
Elimination of Negation in a Logical Framework

Alberto Momigliano

Department of Philosophy, Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.
mobile@cs.cmu.edu

Abstract. Logical frameworks with a logic programming interpretation such
as hereditary Harrop formulae (HHF) [12] cannot express directly negative
information, although negation is a useful speci�cation tool. Since negation-
as-failure does not �t well in a logical framework, especially one endowed with
hypothetical and parametric judgments, we adapt the idea of elimination of
negation introduced in [17] for Horn logic to a fragment of higher-order HHF.
This entails �nding a middle ground between the Closed World Assumption
usually associated with negation and the Open World Assumption typical of
logical frameworks; the main technical idea is to isolate a set of programs
where static and dynamic clauses do not overlap.

1 Introduction

Deductive systems consist of axioms and rules de�ning derivable judgments; they
can be used to specify logics and aspects of programming languages such as oper-
ational semantics or type systems. A logical framework is a meta-language for the
speci�cation, implementation and veri�cation of deductive systems and possibly their
meta-theory. A logical framework must provide tools which make encodings as sim-
ple and direct as possible. One well known example is higher-order abstract syntax,
which moves renaming and substitution principles to the meta-language. Logical
frameworks should be by design as weak as possible to simplify proofs of adequa-
cy of encodings, e�ective checking of the validity of derivations and proof-search as
well as uni�cation. Many logical framework have been proposed in the literature (see
[16] for an overview) and many extensions are also under consideration. However, we
must carefully balance the bene�ts that any proposed extension can bring against
the complications its meta-theory would incur.

This paper discusses the introduction of a logically justi�ed notion of negation in
logical frameworks with a logic programming interpretation such as hereditary Harrop
formulae (HHF) [12] and its implementation in �Prolog [15]. We intend this to form
the basis for type-theoretic frameworks such as LF [9] and its implementation Twelf

[19]. Those systems do not provide a primitive negation operator. Indeed, construc-
tive logics usually implement negative information as :A � A!?, where ? denotes
absurdity and the Duns Scoto Law is the elimination rule. Thus negative predicates
have no special status; that would correspond to explicitly code negative informa-
tion in a program, which is entirely consistent with the procedural interpretation
of hypothetical judgments available in logical frameworks with a logic programming
interpretation. However, this would not only signi�cantly complicate goal-oriented

Elimination of Negation in a Logical Framework 411

proof search, but providing negative de�nitions seems to be particularly error-prone,
repetitive and not particularly interesting; more importantly, in a logical framework
we have also to ful�ll the proof obligation that the proposed negative de�nition does
behave as the complement (of its positive counterpart). Automating the synthesis
of negative information has not only an immediate practical relevance in the logic
programming sense, but it may also have a rather dramatic e�ect on the possibility
of implementing deductive systems that would prove to be too unwieldy to deal with
otherwise. The synthesis of the negation of predicates such as typable, well-formed,

canonical form, subsort, value etc.{as well as Prolog-like predicates such as equality,
set membership and the like{will increase the amount of meta-theory that can be
formalized.

Traditionally, negation-as-failure (NF) [5] has been the overwhelmingly used ap-
proach in logic programming (see [2] for a recent survey): that is, infer :A if every
proof of A fails �nitely. The operational nature of this rule motivates the lack of
a unique semantics and some of its related troublesome features: possible unsound-
ness, incompleteness and
oundering. Furthermore, even if we manage to isolate a
well-behaved logical fragment, such as acyclic normal programs, allowing NF in a
logical framework would make adequacy theorems more diÆcult to prove, as both
provability and unprovability must now be considered. The situation is even further
complicated when we step to frameworks with hypothetical judgments; as recognized
�rst by Gabbay [6], the unrestricted combination of NF and embedded implication
is particularly problematic, since it leads to the failure of basic logic principles such
as cut-elimination.

The approach to negation that we adopt is transformational, also known as inten-
sional negation, initiated in [17] and developed in Pisa [3] for Horn logic with negation.
Roughly, given a clause with occurrences of negated predicates, say Q G;:P;G0,
where P is an already de�ned atom, the aim is to derive a positive predicate,
say non P which implements the complement of P , preserving operational equiv-
alence; then, it is merely a question of replacement, yielding the negation-less clause
Q G;non P;G0. This has the neat e�ect that negation and its problems are e-

liminated, i.e. we avoid any extension to the (meta) language. Technically, we can
achieve this by transforming a Horn program into negation normal form and then by
negating atoms via complementing terms, a problem �rst addressed in [10] for �rst-
order terms. A �nal issue, which we do not tackle here, is dealing with local variables,
which, during the transformation, become (extensionally) universally quanti�ed [1].

Unfortunately, this approach does not scale immediately to logical frameworks
such as HHF, for three main reasons:

1. The simply-typed �-calculus is not closed under term complement.
2. Negation normal forms are incompatible with the operational semantics required

by HHF.
3. There is an intrinsic tension between the Closed World Assumption (CWA),

which is associated with negation, and the Open World Assumption (OWA) typ-
ical of languages with embedded implication.

The �rst problem has been solved in [14], by introducing a strict �-calculus where
term complement in the simply typed �-calculus can be embedded and performed.

412 Alberto Momigliano

The second issue is orthogonal and requires an operational notion of normal form. The
third one is rooted in the fundamental di�erence between Horn and HHF formulae:
as well known, a Horn predicate de�nition can be seen as an inductive de�nition
of the same predicate. The minimality condition of inductive de�nitions excludes
anything else which is not allowed by the base and step case(s). This corresponds in
Horn logic to the existence of the least model and to the consistency of the CWA and
its �nitary approximation, the completion of a program [5]: every atom which is not
provable from a program is assumed to be false. Languages which provide embedded
implication and universal quanti�cation are instead open-ended and thus require the
OWA; in fact, dynamic assumptions may, at run-time, extend the current signature
and program in a totally unpredictable way. This makes it in general impossible
to talk about the closure of such a program. In the literature the issue has been
addressed in essentially three ways:

1. By enforcing a strict distinction between CWA and OWA predicates and applying
NF only to the former [8], where the latter would require minimal negation.

2. By switching to a modal logic, which is able to take into account arbitrary ex-

tensions of the program as possible worlds (see the completion construction in
[7] for N-Prolog and [4] for Hypothetical Datalog).

3. By embracing the idea of partiality in inductive de�nitions and using the rule of
de�nitional re
ection to incorporate a proof-theoretical notion of closure analo-
gous to the completion [11].

None of those approaches are satisfactory for our purposes: most of the predicates
we want to negate are open-ended; similarly, de�nitional re
ection is not well-behaved
(for example cut is not eliminable) for that very class of programs we are interested
in. Moreover, we need to express the negation of a predicate in the same language
where the predicate is formulated. Our solution is to restrict the set of programs we
deem deniable in a novel way, so as to enforce a Regular Word Assumption (RWA): we
de�ne a class of programs whose dynamic assumptions extend the current database
in a speci�c regular way. This constitutes a reasonable middle ground between the
CWA which allows no dynamic assumption but is amenable to negation and the
OWA, where assumptions are totally unpredictable. The RWA is also a promising
tool in the study of the meta-logical frameworks [18]. Technically, this regularity
under dynamic extension is calibrated so as to ensure that static and dynamic clauses
never overlap. This property extends to the negative program; in a sense, we maintain
a distinction between static and dynamic information, but at a much �ner level,
i.e. inside the de�nition of a predicate. The resulting fragment is very rich, as it
captures the essence of the usage of hypothetical and parametric judgments in a
logical framework; namely, that they are intrinsically combined to represent scoping
constructs in the object language. This is why we contend that this class of programs
is adequate for the practice of logical frameworks.

It is clear that elimination of negation makes sense only when negation is strat-
i�ed, i.e. the negative predicates ultimately refers (in the call graph) to a positive
one. While there may be a place in logic programming for non-strati�ed negation,
this does not seem to be the case for a logical framework. Another di�erence from
traditional logic programming is that negation applies only to terminating programs;

Elimination of Negation in a Logical Framework 413

thus it refers not to �nite failure but to unprovability tout court, as we refrain from
negating programs whose negation is not recursively axiomatizable. We will thus
identify negation with a complement operation.

The rest of the paper is organized as follow: in Sect. 2 we give an informal view
of the complement algorithm by means of examples, while Sect. 3 introduces the
language. Section 4 describe term and clause complementation. We conclude in Sect. 5
with some remarks on future work. We refer to [13] for more details and proofs
omitted here for reasons of space.

2 A Motivating Example

Consider the expressions of the untyped �-calculus:

e ::= x j �x : e j e1 e2

We encode these expressions as terms in (labeled) HHF via the usual techniques of
higher-order abstract syntax as canonical forms over the following signature:

� = exp : type; lam : (exp! exp)! exp; app : exp! (exp! exp)

The representation function is given by:

pxq = x p�x : eq = lam (�x :exp: peq) pe1 e2q = app pe1q pe2q

A term is linear if every functional subterm uses each argument exactly once: in
particular, we check for linearity of a function making sure that the latter is linear
in its �rst argument and then recurring on the rest of the expression.

linapp : linear(app E1 E2) linear(E1) ^ linear(E2):

linlam : linear(lam(�x :E x))

 linx(�x :E x) ^ (8y :exp: linear(y)! linear(E y)):

linxx : linx(�x : x):

linxap1 : linx(�x : app (E1 x) E2) linx(�x :E1 x):

linxap2 : linx(�x : app E1 (E2 x)) linx(�x :E2 x):

linxlm : linx(�x : lam(�y :E x y)) (8y :exp: linx(�x :E x y)):

This is clearly a decision procedure, which can be complemented; an expression is
not linear if there is some function which either does not use its argument or uses it
more than once. First, the complement of linapp does not pose any problem, as it
is a Horn clause: an application is not linear if either the �rst element or the second
is not linear. Next, a lambda expression is not linear in two cases: one, if it is not
linear in its �rst argument:

:linlam1 : :linear(lam �x :E x) :linx(�x :E x):

414 Alberto Momigliano

Secondly, if its body is not linear. Now, this poses a new problem, as we have to
negate a hypothetical and parametric goal. Let us reason by example and suppose
we are given, in the empty context, a goal linear(lam(�x : lam(�y : x))), which is
unprovable, since the second lambda term is not linear in y; the proof tree yields
the failure leaf linx(�x : z), for a new parameter z, in the context z:exp; linear(z).
Our guiding intuition is that we want to mimic a failure derivation so as to provide
a successful derivation from the negative de�nition, i.e. a proof of :linx(�x : z) from
z:exp; linear(z); this shows one prominent feature of complementation of an HHF
formula: negation `skips' over 8 and !, since it needs to mirror failure from assump-
tions. Now, let us examine clause linxlm and reconsider the above failure leaf; in a
�rst attempt, according to the idea above, the complement would be:

?
: linxlm : :linx(�x : lam(�y :E x y)) (8y :exp::linx(�x :E x y)):

However, there is no way to obtain a proof of :linx(�x : z) from the current context.
Indeed, the linxlm clause does not carry enough information so that its complement
can mimic the failure proof. In a sense, the clause is not assumption-complete: once
it has introduced a new parameter, the clause only speci�es how to use it in a posi-
tive context. It is up to us to synthesize its dynamic negative de�nition, in this case
simply 8y :exp::linx(�x : y). More in general, it is a characteristic of HHF that the
negation of a clause is not strong enough to determine the behavior of a program
under complementation. We will have to insert (via a source-to-source transforma-
tion) additional structure in a predicate de�nition, in order to completely determine
the provability or failure of goals which mention parameters. By observing the struc-
ture of all possible assumption that a predicate de�nition can make, we will augment

those assumptions with their negative de�nition. In particular, we �rst augment the
clause linxlm:

augD(linxlm) : linx(�x : lam(�y :E x y))

 (8y :exp::linx(�x : y)! linx(�x :E x y)):

so that, by complementation, we obtain:

:augD(linxlm) : :linx(�x : lam(�y :E x y))

 (8y :exp::linx(�x : y)! :linx(�x :E x y)):

Unfortunately, the procedure we have outlined is not possible in general. Consider
a clause encoding the introduction rule for implication in natural deduction, which
can be used to check whether an implicational formula trivially holds:

� = form : type; imp : form! (form! form); a : form; b : form; c : form

impi : nd(A imp B) (nd(A)! nd(B)):

Following our earlier remark its complement would be:

:impi1 : :nd(a):

:impi2 : :nd(b):

:impi3 : :nd(c):
?
: impi : :nd(A imp B) (nd(A) ! :nd(B)):

Elimination of Negation in a Logical Framework 415

This speci�cation is clearly incorrect since both nd(a imp a) and :nd(a imp a) are
derivable from the empty context. We can isolate one major problem: in clause impi
the assumption nd(A) which is dynamically added to the (static) de�nition of the
nd predicate overlaps with the head of the clause. A symmetrical problem can occur
when dynamic and static clause do di�er but their complements do not. We have
thus isolated two main issues:

1. Exhaustivity: we need to enrich clauses so that every (ground) goal or its negation
is provable.

2. Exclusivity: we need to isolate a signi�cant fragment where it is not the case that
both a goal and its negation are provable.

We will achieve exhaustivity (Theorem 2) by augmenting the program with the com-
plement of assumptions; moreover, we will achieve exclusivity (Theorem 1) with the
restriction to complementable programs. To anticipate the idea, a clause is comple-
mentable if every assumption contains some eigenvariable at execution time.

3 Provability and Unprovability

We will use the following somewhat unusual language:

Simple Types A ::= a j A1 ! A2

Terms M ::= c j x j �x:A: M jM1 M2

Atoms Q ::= q Mn j :q Mn

Clauses D ::= > j?j Q G j D1 ^D2 j D1 _D2 j 8x :A:D

Goals G ::= Q j > j?jMn
�
= Nn jMn 6

�
= Nn j

G1 ^G2 j G1 _G2 j D ! G j 8x :A:G
Signatures � ::= � j �; a:type j �; c:A

Parameter Contexts � ::= � j �; x:A
Assumptions D ::= > j D ^D

There is a distinguished type o for propositions which can occur only as the target of
some A. We remark that `:' is not a connective, but a name constructor for atomic
formulae; `facts' are represented, for convenience, byQ >, although in examples we
will omit to mention >. We assume that existential variables occur only once in the
head of program clauses (i.e. clauses are left-linear); this can always be achieved by
introducing disequations in the body. In this paper we restrict ourselves to programs
such that all assumptions are Horn and which can be proven to be terminating
under some well-founded ordering. We introduce the uniform proofs system [12] for
(immediate) provability and denial in Fig. 1. For terminating programs, we can prove
that the failure to achieve a proof of G translates into (a derivation of) the denial of
G. Note also that due to the presence of disjunction as a clause constructor, uniform
proofs are not complete for our language. We will remedy this situation in Sect. 4.

� ;D P̀ G Program P and assumption D uniformly entail G.
� ;D 6 P̀ G Program P and assumption D uniformly deny G.
� ;D P̀ D>>Q Clause D from P and D immediately entails atom Q.
� ;D 6 P̀ D>>Q Clause D from P and D immediately denies atom Q.

416 Alberto Momigliano

` >
� ;D P̀ >

6`?
� ;D 6 P̀?

� ;D P̀ G1 � ;D P̀ G2

`^
� ;D P̀ G1 ^G2

� ;D 6 P̀ G1 � ;D 6 P̀ G2

6`_
� ;D 6 P̀ G1 _G2

� ;D P̀ Gi

` _i
� ;D P̀ G1 _G2

� ;D 6 P̀ Gi

6` ^i
� ;D 6 P̀ G1 ^G2

� ;D P̀ [t=x]G
` 9

� ;D P̀ 9x :A:G

for all n � ;D 6 P̀ [n=x]G
6` 9

� ;D 6 P̀ 9x :A:G

� ; (D ^D) P̀ G
` !

� ;D P̀ D ! G

� ; (D ^D) 6 P̀ G
6` !

� ;D 6 P̀ D ! G

(�; y:A);D P̀ [y=x]G
`8y

� ;D P̀ 8x :A:G

(�; y:A);D 6 P̀ [y=x]G
6`8y

� ;D 6 P̀ 8x :A:G

� ;D P̀ (P ^ D)>>Q
` At

� ;D P̀ Q

� ;D 6 P̀ (P ^ D)>>Q
6` At

� ;D 6 P̀ Q

>> ?
� ;D P̀? >>Q

6>>>
� ;D 6 P̀ >>>Q

� ;D P̀ [t=x]D>>Q
>>8

� ;D P̀ 8x :A:D>>Q

for all n � ;D 6 P̀ [n=x]D>>Q
6>>8

� ;D 6 P̀ 8x :A:D>>Q

� ;D P̀ Di>>Q
>>^i

� ;D P̀ D1 ^D2>>Q

� ;D 6 P̀ Di>>Q
6>>_i

� ;D 6 P̀ D1 _D2>>Q

� ;D P̀ D1>>Q � ;D P̀ D2>>Q
>>_

� ;D P̀ D1 _D2>>Q

� ;D 6 P̀ D1>>Q � ;D 6 P̀ D2>>Q
6>>^

� ;D 6 P̀ D1 ^D2>>Q

Nn =Mn � ;D P̀ G
>>!

� ;D P̀ (q Nn G)>>q Mn

Nn 6=Mn

6 >>!1

� ;D 6 P̀ (q Nn G)>>q Mn

Nn =Mn � ;D 6 P̀ G
6 >>!2

� ;D 6 P̀ (q Nn G)>>q Mn

Fig. 1. (Immediate) Provability and Denial

Elimination of Negation in a Logical Framework 417

Some brief comments are in order: the (in)equalities rules simply mirror the ob-

ject logic symbols
�
=; 6

�
= as meta-level (in)equalities and are omitted. 6>>8 and 6` 9

are in�nitary rules, given the meta-linguistic extensional universal quanti�cation on
all terms. Rules ` 8; 6` 8 are instead parametric in y, where the ()y superscript
reminds us of the eigenvariable condition. The denial rules for implication and uni-
versal quanti�cation re
ect the operational semantics of unprovability that we have
discussed earlier.

We start by putting every program in a normalized format w.r.t. assumptions,
so that every goal in the scope of an universal quanti�er is guaranteed to depend on
some assumption, possibly the trivial clause >. This has also the e�ect of `localizing'
the trivial assumption to its atom, a property will be central while complementing
assumptions; for example we re-write linxlm as follows:

linxlm : linx (�x : lam(�y :E x y))

 (8x :exp:>linx ! linx (�x :E x z)):

For the sake of this paper, we also need to modify the source program so that every
term in a clause head is fully applied, i.e. it is a lambda term where every variable
mentioned in the binder occurs in the matrix; this makes term complementation
(Sect. 4) much simpler. For example clause linxap1 is rewritten as:

linxap1 : linx(�x : app (E1 x) (E2 x)) linx(�x :E1 x) ^ vac(�x :E2 x):

where vac(�x :E2 x) enforces that x does not occur in E2 x. Its de�nition is type-
directed, but we have shown in [14] how to internalize these occurrence constraints
in a strict type theory, so that this further transformation is not needed.

We now discuss context schemata. As we have argued in Sect. 2, we cannot obtain
closure under clause complementation for the full logic of HHF, but we have to restrict
ourselves to a smaller (but signi�cant) fragment. This in turn entails that we have
to make sure that during execution, whenever an assumption is made, it remains in
the fragment we have isolated. Technically, we proceed as follows:

{ We extract from the static de�nition of a predicate the general `template' of a
legal assumption.

{ We require dynamic assumptions to conform to this template.

We thus introduce the notion of schema satisfaction, which uses the following data
structure: a context schema abstracts over all possible instantiations of a context
during execution. To account for that, we introduce a quanti�er-like operator, say
SOME � :D, which takes a clause and existentially bounds its free variables, if any,
i.e. � = FV (D). The double bar `k', not to be confused with the BNF `j' that we
informally use in the meta-language, denotes schema alternatives, while `Æ' stands
for the empty context schema.

Contexts Schemata S ::= Æ j Sk(� ; SOME � :D)

The linear predicate yields this (degenerate) example of context schema:

Slinear = Æ j Slinearkx:exp; linear(x) j Slinearkx:exp;>linx

418 Alberto Momigliano

We extract a context schema by collecting all negative occurrences in a goal; this
is achieved by simulating execution until an atomic goal is reached and the current
list of parameters and assumptions is returned, with their correct existential binding.
Di�erent clauses may contribute di�erent schema alternatives for a given predicate
de�nition. A run-time context consists of a set of blocks, each of which is an instance
of the context schema, for example:

y1:exp; y2:exp; x1:exp;>linx ^ >linx ^ linear(x1)

We will need to disambiguate blocks in run-time contexts; overlapping may indeed
happen when the alternatives in a context schema are not disjoint. Intuitively, a
block is complete when an atomic conclusion is reached during the deduction. Any
bracketing convention will do:

dy1:expe; dy2:expe; dx1:expe; d>linxe ^ d>linxe ^ dlinear(x1)e

We then de�ne when a formula satis�es a schema. We start by saying that a com-
pleted block belongs to a schema when the block is an alphabetic variant of some
instantiation of one of the alternatives of the schema. Then, the empty run-time
context is an instance of every schema. Secondly, if � 0 and D0 are completed blocks
which belong to S, and � ;D in an instance of S, then (�; d� 0e); (D ^ dD0e) is an
instance of S, provided that D0 is a valid clause. The latter holds when each of its
subgoals satis�es the schema. This is achieved by mimicking the construction on the
run-time schema until in the base case we check whether the resulting context is an
instance of the given schema.

We can prove that if a context schema is extracted from a program, then any
instance of the latter satis�es the former. Moreover, execution preserves contexts,
i.e. every subgoal which arises in any given successful or failed (immediate and non-
immediate) sub-derivation satis�es the context schema. See [13] for the formal devel-
opment.

4 Clause Complementation

We restrict ourselves to programs with:

{ Goals where every assumption is parametric, i.e. it is in the scope of a positive
occurrence of a universal quanti�er and the corresponding parameter occurs in
head position in the assumption.

{ Clauses Q G such that the head of every term in Q is rigid.

Note that the rigidity restriction applies only to non-Horn predicate de�nitions and
can be signi�cantly relaxed; see [13] for a detailed account.

The �rst ingredient is higher-order pattern complement, Not(M), investigated
in the general case in [14]; we give here the rules for complementing fully applied
patterns:

Elimination of Negation in a Logical Framework 419

Not F lx
� ` Not(E xn)) ;

�; x:A ` Not(M)) N : B
Not Lam

� ` Not(�x :A:M)) �x :A:N : A! B

g 2 � [�; g : A1 ! : : :! Am ! a;m � 0; h 6� g
Not App1

� ` Not(h Mn)) g (Z1�) : : : (Zm�) : a

9i : 1 � i � n � ` Not(Mi)) N :
Not App2

� ` Not(h Mn)) h (Z1�) : : : (Zi�1�) N (Zi+1�) : : : (Zn�) : a

where the Z's are fresh variables which may depend on the domain of � , h 2 � [� ,
and � ` h : A1 ! : : :! An ! a. � ` Not(M) = N : A i� N = fN j � ` Not(M))
N : Ag. For example:

� ` Not(�x : x) = f�x : lam(�y :E x y); �x : app (E1 x) (E2 x)g

If we write � ` M 2 kNk : A when M is a ground instance of a pattern N at type
A, we can show that Not behaves as the complement on sets of ground terms, i.e.

1. (Exclusivity) Not (� `M 2 kNk : A and � `M 2 kNot(N)k : A).
2. (Exhaustivity) Either � `M 2 kNk : A or � `M 2 kNot(N)k : A.

Complementing goals is immediate: we just put the latter in negation normal
form, respecting the operational semantics of failure.

NotG>
NotG(>) =?

NotG ?
NotG(?) = >

NotGAt
NotG(Q) = :Q

Not
�
=

NotG(Mn
�
= Nn) = (Mn 6

�
= Nn)

Not 6
�
=

NotG(Mn 6
�
= Nn) = (Mn

�
= Nn)

NotG(G) = G0

NotG8
NotG(8x :A:G) = 8x :A:G

0

NotG(G) = G0

NotG !
NotG(D ! G) = D ! G0

NotG(G1) = G0
1 NotG(G2) = G0

2

Not^
NotG(G1 ^G2) = G0

1 _G
0
2

NotG(G1) = G0
1 NotG(G2) = G0

2

Not_
NotG(G1 _G2) = G0

1 ^G
0
2

Clause complementation is instead more delicate: given a rule q Mn G, its
complement must contain a `factual' part motivating failure due to clash with the
head; the remainder NotG(G) expresses failure in the body, if any. Clause comple-
mentation must discriminate whether (the head of) a rule belongs to the static or
dynamic de�nition of a predicate. In the �rst case all the relevant information is
already present in the head of the clause and we can use the term complementation
algorithm. This is accomplished by the rule NotD !, where a set of negative facts
is built via term complementation Not(Mn), namely

V
Nn2Not(Mn)

8(:q Nn >),

420 Alberto Momigliano

whose fresh free variables are universally closed; moreover the negative counterpart
of the source clause is obtained via complementation of the body. The original quan-
ti�cation is retained thanks to rule NotD8.

NotD>
NotD(>) =?

NotD ?
NotD(?) = >

NotG(G) = G0

NotD

NotD(q Mn G) = (
^

Nn2Not(Mn)

8(:(q Nn) >)) ^ (:q Mn G0)

NotD(D) = D0

NotD8
NotD(8x :A:D) = 8x :A:D0

NotD(D1) = D0
1 NotD(D2) = D0

2

Not^
NotD(D1 ^D2) = D0

1 _D
0
2

NotD(D1) = D0
1 NotD(D2) = D0

2

Not_
NotD(D1 _D2) = D0

1 ^D
0
2

Otherwise, we can think of the complement of an atomic assumption
(q M1 : : : x : : :Mn), which is by de�nition parametric in some x, as static clause
complementation w.r.t. x, i.e. NotD(qx M1 : : :Mi�1 Mi+1 : : :Mn). However, most of
thoseMi, which at compile-time are variables, will be instantiated at run-time: there-
fore it would be incorrect to compute their complement as empty. Since we cannot
foresee this instantiation, we achieve clause complementation via the introduction of
disequations. This is realized by the judgment � ` Not�(D). We need the follow-
ing notion: a parameter x:a is relevant to a predicate symbol q (denoted xRiq) if
�(q) = A1 ! � � � ! An ! o and for some 1 � i � n the target type of Ai is a.

Not�>

� ` Not�(>q) =
^

x2dom(�)

(
^

xRiq

Notix(>q))

NotG(G) = G0

Not�

� ` Not�(Q G) = (
^

x2dom(�)

(
^

xRiq

Notix(Q))) ^ (:Q G0)

Both rules refer to an auxiliary judgment Notix(D):

�(q) = A1 ! � � � ! An ! o � ` sh(x;Ai) = ex
Notix>

Notix(>q) = 8Z1 :A1: : : : 8Zn :An::(q Zi
ex) >

�(q) = A1 ! � � � ! An ! o � ` sh(x;Ai) = ex
NotixAt

Notix(q Mn) =
^

1�j�n;j 6=i

(8Z1 :A1: : : : 8Zn :An::(q Zi
ex) Mj 6

�
= Zj)

The idea is to:

Elimination of Negation in a Logical Framework 421

{ Pivot on x:a 2 � .
{ Locate a type Ai such that x:a is relevant to q at i.
{ Complement D w.r.t. x and i.
{ Repeat for every Ai and for every x.

The rest of the rules for � ` Not�(D) are completely analogous to the ones for
NotD(D) and are omitted. Both simply recur on the program respecting the duality
of conjunction and disjunction w.r.t. negation. Notice the di�erent treatment of the
trivial clause > by rules NotD> and Not�>: if no parameter has been assumed, then
> truly stands for the empty predicate de�nition and its complement is the universal
de�nition ?. If, on the other hand � is not empty, it means that >q has been intro-
duced during the >-normalization preprocessing phase and has been localized to the
predicate q. The rule Notix> allows to build a new negative assumption w.r.t. q; x; i
in case >q is the only dynamic de�nition of q. As >q carries no information at all con-

cerning q, the most general negative assumption is added; the notation Zi
ex

abridges
Z1 : : : Zi�1 ex Zi+1 : : : Zn, where the Z's are fresh logic variables and ex is a term
built pre�xing a parameter x by an appropriate number of lambda's, according to
the type of its position; this is speci�ed by the � ` sh(x;A) judgment, omitted here
(but see it in action in Example 1).

Now that we have discussed how to perform clause, assumption and goal com-
plementation, we synchronize them together in a phase we call augmentation, which
simply inserts the correct assumption complementation into a goal and in turn into
a clause. This is achieved by a judgment � ;D �̀ augD(D), again omitted here for
reasons of space.

For example, consider the copy clause on �-terms:

cplam : copy (lam E) (lam F)

 (8x :exp: copy x x! copy (E x) (F x)):

The augmentation procedure collects x:exp; copy x x and calls x:exp ` Not�(copy x x).

First Notx1(copy x x) = (8E0 :exp::copy E0 x x 6
�
= E0), secondly Notx2(copy x x) =

(8F 0 :exp::copy x F 0 x 6
�
= F 0), yielding:

augD(cplam) : copy (lam E) (lam F)

 (8x :exp:

(8E0 :exp::copy E0 x x 6
�
= E0) ^

(8F 0 :exp::copy x F 0 x 6
�
= F 0)!

(copy x x! copy (E x) (F x))):

Let us see how rule Notix> enters the picture; recall the normalized linxlm clause.
From � ` sh(y; exp! exp) = �x : y we have Noty1(>linx) = :linx (�x : y):

augD(linxlam) : linx (�x : lam(�y :E x y))

 (8y :exp::linx (�x : y)! linx (�x :E x y)):

Let us apply the complement algorithm to the linx predicate de�nition. The
strict predicate is simply the complement of the vac predicate previously intro-
duced. Again, these annotations can be internalized in a strict type theory [14].

422 Alberto Momigliano

NotD(def(linx)) =

NotD(linxx) _ NotD(linxap1) _ NotD(linxap2) _ NotD(linxlm) =

(:linx(�x : app (E1 x) (E2 x)) ^ :linx(�x : lam(�y : (E x y)))) _

(:linx(�x : x) ^ :linx(�x : lam(�y : (E x y))) ^

:linx(�x : app (E1 x) (E2 x)) strict(�x :E2 x)

^ :linx(�x : app (E1 x) (E2 x)) :linx(�x :E1 x)) _

(:linx(�x : x) ^ :linx(�x : lam(�y : (E x y))) ^

:linx(�x : app (E1 x) (E2 x)) strict(�x :E1 x)

^ :linx(�x : app (E1 x) (E2 x)) :linx(�x :E2 x)) _

(:linx(�x : x) ^ :linx(�x : app (E1 x) (E2 x))

^ :linx(�x : lam(�y : (E x y))) (8y :exp::linx(�x : y)! :linx(�x :E x y))):

We can now establish exclusivity and exhaustivity of clause complementation. Let
NotD(P) = P�:

Theorem 1 (Exclusivity). For every run-time context � ;D instance of a schema

S extracted from an augmented program P:

1. It is not the case that � ;D P̀ G and � ;D P̀� NotG(G).
2. It is not the case that � ;D P̀ (P ^D)>>Q and � ;D P̀� (P� ^ D)>>:Q.

Proof. (Sketch) By mutual induction on the structure of the derivation of � ;D P̀ G

and � ;D P̀ (P ^ D)>>Q. The proof goes through as there is no `bad' interaction
between the static and dynamic de�nition of a predicate; namely there is no overlap
between a clause from P and from D since in every atomic assumption there must be
an occurrence of an eigenvariable and every corresponding term in a program clause
head must start with a constructor. If both clauses are dynamic, it holds because
an appropriate disequation is present; this approximates what happens in the static
case, which is based on term exclusivity.

The denial system comes in handy in the following proof.

Theorem 2 (Exhaustivity). For every substitution �; � and run-time context

� ; [�]D instance of a schema S extracted from an augmented program P:

1. If for all � � ; [�]D 6 P̀ [�]G, then there is a � such that � ; [�]D P̀� [�]NotG(G).
2.1 If, for all � � ; [�]D 6 P̀ [�]P>>[�]Q, then here is a � such that � ; [�]D P̀�

[�]NotD(D)>>[�]:Q.
2.2 If, for all � � ; [�]D 6 P̀ [�]D>>[�]Q, then here is a � such that � ; [�]D P̀�

[�]Not�(D)>>[�]:Q.

The proof is by mutual induction on the structure of the given derivations. As a
corollary, we are guaranteed that clause complementation satis�es the boolean rules
of negation.

Finally, we show how to eliminate from clauses the `_' operator stemming from
the complementation of conjunctions, while preserving provability; this will recover
uniformity in proof-search.

Elimination of Negation in a Logical Framework 423

The key observation is that in this context `_' can be restricted to a program
constructor inside a predicate de�nition; therefore it can be eliminated by simulating
uni�cation in the de�nition, that is (Q1 G1) _ (Q2 G2) � �(Q1 G1 ^ G2),
where � = mgu(Q1; Q2).

However, the (strict) higher-order uni�cation problem is quite complex, even more
so due to the mixed quanti�er structure of HHF; since we have already parameter
(dis)equations introduced by the augmentation procedure, as well as variable-variable
(dis)equations stemming from left-linearization, we �rst compile clauses in an inter-
mediate language which keeps the uni�cation problems explicit and then we perform
constraint simpli�cation as in Twelf. Continuing with our example and simplifying
the constraints:

NotD(linxx) _ NotD(linxap1) =

:linx(�x : app (E1 x) (E2 x)) strict(�x :E2 x) ^

:linx(�x : app (E1 x) (E2 x)) :linx(�x :E1 x) ^

:linx(�x : lam(�y :E x y)):

The �nal de�nition of :linear and in turn :linx is:

:linapp : :linear(app E1 E2)

 :linear(E1) _ :linear(E2):

:linlam1 : :linear(lam(�x :E x))

 :linx(�x :E x)

_ (8y :exp: (:linx(�x : y) ^ linear(y))! :linear(E y)):

:linxap0 : :linx(�x : app (E1 x) (E2 x)) strict(�x :E1 x) ^ strict(�x :E2 x):

:linxap1 : :linx(�x : app (E1 x) (E2 x)) strict(�x :E2 x) ^ :linx(�x :E1 x):

:linxap2 : :linx(�x : app (E1 x) (E2 x)) strict(�x :E1 x) ^ :linx(�x :E2 x):

:linxap3 : :linx(�x : app (E1 x) (E2 x)) :linx(�x :E1 x) ^ :linx(�x :E2 x):

:linxlm : :linx(�x : lam(�y :E x y))

 (8y :exp::linx(�x : y)! :linx(�x :E x y)):

5 Conclusions and Future Work

We have presented elimination of negation in a fragment of higher-order HHF; our
next task is to overcome some of the current restrictions, to begin with the extension
to any order, which requires a more re�ned notion of context. The issue of local
variables is instead more challenging. The proposal in [1] is not satisfactory and robust
enough to carry over to logical frameworks with intensional universal quanti�cation.
Our approach will be again to synthesize a HHF de�nition for the clauses with local
variables which during the transformations has became extensionally quanti�ed. Our
�nal goal is to achieve negation elimination in LF.

Acknowledgments. I would like to thank Frank Pfenning for his continuous help
and guidance. The notion of context schema is inspired by Sch�urmann's treatment
of analogous material in [18].

424 Alberto Momigliano

References

[1] D. P. A. Brogi, P. Mancarella and F. Turini. Universal quanti�cation by case analysis.
In Proc. ECAI-90, pages 111{116, 1990.

[2] K. Apt and R. Bol. Logic programming and negation. Journal of Logic Programming,
19/20:9{72, May/July 1994.

[3] R. Barbuti, P. Mancarella, D. Pedreschi, and F. Turini. A transformational approach
to negation in logic programming. Journal of Logic Programming, 8:201{228, 1990.

[4] A. Bonner. Hypothetical reasoning with intuitionistic logic. In R. Demolombe and
T. Imielinski, editors, Non-Standard Queries and Answers, volume 306 of Studies in
Logic and Computation, pages 187{219. Oxford University Press, 1994.

[5] K. L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and
Databases, pages 293{322. Plenum Press, New York, 1978.

[6] D. M. Gabbay. N-Prolog: An extension of Prolog with hypothetical implications II.
Logical foundations and negation as failure. Journal of Logic Programming, 2(4):251{
283, Dec. 1985.

[7] L. Giordano and N. Olivetti. Negation as failure and embedded implication. Journal
of Logic Programming, 36(2):91{147, August 1998.

[8] J. Harland. On Hereditary Harrop Formulae as a Basis for Logic Programming. PhD
thesis, Edinburgh, Jan. 1991.

[9] R. Harper, F. Honsell, and G. Plotkin. A framework for de�ning logics. Journal of the
Association for Computing Machinery, 40(1):143{184, Jan. 1993.

[10] J.-L. Lassez and K. Marriot. Explicit representation of terms de�ned by counter ex-
amples. Journal of Automated Reasoning, 3(3):301{318, Sept. 1987.

[11] R. McDowell and D. Miller. A logic for reasoning with higher-order abstract syntax: An
extended abstract. In G. Winskel, editor, Proceedings of the Twelfth Annual Symposium
on Logic in Computer Science, pages 434{445, Warsaw, Poland, June 1997.

[12] D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniform proofs as a foundation
for logic programming. Annals of Pure and Applied Logic, 51:125{157, 1991.

[13] A. Momigliano. Elimination of Negation in a Logical Framework. PhD thesis, Carnegie
Mellon University, 2000. Forthcoming.

[14] A. Momigliano and F. Pfenning. The relative complement problem for higher-order
patterns. In D. D. Schreye, editor, Proceedings of the 1999 International Conference
on Logic Programming (ICLP'99), pages 389{395, La Cruces, New Mexico, 1999. MIT
Press.

[15] G. Nadathur and D. Miller. An overview of �Prolog. In K. A. Bowen and R. A.
Kowalski, editors, Fifth International Logic Programming Conference, pages 810{827,
Seattle, Washington, Aug. 1988. MIT Press.

[16] F. Pfenning. Logical frameworks. In A. Robinson and A. Voronkov, editors, Handbook
of Automated Reasoning. Elsevier Science Publishers, 2000. In preparation.

[17] T. Sato and H. Tamaki. Transformational logic program synthesis. In International
Conference on Fifth Generation Computer Systems, 1984.

[18] C. Sch�urmann. Automating the Meta-Theory of Deductive Systems. PhD thesis,
Carnegie-Mellon University, 2000. forthcoming.

[19] C. Sch�urmann and F. Pfenning. Automated theorem proving in a simple meta-logic
for LF. In C. Kirchner and H. Kirchner, editors, Proceedings of the 15th International
Conference on Automated Deduction (CADE-15), pages 286{300, Lindau, Germany,
July 1998. Springer-Verlag LNCS 1421.

