Towards Reliable Autonomous Agents

Reid Simmons
School of Computer Science/Robotics Institute
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15241

(reids@cs.cmu.edu)

Abstract

We are interested in producing reliable au-
tonomous robots that can operate for extended pe-
riods of time in uncertain, dynamic environments.
We have been developing methodologies and soft-
ware tools to facilitate this, including the Task
Control Architecture and probabilistic methods for
representing and reasoning about uncertainty. The
alm 1s to incrementally produce reliable behavior
by adding (perhaps automatically) execution mon-
itors and exception handlers that can detect when
expectations are being violated and react appropri-
ately. We have been developing and testing these
ideas on a number of mobile robot platforms, in-
cluding a six-legged planetary rover, a wheeled Lu-
nar rover, and an office-navigation robot.

Introduction

Reliability is a key aspect of autonomous agents, es-
pecially those that operate in uncertain and dynamic
environments. They need to know their capabilities
and limitations, when they are getting into trouble,
and how to recover from exceptional situations. We
have been developing methodologies and software tools
to facilitate the development of reliable mobile robotic
systems. This includes an architecture (the Task Con-
trol Architecture) that combines deliberative and re-
active control and that enables the incremental addi-
tion of task-specific execution monitors and exception
handlers. It is our contention that such a capability
is essential, given that one cannot hope to determine,
a priori, all the things that could go wrong with an
autonomous agent. Instead, we desire to equip robots
with the ability to detect general lack of progress to-
ward their goals, and with enough domain knowledge
to learn how to monitor for specific anomalous situa-
tions and recover from them.

Our methodology has several components. First, we
have developed the Task Control Architecture (TCA),
a general-purpose architecture for building distributed,
concurrent robot systems. TCA combines both deliber-
ative and reactive control in a paradigm we call struc-
tured control [9]. The idea is that one starts with de-

liberative (planned) behavior that is expected to work
correctly in nominal situations, and then adds reactive
behaviors (in particular, monitors and exception han-
dlers) to deal with exceptional situations. We believe
(and our experience to date bears this out [6, 8]) that
the separation of nominal and exceptional behaviors in-
creases system reliability. In particular, understand-
ability 1s increased by isolating different concerns: the
robot’s behavior during normal operation is readily ap-
parent, and strategies for handling exceptions can be
developed in isolation. Furthermore, complex interac-
tions are minimized by constraining the applicability of
reactive behaviors to specific situations, so that only
manageable; predictable subsets of the behaviors will
be active at any one time.

Another aspect of our methodology i1s to make the
robot explicitly aware of why it is pursuing particular
goals. This knowledge is supplied in the form of ezpecta-
tions about the likely/desired results of actions [7]. For
example, depending on the type of terrain it is crossing,
a Lunar rover might expect its inclinometers to indicate
level, steady ground, or pitched, rough terrain. If the
readings fall outside of the expectations, then it is an
exceptional situation and must be attended to [4]. The
idea is that these expectations provide a context for in-
terpreting sensor readings. This stands in contrast to
more purely reactive architectures, in which the behav-
iors are always active, and so the way sensor readings
are interpreted is largely context-independent. We be-
lieve that the use of expectations provides an added
measure of reliability, since the robot can now explic-
itly reason about its progress (or lack thereof) towards
achieving its goals.

A third aspect of our methodology is that robotic
systems need to be developed incrementally. In par-
ticular, the reactive part of the system, to detect and
handle exceptional situations, must be layered on to
the deliberative part in an evolutionary fashion. This
stems from the belief that the ways robots interact
with their environments are too complex and uncer-
tain to analyze completely beforehand. The best that
can be done is to start with a plan of action that usu-
ally works, along with some reactive strategies that can

be derived from a known understanding of the environ-
ment, and then to add new reactive strategies as ex-
perience dictates (whether that means adding by hand,
or through automated learning). We have had posi-
tive experience with this methodology. For example,
for a walking robot we added successive monitors and
exception handlers that enabled the robot to handle in-
creasingly rugged terrain without tipping over [6]. For
an indoor office-navigation robot, we added monitors
and exception handlers that increased the success rate
of the robot in traversing corridors [8]. These strategies
helped the robot deal with sensor noise, dead-reckoning
inaccuracies, and even topological differences between
its map and the actual environment.

The Task Control Architecture

The Task Control Architecture (TCA) was designed to
facilitate the development of task-level control systems
for autonomous and semi-autonomous robots operat-
ing in uncertain, dynamic environments [5, 6, 9]. The
term task-level control refers to the problem of coordi-
nating perception, planning, and actuation to achieve
a given set of goals. TCA provides a language for ex-
pressing task-level control decisions, and software util-
ities for ensuring that the decisions are correctly real-
ized. In essence, TCA is a high-level robot operating
system that provides an integrated set of commonly
needed control constructs, including distributed com-
munications, task decomposition, task sequencing, re-
source management, execution monitoring, and excep-
tion handling.

A robot system built using TCA consists of a number
of distributed, robot-specific modules (processes) that
communicate by sending messages. The modules spec-
ify control information by indicating how to decompose
tasks into subtasks, when to monitor for specific situa-
tions, and how to handle exceptions. TCA provides a li-
brary of communication tools and a robot-independent
central control module that is responsible for routing
messages and maintaining the task control information
specified by the modules. In particular, TCA main-
tains a hierarchical task tree (Figure 1) that represents
the robot’s intended plan of action. The task tree is
used, in turn, to schedule and coordinate the actions
of the other modules. The idea is that all modules op-
erate concurrently, by default, unless control informa-
tion specifies otherwise. TCA has been used to control
about a dozen robotic systems at CMU and elsewhere,
in particular a six-legged planetary rover [10], a Lunar
rover [3], and an autonomous indoor mobile robot [8].

TCA provides several mechanisms for integrating de-
liberative and reactive control. Support for delibera-
tive control is provided by constructs for decomposing
tasks into subtasks and for scheduling and sequencing
subtasks, which TCA uses to create its task trees. A
novel feature of TCA is that the planning (task decom-
position) of tasks can also be scheduled via temporal
constraints on nodes in the task tree. This provides

a flexible way to encode interleaving of planning and
execution.

Support for reactive control is provided by constructs
for monitoring and handling exceptions. TCA monitors
consist of a trigger condition, and an action that is per-
formed whenever the trigger condition is perceived (for
example, the robot levels itself whenever its inclinome-
ters exceed a given threshold). Monitors are context-
dependent: they are constrained to operate concur-
rently with particular subtasks, and they cease to be
active when the associated subtasks complete. This en-
ables the robot systems to utilize resources most effi-
ciently, for instance, by not monitoring for situations
that do not apply in the current context (e.g., not look-
ing for hallway features when trying to pick up a piece
of trash).

Exception handlers are also context-dependent, and
are maintained in a hierarchy. This is done by associat-
ing separate exception handlers with nodes in the task
tree. When an exception is raised, TCA searches up the
task hierarchy to find the first exception handler that
matches the given exception. If that handler cannot,
in fact, handle the exception, the search continues up
the tree. In this way, local exception handlers can be
tried first (which, presumably, make minimal changes
to the existing plan), but if those strategies fail other,
more global, exception strategies can be tried. Excep-
tion handlers typically act by modifying the existing
plan (the task tree) by adding, removing, or rearrang-
ing subtrees [6, 9]. For example, if a leg move fails,
a low-level exception handler might retry the motion;
a higher-level exception handler can replan the trajec-
tory; and an even higher-level handler might give up
and try achieving a different goal altogether (see Fig-
ure 1).

Both monitors and exception handlers can be added
incrementally, even while the robot is running, without
the need to change the existing system. This enables
reliability to be added incrementally, as the need arises.
It is our contention that it is difficult, if not impossi-
ble, to pre-specify all the exceptional situations that
will be relevant to an autonomous robot. The best that
can be done is to define general purpose monitors (e.g.,
progress monitors, proximity detectors) that will pre-
vent the robot from injuring itself or others. Then, on
a case-by-case basis, additional monitors and exception
handlers can be added to handle specific cases that arise
in practice [8]. While, currently, we add such reactive
components by hand, we are investigating techniques
for learning such strategies, based on the robot’s ex-
pectations of its behavior and its experiences in the
world.

Testbeds

While many TCA-based robot systems have been de-
veloped, to date we have used three main testbeds for
developing our ideas. The Ambler is a six-legged robot
developed for planetary exploration of very rugged ar-

Figure 1: Task Tree for a Walking Rover

eas [10]. While it has a great deal of mobility, it is
also somewhat unstable. Thus, in addition to making
it walk, we have to be careful not to let 1t tip over. The
main problem is that our terrain information (garnered
from a laser range scanner) is noisy, and so sometimes
the robot steps on rocks, from which it might slip off.
Thus, the architecture we developed included a plan-
ning algorithm that usually found acceptable footfalls
for the robot, and a collection of monitors that looked
for exceptional situations (mainly tilt readings and force
readings in the feet that indicated imminent slippage).
In addition, we added specialized heuristics for getting
out of situations that the main planner could not han-
dle. For example, it was usually possible to move the
feet into a standard configuration, after which the nom-
inal planning algorithm could find a good footfall.

Another major testbed is the Ratler, a wheeled Lunar
rover that was originally developed at Sandia National
Laboratories (Figure 2). The Ratler is a prototype rover
for a semi-autonomous lunar mission that will feature
long-term operation and will be driven by novice users
[3]. To achieve these goals, the rover must be extremely
reliable, able to detect hazardous situations, and pre-
vent users from driving the rover into danger. In ad-
dition, the rover needs to monitor its own health and
safety, performing many diagnostic and fault recovery
procedures on its own. TCA is being used as the under-
lying architecture for the rover, with specific attention
being paid to issues of monitoring internal and external
environmental conditions.

The third main testbed is Xavier, an indoor mobile
robot that autonomously navigates the corridors of our

building (Figure 3). Xavier is a synchro-drive robot
with bump, sonar, laser, and camera sensors. It mainly
uses landmark-based navigation, where landmarks are
doorways, corridor intersections, and walls in front of
it (although, we have recently implemented a more re-
liable probabilistic navigation scheme). Since the land-
mark detector is not completely reliable, the robot oc-
casionally misses a landmark and gets lost (sometimes
the landmark itself disappears, for instance, when peo-
ple are standing in front of an open doorway). Xavier
has a number of reactive strategies for dealing with such
problems, including searching more carefully the area
in which the landmark should have appeared, turn-
ing around if necessary to get another look [8]. Cur-
rent plans include having Xavier navigate all day in the
building, performing delivery tasks and recycling tasks
(an arm will be added to Xavier this Winter).

Current Work

While we are relatively happy with the overall archi-
tecture and development methodology, there are still
a number of technology gaps that we are working on.
Mainly, these relate to two problems: 1) ensuring that
the concurrent reactive behaviors do not interact badly,
and 2) determining what new reactive strategies to add.

The first problem arises because, even though we im-
pose a structure on when monitors and other behaviors
are active, there are still behaviors that operate concur-
rently. The problem can be exacerbated by incremen-
tal system development, since there is more chance for
the behaviors not to share common assumptions (and,
hence, interact badly) if they are developed at separate

Figure 2: Ratler Lunar Rover

times. Qur approach here is to attempt to use formal
languages to model the systems and their interactions,
and to use analysis tools to determine attributes of the
system, such as the potential for deadlock, resource con-
tention, etc. We have been looking at various modeling
languages, such as Petri Nets, Z, state charts, and tem-
poral logic to model TCA-based systems. While this
work is still in its infancy [1], we believe that it is a
fruitful direction to explore.

Along the same vein, we are developing software tools
to help automate the design, and analyze the perfor-
mance, of TCA-based systems. The design tools will
take abstract, high-level descriptions of the communi-
cations interface and task decomposition strategies of a
robot system and automatically generate code, or code
stubs. These tools will include a semantic component to
catch obvious errors in interface specifications and sub-
task interactions. The analysis tools will analyze logs of
the TCA message traffic and graphically display perti-
nent information, such as resource utilization, schedul-
ing constraints, and task interdependencies. Currently,
we have prototypes of an interface definition tool and
two analysis tools to chart resource utilization and task-
tree dependencies.

The second problem is more fundamental: where do
the monitors and exception handlers come from? We
want to move from hand-coding them to learning such
reactive strategies based on experience. The idea is that

Figure 3: Xavier Mobile Robot

one would have general progress monitors that would be
good at detecting when things were really going badly
(such as noticing that the robot has bumped something,
or that it is not moving forward, as expected). The
problem with such monitors is that they are too coarse
— they eventually catch all problems, but not necessar-
ily in time to allow the robot to extricate itself easily.
Thus, we would like more task-specific, finer-grained
monitors that are tuned to the expectations inherent
in the particular task, or subtask, currently being per-
formed. When one of the general-purpose monitors trig-
ger, 1t indicates that no more specialized monitor exists
for that situation, and thus i1t presents an opportunity
for learning. The vision is that the robot would use the
actual experience it is in, plus the plan it was pursuing,
to determine what it was expecting to sense in that sit-
uation, and from that to determine what it could have
sensed to predict that it would be getting into that sit-
uation (and, presumably, take action to avoid getting
into that situation).

Before we can move in that direction, however, we feel
that we must move from representations and plans that
are mainly discrete and deterministic, to more prob-
abilistic representations and more conditional plans.
This will enable us to reason more robustly about what
went wrong and why it did so (for instance, it is often
difficult to determine whether the root cause of a prob-
lem is sensor, planning, or execution error). In addition,

we have found that it is often hard to make rational
planning decisions (e.g., deciding where to place a foot,
or when the robot is lost) when the sensor data and
world models are so fraught with uncertainty. While
we do not wish to give up on the power of symbolic
representation and planning, we also do not want to
use 1t when inappropriate.

We present two examples of this. We originally de-
veloped a symbolic, landmark-based navigation scheme
for Xavier [8]. Tt navigates by planning a path (us-
ing A*) through a node-and-arc topological map of the
environment. Based on the map, it determines which
landmarks it expects to find at the intersections where
it wants to turn. While, as described above, there are
a number of monitors and exception handlers for sit-
uations where 1t makes a mistake, it still has only a
discrete idea of where it is at any one time, and so
must be fairly conservative before it decides that it has
truly made a mistake. In contrast, we have recently de-
veloped a navigation system for Xavier that uses par-
tially observable Markov models to explicitly represent
the robot’s uncertainty in its position. When the robot
gets a new sensor reading, it uses an uncertainty model
of its sensors to determine how likely it is to have ob-
served that reading at various places in the map, and
conditions that with the probability that it currently
believes that it is at that place. A planner associates
different actions with each Markov node, and the robot
continually executes the action with the largest total
probability mass.

In our simulation tests, this method has worked quite
well, even with relatively noisy sensor models (on the
order of 20% false positives and negatives). We are
now testing this scheme on Xavier itself. We also in-
tend to replace the current path-planning algorithm
with one that develops a policy, that 1s, a specifica-
tion of which action to take from any location in order
to reach the goal optimally. This policy will take into
account the probability that pertinent landmarks might
be missed, so that, for instance, the robot might pre-
fer to take slightly longer routes (distance-wise) if those
routes have a higher probability of success.

For the Lunar rover, local obstacle avoidance is done
using a planner adapted from the Unmanned Ground
Vehicle (UGV) program [2]. The planner merges ter-
rain maps derived from stereo data, and evaluates the
traversability of a discrete number of potential arcs that
the rover could follow. Although it has had great suc-
cess in the UGV program, we have found problems that
stem mainly from the inaccuracies in the stereo data
and dead-reckoning, which cause the merged maps to
be less than reliable. Also, the current planner depends
on a detailed model of the vehicle response to predict
its traverses over the terrain. If that model is not accu-
rate, the overall system performance suffers. We intend
to overcome some of these problems by explicitly rep-
resenting the uncertainty in the data and vehicle mod-
els, and having the planner take that uncertainty into

account. For example, we can augment the terrain ele-
vation maps with the variance in the measurement, as
predicted by a model of the stereo system. This will give
us a model of the confidence we should have in using
that data, and hence our confidence in the evaluation
of the traversability of an arc. Similarly, we can use
uncertainty models of the vehicle performance to pre-
dict the likely area that the vehicle will traverse, rather
than assuming it will follow a single arc.

Lessons Learned

We have developed the Task Control Architecture,
which combines deliberative and reactive control, to
help design and implement concurrent distributed
robotic systems, and have used the architecture to de-
velop about a dozen robot systems, including a six-
legged planetary rover, a Lunar rover, and an indoor
autonomous mobile robot. TCA uses task decompo-
sition and task sequencing for its deliberative aspects,
and execution monitoring and exception handling for
its reactive aspects. The idea 1s to layer the reactive
behaviors onto the nominal plans, thus incrementally
increasing system reliability. To further increase reli-
ability, we are currently working on formalizing TCA-
based systems, to detect unwanted interactions between
behaviors, and are developing probabilistic representa-
tions and planning algorithms, to aid in the automated
learning of monitors and exception handlers.

What lessons has this experience taught us about
designing reliable autonomous robots? First and fore-
most, reliability does not just “emerge” from a collec-
tion of behaviors, even if each behavior is individually
fairly reliable. Reliability needs to be structured into
the basic system architecture in order to prevent un-
wanted interactions, resource over-utilization, etc. We
have had good success through the hierarchical struc-
turing of systems — task/subtask hierarchies, hierar-
chies of coarse-to-fine monitoring strategies, and hier-
archies of local-to-global exception handling strategies.
While this added structuring introduces some run-time
overhead, it is nonetheless worthwhile overall because
it makes 1t easier to keep components modular and in-
dependent.

Second, we have learned the importance of incre-
mental system development. It is usually impossible
to pre-specify everything that could possibly go wrong
with a mobile robot that operates in a complex envi-
ronment. It is a fiction to believe that primitive behav-
iors can be designed that “do the right thing” in every
conceivable situation. The agent architecture must al-
low for incremental development, and it must facilitate
this by enabling components to be added without the
need to modify existing components. TCA does this,
to a large extent, through its constructs for specifying
monitors, exception handlers, and task decomposition
strategies. While the original aim in developing TCA
was to make 1t possible to have these components be
learned and added automatically, the same philosophy

facilitates building these systems by hand.

Third, we have learned the difficulty of automating
the acquisition of such components. The main difficul-
ties are in determining when a problem has occurred
and determining what information is relevant to the
problem. We need to encode expectations about why
the robot is performing particular actions. These ex-
pectations provide a measure to determine when things
are going wrong, and can be used to analyze what
must be done to make them right again. Unfortu-
nately, we have found that symbolic, discrete represen-
tations alone are insufficient to capture the subtleties
of the world needed for making such distinctions. We
have therefore been led towards investigating proba-
bilistic, and other, representations of uncertainty. We
believe that these representations, in conjunction with
more traditional symbolic approaches, will suffice for
the tasks of automatically acquiring monitoring and ex-
ception handling strategies.

In summary, we have much real-world experience
with autonomous mobile robots navigating in uncer-
tain, complex environments. This experience, in turn,
has taught us much about the design of software archi-
tectures for reliable robot behavior. It has also taught
us how far we still have to go to reach the goal of au-
tomating the development of reliable mobile robots.

References

[1] R. T. Goodwin. A formal specification of agent
properties. Technical Report CMU-CS-93-159,
Carnegie Mellon University, Pittsburgh PA. USA]
May 1993.

[2] A. Kelly. A partial analysis of the high speed au-
tonomous navigation problem. Technical Report
CMU-RI-TR-94-16, Robotics Institute, Carnegie
Mellon University, Pittsburgh, PA, 1994.

[3] E. Krotkov, J. Bares, L. Katragadda, R. Sim-
mons, and R. Whittaker. Lunar rover technology
demonstrations with dante and ratler. In Proc.
Intl. Symp. Artificial Intelligence, Robotics, and
Automation for Space, Jet Propulsion Laboratory,
Pasadena, CA, Oct. 1994.

[4] D. Miller. Execution monitoring for a mobile robot
system. In Proc. SPIE Conference on Intelligent
Control, Cambridge, Massachusetts, 1989. Society
of Photo-Optical Instrumentation Engineers.

[5] R. Simmons. Concurrent planning and execution
for autonomous robots. [IEEE Control Systems,
12(1):46-50, February 1992.

[6] R. Simmons. Monitoring and error recovery for
autonomous walking. In Proc. IEEE Interna-
tional Workshop on Intelligent Robots and Sys-
tems, pages 1407-1412, July 1992.

[7] R.Simmons. Expectation-based behavior. In Proc.
of International Symposium of Robotics Research,

Hidden Valley, PA, Oct. 1993.

[8] R. Simmons. Becoming increasingly reliable. In
Proc. of 2nd Intl. Conference on Artificial Intelli-
gence Planning Systems, Chicago, IL, June 1994.

[9] R. Simmons. Structured control for autonomous
robots. IEEE Transactions on Robotics and Au-
tomation, 10(1), Feb. 1994.

[10] R. Simmons, E. Krotkov, W. Whittaker, et al.
Progress towards robotic exploration of extreme
terrain. Journal of Applied Intelligence, 2:163-180,
1992.

Answers to Questions

Here are my answers to some of the questions posed

Eyoord%%mig()&ul?s t]ilge%“glgeﬁeed for central behavior co-
ordination? Strictly speaking, central coordination is
not needed — what 1s needed is coordination amongst
potentially interacting behaviors. This coordination
can be either “command arbitration” or “goal arbi-
tration.” In command arbitration, coordination occurs
right before commands are issued; in goal arbitration,
coordination occurs at a higher level, by prioritizing or
sequencing subgoals. For most agents, goal arbitration
has advantages: 1) it saves resources, since not all be-
haviors have to be active at all times, and 2) agents can
make more informed decisions, since the purpose of the
goals can be taken into account when determining how
to coordinate activities. The latter is harder for com-
mand arbitration, since usually, by the time commands
are being issued, the purpose is either not accessible or
is far removed from the behavior issuing the command.

On the other hand, command arbitration has ad-
vantages where the environment is very unpredictable.
In such cases, one might want to keep conflicting be-
haviors active and arbitrate their outcome only at the
last moment. Note that goal and command arbitra-
tion schemes are not mutually exclusive — architec-
tures can, and should, support both. Also note that
neither needs to be centralized, per se, since the ar-
bitration mechanisms only need to make pairwise deci-
sions. However, when many interactions can potentially
occur centralized arbitration is often easier to design,

t derstand what ig h
aecneé a?]dmlumca%r 1?1%anwem&;)e1l“ zsglgg%%gzlﬁ; brought

mto an agent’s decisions? How should an agent capture
misston intentions or integrate various levels of auton-
omy or shared control? A successful architecture needs
to enable humans to interact with the agent at any level
of abstraction. For example, our work with planetary
rovers demonstrates that at times one needs to teleop-
erate the robot at the joint level, while at other times
it is sufficient (and much more efficient) to give head-
ing or positional commands (i.e., go to this XY loca-
tion). Depending on the complexity of the environment
and the capabilities of the agent, the human may have
to give more or less detailed instructions. The exact
form of the interface (textual, spoken, gestures) is not
as important as the ability to intervene at any level of
hierarchical abstraction.

The hierarchical decomposition of goals (tasks) into
subgoals (subtasks) can be used to propagate inten-
tions. This is an extremely powerful method for orga-
nizing complex behaviors, and is fundamental to many
agent architectures. By reasoning about this hierarchy,
an agent can decide such things as when it is making
progress towards its goals, when a subgoal is no longer

applicable, etc.

Representation: How should the agent organize and
represent its internal knowledge and skills? In general,
agents need three types of knowledge: task decomposi-
tion, arbitration rules, and expectations. This knowl-
edge does not have to be explicit — the agent designer
can compile it into the architecture — but if it is ex-
plicit then the agent will typically be more flexible and
understandable to others.

Task decomposition knowledge enables agents to take
high-level goals and break them into simpler subgoals.
As indicated above, task decomposition is fundamental
for achieving complex tasks. If the knowledge is made
explicit, agents can combine i1t in novel ways to achieve
new goals in novel situations.

Arbitration rules, also discussed above, are necessary
because inevitably there is interaction between parts
(behaviors, subtasks) of the agent. Again, these rules
can be compiled, statically, into the architecture, but by
making them explicit, one can more easily make the be-
havior of the agent context-dependent, since the agent
can reason about which arbitration rules to apply in
which situations.

Expectations, which indicate what results subgoals
are supposed to have, form the core of getting agents
to perform successfully. Expectation knowledge is typi-
cally encoded in both execution monitors (what anoma-
lies to look for) and exception handlers (how to get
the agent back on track). By making such knowl-
edge explicit, one can learn to recognize and deal with
new contingencies. This is extremely important, since
most agent failures occur when they encounter situa-
tions that their designers did not anticipate. If agents
could notice when expectations about their actions were
being violated, then they could, at the very least, stop
doing stupid things.

Structural: How should the computational capabilities
of an agent be divided, structured, and interconnected?
What is the best decomposition/granularity of architec-
tural components? Obviously, I believe that hierarchy
is an important structuring principle. In addition to
its use in task decomposition, hierarchy is important
in monitoring and exception handling. To conserve re-
sources 1n execution monitoring, the agent should per-
ceive at the lowest resolution that will distinguish nor-
mal from abnormal (expected from unexpected) con-
ditions. Once that determination is made, the agent
can then focus its perception to further distinguish
the problem. For example, an office navigation robot
can use a general “forward progress detection” moni-
tor (perhaps based on wheel encoders). If lack of for-
ward progress is detected, the robot can then determine
the exact cause (a blocked corridor, unexpected end of
corridor, etc.) in order to determine the appropriate
response.

Similarly, exception handling should be hierarchical
— the agent starts by applying lower-level exception

handlers, which have more local effects but are applica-
ble in more restricted contexts. If they fail to solve the
problem, then the agent should try higher-level, more
general strategies. For example, when a blocked corri-
dor 1s detected, a local strategy is to find a way around
the blockage; a more global strategy is find an alterna-
tive route; an even higher-level strategy is to give up on

the purre t goa]H,if no alﬁ(arﬁatli(ve route, is available.
ould be

These hierarchies s ept distinct — separate
task decomposition, monitoring, and exception han-
dling hierarchies should coexist. The advantage is flex-
ibility and ease of incrementally modifying systems.

Performance: What types of performance goals and
metrics can realistically be used for agents operating
m dynamic, uncertain, and even actively hostile en-
vironments? In my mind, the only real performance
measurements that make any sense are 1) the range of
conditions that the agent can successfully perform its
tasks, and 2) the percentage of time it is successful in
a given environment. We should act to delineate the
space of environments for certain tasks (corridor navi-
gation, office cleanup, etc.). For example, the corridor
navigation task can be divided into static/dynamic en-
vironments (people, doors opening and closing, etc.),
degree of fore-knowledge of the environment (topology,
metric information), tightness of fit (e.g., ratio of robot
width to corridor width), uniformity of the corridors
(same color, same reflectance properties), orthogonal
vs. non-orthogonal corridors, etc. Such an analysis of
the environment (and task) would go a long way to-
wards providing a basis for comparing the performance
of agents.

Simulation: What, if any, role can advanced simula-
tion technology play in developing and verifying modules
and/or systems? Simulators are invaluable as develop-
ment tools. They enable the agent designer to test out
ideas in a safe environment and to easily run controlled
experiments to test the efficacy of different algorithms.
Out planetary rover work would be nearly impossible
without the use of simulators. We like to build simu-
lators that have the same interfaces as the real robot
hardware (including all sensors). In this way, the ex-
act same code that runs on the simulator can be ported,
unchanged, to the real robot. This eliminates any trans-
lation errors and increases our confidence that the code
will work on the actual hardware. The anonymous
message-passing communications of our Task Control
Architecture makes this easy to do. That said, noth-
ing is ever sure until experiments are done on the robot
itself. For all their advances, simulations remain just
that — simulations of the real world, and all simulators
include the biases of their human designers.

Learning: How can a given architecture support learn-
ing? Ah yes, learning. The Holy Grail of Al and
Robotics. My goal has been to first develop an ar-
chitecture in which learning can take place, and then

to move on to the actual learning aspects. So far, we
haven’t quite got to the second stage, but the first stage
is in reasonably good shape. Mainly, the necessary in-
frastructure involves delineating the hierarchies needed
so that new task decomposition strategies, new moni-
tors, and new exception handlers can be incrementally
integrated with minimal effect on existing knowledge.
To perform such learning task, the agent needs explicit
knowledge of expectations (which is something we are
starting to integrate into the architecture). Our efforts
at robot learning to date have involved refining param-
eters of existing knowledge structures, such as learn-
ing metric information to augment a topological map,
learning new visual landmarks, etc. Work is just begin-
ning on learning more strategic knowledge.

