilistic, and other, representations of uncertainty. We

believe that these representations, in conjunction with

more traditional symbolic approaches, will su�ce for

the tasks of automatically acquiring monitoring and ex-

ception handling strategies.

In summary, we have much real-world experience

with autonomous mobile robots navigating in uncer-

tain, complex environments. This experience, in turn,

has taught us much about the design of software archi-

tectures for reliable robot behavior. It has also taught

us how far we still have to go to reach the goal of au-

tomating the development of reliable mobile robots.

References

[1] R. T. Goodwin. A formal speci�cation of agent

properties. Technical Report CMU-CS-93-159,

Carnegie Mellon University, Pittsburgh PA. USA,

May 1993.

[2] A. Kelly. A partial analysis of the high speed au-

tonomous navigation problem. Technical Report

CMU-RI-TR-94-16, Robotics Institute, Carnegie

Mellon University, Pittsburgh, PA, 1994.

[3] E. Krotkov, J. Bares, L. Katragadda, R. Sim-

mons, and R. Whittaker. Lunar rover technology

demonstrations with dante and ratler. In Proc.

Intl. Symp. Arti�cial Intelligence, Robotics, and

Automation for Space, Jet Propulsion Laboratory,

Pasadena, CA, Oct. 1994.

[4] D. Miller. Execution monitoring for a mobile robot

system. In Proc. SPIE Conference on Intelligent

Control, Cambridge, Massachusetts, 1989. Society

of Photo-Optical Instrumentation Engineers.

[5] R. Simmons. Concurrent planning and execution

for autonomous robots. IEEE Control Systems,

12(1):46{50, February 1992.

[6] R. Simmons. Monitoring and error recovery for

autonomous walking. In Proc. IEEE Interna-

tional Workshop on Intelligent Robots and Sys-

tems, pages 1407{1412, July 1992.

[7] R. Simmons. Expectation-based behavior. In Proc.

of International Symposium of Robotics Research,

Hidden Valley, PA, Oct. 1993.

[8] R. Simmons. Becoming increasingly reliable. In

Proc. of 2nd Intl. Conference on Arti�cial Intelli-

gence Planning Systems, Chicago, IL, June 1994.

[9] R. Simmons. Structured control for autonomous

robots. IEEE Transactions on Robotics and Au-

tomation, 10(1), Feb. 1994.

[10] R. Simmons, E. Krotkov, W. Whittaker, et al.

Progress towards robotic exploration of extreme

terrain. Journal of Applied Intelligence, 2:163{180,

1992.



Answers to Questions

Here are my answers to some of the questions posed

by the symposium organizers.

Coordination: Is there a need for central behavior co-

ordination? Strictly speaking, central coordination is

not needed | what is needed is coordination amongst

potentially interacting behaviors. This coordination

can be either \command arbitration" or \goal arbi-

tration." In command arbitration, coordination occurs

right before commands are issued; in goal arbitration,

coordination occurs at a higher level, by prioritizing or

sequencing subgoals. For most agents, goal arbitration

has advantages: 1) it saves resources, since not all be-

haviors have to be active at all times, and 2) agents can

make more informed decisions, since the purpose of the

goals can be taken into account when determining how

to coordinate activities. The latter is harder for com-

mand arbitration, since usually, by the time commands

are being issued, the purpose is either not accessible or

is far removed from the behavior issuing the command.

On the other hand, command arbitration has ad-

vantages where the environment is very unpredictable.

In such cases, one might want to keep con
icting be-

haviors active and arbitrate their outcome only at the

last moment. Note that goal and command arbitra-

tion schemes are not mutually exclusive | architec-

tures can, and should, support both. Also note that

neither needs to be centralized, per se, since the ar-

bitration mechanisms only need to make pairwise deci-

sions. However, when many interactions can potentially

occur, centralized arbitration is often easier to design,

implement, and understand what is happening.

Interfaces: How can human expertise be easily brought

into an agent's decisions? How should an agent capture

mission intentions or integrate various levels of auton-

omy or shared control? A successful architecture needs

to enable humans to interact with the agent at any level

of abstraction. For example, our work with planetary

rovers demonstrates that at times one needs to teleop-

erate the robot at the joint level, while at other times

it is su�cient (and much more e�cient) to give head-

ing or positional commands (i.e., go to this X,Y loca-

tion). Depending on the complexity of the environment

and the capabilities of the agent, the human may have

to give more or less detailed instructions. The exact

form of the interface (textual, spoken, gestures) is not

as important as the ability to intervene at any level of

hierarchical abstraction.

The hierarchical decomposition of goals (tasks) into

subgoals (subtasks) can be used to propagate inten-

tions. This is an extremely powerful method for orga-

nizing complex behaviors, and is fundamental to many

agent architectures. By reasoning about this hierarchy,

an agent can decide such things as when it is making

progress towards its goals, when a subgoal is no longer

applicable, etc.

Representation: How should the agent organize and

represent its internal knowledge and skills? In general,

agents need three types of knowledge: task decomposi-

tion, arbitration rules, and expectations. This knowl-

edge does not have to be explicit | the agent designer

can compile it into the architecture | but if it is ex-

plicit then the agent will typically be more 
exible and

understandable to others.

Task decomposition knowledge enables agents to take

high-level goals and break them into simpler subgoals.

As indicated above, task decomposition is fundamental

for achieving complex tasks. If the knowledge is made

explicit, agents can combine it in novel ways to achieve

new goals in novel situations.

Arbitration rules, also discussed above, are necessary

because inevitably there is interaction between parts

(behaviors, subtasks) of the agent. Again, these rules

can be compiled, statically, into the architecture, but by

making them explicit, one can more easily make the be-

havior of the agent context-dependent, since the agent

can reason about which arbitration rules to apply in

which situations.

Expectations, which indicate what results subgoals

are supposed to have, form the core of getting agents

to perform successfully. Expectation knowledge is typi-

cally encoded in both execution monitors (what anoma-

lies to look for) and exception handlers (how to get

the agent back on track). By making such knowl-

edge explicit, one can learn to recognize and deal with

new contingencies. This is extremely important, since

most agent failures occur when they encounter situa-

tions that their designers did not anticipate. If agents

could notice when expectations about their actions were

being violated, then they could, at the very least, stop

doing stupid things.

Structural: How should the computational capabilities

of an agent be divided, structured, and interconnected?

What is the best decomposition/granularity of architec-

tural components? Obviously, I believe that hierarchy

is an important structuring principle. In addition to

its use in task decomposition, hierarchy is important

in monitoring and exception handling. To conserve re-

sources in execution monitoring, the agent should per-

ceive at the lowest resolution that will distinguish nor-

mal from abnormal (expected from unexpected) con-

ditions. Once that determination is made, the agent

can then focus its perception to further distinguish

the problem. For example, an o�ce navigation robot

can use a general \forward progress detection" moni-

tor (perhaps based on wheel encoders). If lack of for-

ward progress is detected, the robot can then determine

the exact cause (a blocked corridor, unexpected end of

corridor, etc.) in order to determine the appropriate

response.

Similarly, exception handling should be hierarchical

| the agent starts by applying lower-level exception



handlers, which have more local e�ects but are applica-

ble in more restricted contexts. If they fail to solve the

problem, then the agent should try higher-level, more

general strategies. For example, when a blocked corri-

dor is detected, a local strategy is to �nd a way around

the blockage; a more global strategy is �nd an alterna-

tive route; an even higher-level strategy is to give up on

the current goal, if no alternative route is available.

These hierarchies should be kept distinct | separate

task decomposition, monitoring, and exception han-

dling hierarchies should coexist. The advantage is 
ex-

ibility and ease of incrementally modifying systems.

Performance: What types of performance goals and

metrics can realistically be used for agents operating

in dynamic, uncertain, and even actively hostile en-

vironments? In my mind, the only real performance

measurements that make any sense are 1) the range of

conditions that the agent can successfully perform its

tasks, and 2) the percentage of time it is successful in

a given environment. We should act to delineate the

space of environments for certain tasks (corridor navi-

gation, o�ce cleanup, etc.). For example, the corridor

navigation task can be divided into static/dynamic en-

vironments (people, doors opening and closing, etc.),

degree of fore-knowledge of the environment (topology,

metric information), tightness of �t (e.g., ratio of robot

width to corridor width), uniformity of the corridors

(same color, same re
ectance properties), orthogonal

vs. non-orthogonal corridors, etc. Such an analysis of

the environment (and task) would go a long way to-

wards providing a basis for comparing the performance

of agents.

Simulation: What, if any, role can advanced simula-

tion technology play in developing and verifying modules

and/or systems? Simulators are invaluable as develop-

ment tools. They enable the agent designer to test out

ideas in a safe environment and to easily run controlled

experiments to test the e�cacy of di�erent algorithms.

Out planetary rover work would be nearly impossible

without the use of simulators. We like to build simu-

lators that have the same interfaces as the real robot

hardware (including all sensors). In this way, the ex-

act same code that runs on the simulator can be ported,

unchanged, to the real robot. This eliminates any trans-

lation errors and increases our con�dence that the code

will work on the actual hardware. The anonymous

message-passing communications of our Task Control

Architecture makes this easy to do. That said, noth-

ing is ever sure until experiments are done on the robot

itself. For all their advances, simulations remain just

that | simulations of the real world, and all simulators

include the biases of their human designers.

Learning: How can a given architecture support learn-

ing? Ah yes, learning. The Holy Grail of AI and

Robotics. My goal has been to �rst develop an ar-

chitecture in which learning can take place, and then

to move on to the actual learning aspects. So far, we

haven't quite got to the second stage, but the �rst stage

is in reasonably good shape. Mainly, the necessary in-

frastructure involves delineating the hierarchies needed

so that new task decomposition strategies, new moni-

tors, and new exception handlers can be incrementally

integrated with minimal e�ect on existing knowledge.

To perform such learning task, the agent needs explicit

knowledge of expectations (which is something we are

starting to integrate into the architecture). Our e�orts

at robot learning to date have involved re�ning param-

eters of existing knowledge structures, such as learn-

ing metric information to augment a topological map,

learning new visual landmarks, etc. Work is just begin-

ning on learning more strategic knowledge.


