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Abstract. Logical frameworks with a logic programming interpretation such
as hereditary Harrop formulae (HHF) [12] cannot express directly negative
information, although negation is a useful specification tool. Since negation-
as-failure does not fit well in a logical framework, especially one endowed with
hypothetical and parametric judgments, we adapt the idea of elimination of
negation introduced in [17] for Horn logic to a fragment of higher-order HHF.
This entails finding a middle ground between the Closed World Assumption
usually associated with negation and the Open World Assumption typical of
logical frameworks; the main technical idea is to isolate a set of programs
where static and dynamic clauses do not overlap.

1 Introduction

Deductive systems consist of axioms and rules defining derivable judgments; they
can be used to specify logics and aspects of programming languages such as oper-
ational semantics or type systems. A logical framework is a meta-language for the
specification, implementation and verification of deductive systems and possibly their
meta-theory. A logical framework must provide tools which make encodings as sim-
ple and direct as possible. One well known example is higher-order abstract syntax,
which moves renaming and substitution principles to the meta-language. Logical
frameworks should be by design as weak as possible to simplify proofs of adequa-
cy of encodings, effective checking of the validity of derivations and proof-search as
well as unification. Many logical framework have been proposed in the literature (see
[16] for an overview) and many extensions are also under consideration. However, we
must carefully balance the benefits that any proposed extension can bring against
the complications its meta-theory would incur.

This paper discusses the introduction of a logically justified notion of negation in
logical frameworks with a logic programming interpretation such as hereditary Harrop
formulae (HHF) [12] and its implementation in AProlog [15]. We intend this to form
the basis for type-theoretic frameworks such as LF [9] and its implementation Twelf
[19]. Those systems do not provide a primitive negation operator. Indeed, construc-
tive logics usually implement negative information as A = A —_1, where L denotes
absurdity and the Duns Scoto Law is the elimination rule. Thus negative predicates
have no special status; that would correspond to explicitly code negative informa-
tion in a program, which is entirely consistent with the procedural interpretation
of hypothetical judgments available in logical frameworks with a logic programming
interpretation. However, this would not only significantly complicate goal-oriented
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proof search, but providing negative definitions seems to be particularly error-prone,
repetitive and not particularly interesting; more importantly, in a logical framework
we have also to fulfill the proof obligation that the proposed negative definition does
behave as the complement (of its positive counterpart). Automating the synthesis
of negative information has not only an immediate practical relevance in the logic
programming sense, but it may also have a rather dramatic effect on the possibility
of implementing deductive systems that would prove to be too unwieldy to deal with
otherwise. The synthesis of the negation of predicates such as typable, well-formed,
canonical form, subsort, value etc.—as well as Prolog-like predicates such as equality,
set membership and the like—will increase the amount of meta-theory that can be
formalized.

Traditionally, negation-as-failure (NF') [5] has been the overwhelmingly used ap-
proach in logic programming (see [2] for a recent survey): that is, infer - A if every
proof of A fails finitely. The operational nature of this rule motivates the lack of
a unique semantics and some of its related troublesome features: possible unsound-
ness, incompleteness and floundering. Furthermore, even if we manage to isolate a
well-behaved logical fragment, such as acyclic normal programs, allowing NF in a
logical framework would make adequacy theorems more difficult to prove, as both
provability and unprovability must now be considered. The situation is even further
complicated when we step to frameworks with hypothetical judgments; as recognized
first by Gabbay [6], the unrestricted combination of NF and embedded implication
is particularly problematic, since it leads to the failure of basic logic principles such
as cut-elimination.

The approach to negation that we adopt is transformational, also known as inten-
sional negation, initiated in [17] and developed in Pisa [3] for Horn logic with negation.
Roughly, given a clause with occurrences of negated predicates, say @ < G,—-P,G’,
where P is an already defined atom, the aim is to derive a positive predicate,
say non_P which implements the complement of P, preserving operational equiv-
alence; then, it is merely a question of replacement, yielding the negation-less clause
Q + G,non_P,G'. This has the neat effect that negation and its problems are e-
liminated, i.e. we avoid any extension to the (meta) language. Technically, we can
achieve this by transforming a Horn program into negation normal form and then by
negating atoms via complementing terms, a problem first addressed in [10] for first-
order terms. A final issue, which we do not tackle here, is dealing with local variables,
which, during the transformation, become (extensionally) universally quantified [1].

Unfortunately, this approach does not scale immediately to logical frameworks
such as HHF, for three main reasons:

1. The simply-typed A-calculus is not closed under term complement.

2. Negation normal forms are incompatible with the operational semantics required
by HHF.

3. There is an intrinsic tension between the Closed World Assumption (CWA),
which is associated with negation, and the Open World Assumption (OWA) typ-
ical of languages with embedded implication.

The first problem has been solved in [14], by introducing a strict A-calculus where
term complement in the simply typed A-calculus can be embedded and performed.
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The second issue is orthogonal and requires an operational notion of normal form. The
third one is rooted in the fundamental difference between Horn and HHF formulae:
as well known, a Horn predicate definition can be seen as an inductive definition
of the same predicate. The minimality condition of inductive definitions excludes
anything else which is not allowed by the base and step case(s). This corresponds in
Horn logic to the existence of the least model and to the consistency of the CWA and
its finitary approximation, the completion of a program [5]: every atom which is not
provable from a program is assumed to be false. Languages which provide embedded
implication and universal quantification are instead open-ended and thus require the
OWA; in fact, dynamic assumptions may, at run-time, extend the current signature
and program in a totally unpredictable way. This makes it in general impossible
to talk about the closure of such a program. In the literature the issue has been
addressed in essentially three ways:

1. By enforcing a strict distinction between CWA and OWA predicates and applying
NF only to the former [8], where the latter would require minimal negation.

2. By switching to a modal logic, which is able to take into account arbitrary ex-
tensions of the program as possible worlds (see the completion construction in
[7] for N-Prolog and [4] for Hypothetical Datalog).

3. By embracing the idea of partiality in inductive definitions and using the rule of
definitional reflection to incorporate a proof-theoretical notion of closure analo-
gous to the completion [11].

None of those approaches are satisfactory for our purposes: most of the predicates
we want to negate are open-ended; similarly, definitional reflection is not well-behaved
(for example cut is not eliminable) for that very class of programs we are interested
in. Moreover, we need to express the negation of a predicate in the same language
where the predicate is formulated. Our solution is to restrict the set of programs we
deem deniable in a novel way, so as to enforce a Regular Word Assumption (RWA): we
define a class of programs whose dynamic assumptions extend the current database
in a specific regular way. This constitutes a reasonable middle ground between the
CWA which allows no dynamic assumption but is amenable to negation and the
OWA, where assumptions are totally unpredictable. The RWA is also a promising
tool in the study of the meta-logical frameworks [18]. Technically, this regularity
under dynamic extension is calibrated so as to ensure that static and dynamic clauses
never overlap. This property extends to the negative program; in a sense, we maintain
a distinction between static and dynamic information, but at a much finer level,
i.e. inside the definition of a predicate. The resulting fragment is very rich, as it
captures the essence of the usage of hypothetical and parametric judgments in a
logical framework; namely, that they are intrinsically combined to represent, scoping
constructs in the object language. This is why we contend that this class of programs
is adequate for the practice of logical frameworks.

It is clear that elimination of negation makes sense only when negation is strat-
ified, i.e. the negative predicates ultimately refers (in the call graph) to a positive
one. While there may be a place in logic programming for non-stratified negation,
this does not seem to be the case for a logical framework. Another difference from
traditional logic programming is that negation applies only to terminating programs;
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thus it refers not to finite failure but to unprovability tout court, as we refrain from
negating programs whose negation is not recursively axiomatizable. We will thus
identify negation with a complement operation.

The rest of the paper is organized as follow: in Sect. 2 we give an informal view
of the complement algorithm by means of examples, while Sect. 3 introduces the
language. Section 4 describe term and clause complementation. We conclude in Sect. 5
with some remarks on future work. We refer to [13] for more details and proofs
omitted here for reasons of space.

2 A Motivating Example

Consider the expressions of the untyped A-calculus:
ex=uz|Azx.e|eses

We encode these expressions as terms in (labeled) HHF via the usual techniques of
higher-order abstract syntax as canonical forms over the following signature:

Y = exp: type,lam : (exp — exp) — exp,app : exp — (exp — exp)
The representation function is given by:
Txl==x FAz.em=lam (Az:exp.Te?) Tep ex ' =app e ' Tey !

A term is linear if every functional subterm uses each argument exactly once: in
particular, we check for linearity of a function making sure that the latter is linear
in its first argument and then recurring on the rest of the expression.

linapp : linear(app Ey Es) < linear(E1) A linear(Es).
linlam : linear(lam(\x . E z))

«— line(A\x . E x) A (Vy:exp. linear(y) — linear(E y)).

Az . x).

Mt .app (Ey x) E2) < linx(\z . Ey x).

Az .app Ey (Es z)) < linx(Az . Ey x).

linglm : linx(Az . lam(Ay . E z y)) < (Vy:ezp. linx(Az . E z y)).

linzz : linx
linzapl : linx

linzap2 : linx

This is clearly a decision procedure, which can be complemented; an expression is
not linear if there is some function which either does not use its argument or uses it
more than once. First, the complement of linapp does not pose any problem, as it
is a Horn clause: an application is not linear if either the first element or the second
is not linear. Next, a lambda expression is not linear in two cases: one, if it is not
linear in its first argument:

—linlam]1 : =linear(lam Az . E z) < —linz(Az . E z).
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Secondly, if its body is not linear. Now, this poses a new problem, as we have to
negate a hypothetical and parametric goal. Let us reason by example and suppose
we are given, in the empty context, a goal linear(lam(A\x .lam(A\y.x))), which is
unprovable, since the second lambda term is not linear in y; the proof tree yields
the failure leaf linz(Az . z), for a new parameter z, in the context z:exp;linear(z).
Our guiding intuition is that we want to mimic a failure derivation so as to provide
a successful derivation from the negative definition, i.e. a proof of =linz(\x . z) from
z:exp;linear(z); this shows one prominent feature of complementation of an HHF
formula: negation ‘skips’ over ¥V and —, since it needs to mirror failure from assump-
tions. Now, let us examine clause 1inx1lm and reconsider the above failure leaf; in a
first attempt, according to the idea above, the complement would be:

L linglm - linz(Ax . lam(Ay . E ¢ y)) < (Vy:exp. -linz(\x . E x y)).

However, there is no way to obtain a proof of —linz(Az . z) from the current context.
Indeed, the 1inx1m clause does not carry enough information so that its complement
can mimic the failure proof. In a sense, the clause is not assumption-complete: once
it has introduced a new parameter, the clause only specifies how to use it in a posi-
tive context. It is up to us to synthesize its dynamic negative definition, in this case
simply Vy:exp. -linz(Az .y). More in general, it is a characteristic of HHF that the
negation of a clause is not strong enough to determine the behavior of a program
under complementation. We will have to insert (via a source-to-source transforma-
tion) additional structure in a predicate definition, in order to completely determine
the provability or failure of goals which mention parameters. By observing the struc-
ture of all possible assumption that a predicate definition can make, we will augment
those assumptions with their negative definition. In particular, we first augment the
clause linx1m:

augn(linzlm) : line(Ax . lam(\y . E © y))
— (Vy:exp. —linx(Ax.y) — linz(Az . E z y)).
so that, by complementation, we obtain:
—augn (linxlm) : =linx(Az . lam(\y . E z y))
— (Vy:exp. —linx(Ax.y) = ~linz(A\x. E z y)).

Unfortunately, the procedure we have outlined is not possible in general. Consider
a clause encoding the introduction rule for implication in natural deduction, which
can be used to check whether an implicational formula trivially holds:

Y = form : type,imp : form — (form — form),a: form,b: form,c: form
impi : nd(A imp B) < (nd(A) — nd(B)).
Following our earlier remark its complement would be:
: —nd(a).
: —nd(b).
—impi3 : —nd(c).
cnd(A i

s impi d(A imp B) < (nd(A) — —-nd(B)).

—impil

—impi2
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This specification is clearly incorrect since both nd(a imp a) and —nd(a imp a) are
derivable from the empty context. We can isolate one major problem: in clause impi
the assumption nd(A) which is dynamically added to the (static) definition of the
nd predicate overlaps with the head of the clause. A symmetrical problem can occur
when dynamic and static clause do differ but their complements do not. We have
thus isolated two main issues:

1. Exhaustivity: we need to enrich clauses so that every (ground) goal or its negation
is provable.

2. Exclusivity: we need to isolate a significant fragment where it is not the case that
both a goal and its negation are provable.

We will achieve exhaustivity (Theorem 2) by augmenting the program with the com-
plement of assumptions; moreover, we will achieve exclusivity (Theorem 1) with the
restriction to complementable programs. To anticipate the idea, a clause is comple-
mentable if every assumption contains some eigenvariable at execution time.

3 Provability and Unprovability

We will use the following somewhat unusual language:

Simple Types A:x=a| A — Ay
Terms M ==c |z | Az:A. M | My M,
Atoms Q :=q M, | ~q M,
Clauses D =T |L|Q < G| Dy ADy | Dy V Dy |VYx:A.D
Goals G == Q | T|L| Ty = N, | 7T # N, |
Gl/\Gz |G1 \/G2 |D—>G|VZ’AG
Signatures X = -| X, atype | X, c:A
Parameter Contexts I' == -|I,z:A
Assumptions D =T |DAD

There is a distinguished type o for propositions which can occur only as the target of
some A. We remark that ‘=’ is not a connective, but a name constructor for atomic
formulae; ‘facts’ are represented, for convenience, by @ < T, although in examples we
will omit to mention T. We assume that existential variables occur only once in the
head of program clauses (i.e. clauses are left-linear); this can always be achieved by
introducing disequations in the body. In this paper we restrict ourselves to programs
such that all assumptions are Horn and which can be proven to be terminating
under some well-founded ordering. We introduce the uniform proofs system [12] for
(immediate) provability and denial in Fig. 1. For terminating programs, we can prove
that the failure to achieve a proof of G translates into (a derivation of) the denial of
G. Note also that due to the presence of disjunction as a clause constructor, uniform
proofs are not complete for our language. We will remedy this situation in Sect. 4.

I''DbHp G Program P and assumption D uniformly entail G.
I'iDWp G Program P and assumption D uniformly deny G.
I';D Ep D>>Q Clause D from P and D immediately entails atom Q.
I';Dp D>>Q Clause D from P and D immediately denies atom ().
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I''Dbp T I'iDW,L

F;'D"pGl F;D'_PGQ F;DVPGl F;DVPGQ
FA
F;Dl_’PGlAGQ F;'DVPGl\/GQ
I';Dbp G; I'iDYp Gi
FV; H A

- VZ -

F;D'_PGI\/GQ F;DVPGlAGQ

I';Dbp [t/2]G for all n I'; D i [n/z]G
3

IDhp 3x:A.G D, 32 A.G 73
I'y(DAD)Fp G I';y(DAD) YV G
I'iDkp D— G - I';Dip D— G

(I y:A); D bp [y/z]G i (I, y:A); D p [y/2]G

IiDhp Vz:A.G ;D Vr: A.G

I'iDbp (PAD)>Q I'iDWy (PAD)>Q
I''Dhr Q A IDip Q

_—> 1 — AT
''Dbpl >Q Dy T>Q

I';D bp [t/2]D>Q for all n I'; Dt [n/x]D>Q
v

>
I'iDbpVr:A.D>Q I'iDWp Ve:A.D>Q
I';Dbp Di>Q I';Dp Di>Q
>>/\z [
F;'Dl—'p D, /\D2>>Q F;'DVP D, \/D2>>Q
I'sDbp Di>Q ;D bFp Da>Q
>V
I';Dbp D1 VD2>Q
I';D Wy Di>Q I';D Wy D2>>Q?g>
A
I';Dp D1 ADy>Q
N, =DM, ;D G
— — >
I'iDbp (g Ny <+ G)y>>q M,
N, # M, N, =M, ;DY G
— _/>>—>1 — — B>
I';Dty (@ No « G)>>q M, ;D (g Np = G)>>q M,

Fig. 1. (Immediate) Provability and Denial
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Some brief comments are in order: the (in)equalities rules simply mirror the ob-
ject logic symbols =, # as meta-level (in)equalities and are omitted. >V and ¥ 3
are infinitary rules, given the meta-linguistic extensional universal quantification on
all terms. Rules + V, I/ V are instead parametric in y, where the ()¥ superscript
reminds us of the eigenvariable condition. The denial rules for implication and uni-
versal quantification reflect the operational semantics of unprovability that we have
discussed earlier.

We start by putting every program in a mormalized format w.r.t. assumptions,
so that every goal in the scope of an universal quantifier is guaranteed to depend on
some assumption, possibly the trivial clause T. This has also the effect of ‘localizing’
the trivial assumption to its atom, a property will be central while complementing
assumptions; for example we re-write 1inx1lm as follows:

linzlm : linz (\x.lam(\y . E z y))
— (Vz:exp. Tiine — line (Az. E x z)).

For the sake of this paper, we also need to modify the source program so that every
term in a clause head is fully applied, i.e. it is a lambda term where every variable
mentioned in the binder occurs in the matrix; this makes term complementation
(Sect. 4) much simpler. For example clause linxapl is rewritten as:

linzapl : linz(Az . app (Ey x) (Ey x)) < lint(A\z. By x) Avac(Az . E; ).

where vac(Ax . E5 x) enforces that = does not occur in Es x. Its definition is type-
directed, but we have shown in [14] how to internalize these occurrence constraints
in a strict type theory, so that this further transformation is not needed.

We now discuss context schemata. As we have argued in Sect. 2, we cannot obtain
closure under clause complementation for the full logic of HHF, but we have to restrict
ourselves to a smaller (but significant) fragment. This in turn entails that we have
to make sure that during execution, whenever an assumption is made, it remains in
the fragment we have isolated. Technically, we proceed as follows:

— We extract from the static definition of a predicate the general ‘template’ of a
legal assumption.
— We require dynamic assumptions to conform to this template.

We thus introduce the notion of schema satisfaction, which uses the following data
structure: a context schema abstracts over all possible instantiations of a context
during execution. To account for that, we introduce a quantifier-like operator, say
SOME & .D, which takes a clause and existentially bounds its free variables, if any,
i.e. ® = FV(D). The double bar ‘||, not to be confused with the BNF ‘|’ that we
informally use in the meta-language, denotes schema alternatives, while ‘o’ stands
for the empty context schema.

Contexts Schemata S = o | S||(I'; SOME ¢ .D)
The linear predicate yields this (degenerate) example of context schema:

Stinear = © | Stinear ||z:exp; linear(x) | Siinear||T:€2D; Tiina
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We extract a context schema by collecting all negative occurrences in a goal; this
is achieved by simulating execution until an atomic goal is reached and the current
list of parameters and assumptions is returned, with their correct existential binding.
Different clauses may contribute different schema alternatives for a given predicate
definition. A run-time context consists of a set of blocks, each of which is an instance
of the context schema, for example:

y1:exp, Y2:exp, T1:€xP; T iing A Tiine A linear(xy)

We will need to disambiguate blocks in run-time contexts; overlapping may indeed
happen when the alternatives in a context schema are not disjoint. Intuitively, a
block is complete when an atomic conclusion is reached during the deduction. Any
bracketing convention will do:

[y1:exp], [y2:exp], [x1:€xP]; [Tiine | A [ Tiine | A [linear(x:)]

We then define when a formula satisfies a schema. We start by saying that a com-
pleted block belongs to a schema when the block is an alphabetic variant of some
instantiation of one of the alternatives of the schema. Then, the empty run-time
context is an instance of every schema. Secondly, if I"" and D' are completed blocks
which belong to &, and I'; D in an instance of S, then (I, [I""]); (D A [D']) is an
instance of S, provided that D’ is a valid clause. The latter holds when each of its
subgoals satisfies the schema. This is achieved by mimicking the construction on the
run-time schema until in the base case we check whether the resulting context is an
instance of the given schema.

We can prove that if a context schema is extracted from a program, then any
instance of the latter satisfies the former. Moreover, execution preserves contexts,
i.e. every subgoal which arises in any given successful or failed (immediate and non-
immediate) sub-derivation satisfies the context schema. See [13] for the formal devel-
opment.

4 Clause Complementation

We restrict ourselves to programs with:

— Goals where every assumption is parametric, i.e. it is in the scope of a positive
occurrence of a universal quantifier and the corresponding parameter occurs in
head position in the assumption.

— Clauses () « G such that the head of every term in @ is rigid.

Note that the rigidity restriction applies only to non-Horn predicate definitions and
can be significantly relaxed; see [13] for a detailed account.
The first ingredient is higher-order pattern complement, Not(M), investigated

in the general case in [14]; we give here the rules for complementing fully applied
patterns:
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Not_Flx
'+ Not(E Tn) = 0

Iz:A+Not(M)= N:B
I'FNot(Az:A.M) = \z:A.N:A— B

Not_Lam

geXUIlg: A1 —... 52 A, 2>am>0,hZyg

— Not_App'
I'+Not(h My) = g (Z:T)...(ZnI) :a

F:1<i<n I' - Not(M;) = N :

— Not_App®
I' - Not(h M) = h (ZiI")...(Z;-1I') N (ZiaD) ... (ZnT) : a

where the Z’s are fresh variables which may depend on the domain of I', h € YU T,
and I'+h: A —...—> A, >a I'tNot(M)=N:Aff N ={N | I+ Not(M)=
N : A}. For example:

-F Not(Az.z) = {\x.lam(A\y.E z y),\z.app (Ey z) (Es x)}

If we write I' = M € ||N]| : A when M is a ground instance of a pattern N at type
A, we can show that Not behaves as the complement on sets of ground terms, i.e.

1. (Exclusivity) Not (I'+ M € ||[N||: A and I' - M € ||[Not(N)|| : A).
2. (Exhaustivity) Either I' - M € ||[N||: A or I' - M € ||Not(N)|| : A.

Complementing goals is immediate: we just put the latter in negation normal
form, respecting the operational semantics of failure.

—— Notg T ——— Notg L —  Notg At
Nota(T) =1 Nota(L)=T Nota(Q) = -Q
— _I_Notﬁ — ___NOt;Ié
Note(M, = Ny) = (M, # Ny) Note(My, # Nyp) = (M, = N,)
Nota(G) = el Nota(G) = G’
NotgV Notg —
Notg(Vr:A.G) =Vz:A.G' Notg(D = G) =D — G
Nota(G1) = GY Nota(G2) = G4
NotA
Nota(G1 A Gs) = G1 V GY
Nota(G1) = GY Nota(G2) = G4
NotvV

Nota(G1 V G2) = Gi NG,

Clause complementation is instead more delicate: given a rule ¢ M, <+ G, its
complement must contain a ‘factual’ part motivating failure due to clash with the
head; the remainder Notg(G) expresses failure in the body, if any. Clause comple-
mentation must discriminate whether (the head of) a rule belongs to the static or
dynamic definition of a predicate. In the first case all the relevant information is
already present in the head of the clause and we can use the term complementation
algorithm. This is accomplished by the rule Notp —, where a set of negative facts
is built via term complementation Not(M),), namely /\N—neNot(M—n) V(=g N, < T),
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whose fresh free variables are universally closed; moreover the negative counterpart
of the source clause is obtained via complementation of the body. The original quan-
tification is retained thanks to rule NotpV.

————— NotpT ~ —— Notp L
Notp(T) =L Notp(L)=T
Nota(G) = G’
_ — — Notp +
Noto(q Mp - G)=( J\  V(=(g Nu) < T) A (=g M, « G')
N_nGNot(M_n)
Notp(D) = D'
NotpV
Notp(Vz:A.D) =Vz:A. D'
Notp(D;) = D} Notp(D2) = D4
NotA
Notp(D: A D») = D V Dj
NOtD(Dl) = Dll NOtD(Dz) = D,2
NotV

NOtD(Dl V Dz) = Dll A D,2

Otherwise, we can think of the complement of an atomic assumption
(g My...z ...M,), which is by definition parametric in some z, as static clause
complementation w.r.t. z, i.e. Notp(q, My ... M;—y M;yq...M,). However, most of
those M;, which at compile-time are variables, will be instantiated at run-time: there-
fore it would be incorrect to compute their complement as empty. Since we cannot
foresee this instantiation, we achieve clause complementation via the introduction of
disequations. This is realized by the judgment I' F Notg (D). We need the follow-
ing notion: a parameter z:a is relevant to a predicate symbol ¢ (denoted zRiq) if
Y(q) = Ay — -+ — A, = o and for some 1 < i < n the target type of 4; is a.

- Nota T
I'-Nota(Ty) = A (/\ Noti(T,))
z€dom(I') zRiq
Nota(G) = G’
Notq

IENota(@ G =( A (\ Noth(@))A(-Q « @)

z€dom(I') zRiq

Both rules refer to an auxiliary judgment Not’ (D):

Y(@=A = =>4, >0 - Fsh(z, Ai) = es _
. p— Not, T
Not,(Tq) =VZ1:A1. .. VZy:Ap.=(q Zi) < T
J@=4A41— > A, —o - Fsh(z, A;) = e .
; — Not} At
Noty(q Mn)= N\ (VZi:Ar ... VZu: A ~(q ZE,) « M; # Z))
1<j<n,j#i

The idea is to:
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Pivot on x:a € I'.

Locate a type A; such that z:a is relevant to ¢ at i.
— Complement D w.r.t.  and i.

Repeat for every A; and for every z.

The rest of the rules for I' F Notq (D) are completely analogous to the ones for
Notp (D) and are omitted. Both simply recur on the program respecting the duality
of conjunction and disjunction w.r.t. negation. Notice the different treatment of the
trivial clause T by rules Notp T and Notn T: if no parameter has been assumed, then
T truly stands for the empty predicate definition and its complement is the universal
definition L. If, on the other hand I" is not empty, it means that T, has been intro-
duced during the T-normalization preprocessing phase and has been localized to the
predicate q. The rule Not;T allows to build a new negative assumption w.r.t. ¢, x, 1
in case T is the only dynamic definition of g. As T, carries no information at all con-
cerning ¢, the most general negative assumption is added; the notation Z—gm abridges
Zy...Zi—1 ey Ziy1 ... 2y, where the Z’s are fresh logic variables and e, is a term
built prefixing a parameter z by an appropriate number of lambda’s, according to
the type of its position; this is specified by the I'  sh(z, A) judgment, omitted here
(but see it in action in Example 1).

Now that we have discussed how to perform clause, assumption and goal com-
plementation, we synchronize them together in a phase we call augmentation, which
simply inserts the correct assumption complementation into a goal and in turn into
a clause. This is achieved by a judgment I'; D ks augy (D), again omitted here for
reasons of space.

For example, consider the copy clause on A-terms:

cplam : copy (lam E) (lam F)
— (Vz:exp.copy © © — copy (E z) (F x)).
The augmentation procedure collects z:exp; copy = = and calls z:exp F Notg (copy z ).
First Not{ (copy = ) = (VE' :exp. —copy E' x < x # E"), secondly Not3 (copy = x) =
(VF'":exp.—copy © F' + z # F'), yielding:
augp(cplam) : copy (lam E) (lam F)
+— (Va:exp.
(VE':exp.—copy E' x < x # E') A
(VE':exp.—copy v F' <z # F') —
(copy © = — copy (E z) (F x))).

Let us see how rule Not;T enters the picture; recall the normalized 1inx1lm clause.
From -  sh(y,exp — exp) = Az .y we have Not¥(Tin.) = ~linz (Az.y):
augn (linzlam) : linx (Ax .lam(A\y . E © y))
— (My:exp. -linx (Az.y) = linz (A\z. E z y)).
Let us apply the complement algorithm to the linx predicate definition. The

strict predicate is simply the complement of the vac predicate previously intro-
duced. Again, these annotations can be internalized in a strict type theory [14].
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Notp (def(linx)) =

Notp (linzz) V Notp (linzapl) V Notp (linzap2) V Notp (linxlm) =
(mlinz(Az .app (Ey z) (Es x)) A -linz(Ax . lam(Ay . (E © y)))) V
(=linx(Az . x) A =linz(Ax . lam(Ay . (E © y))) A
=linz(A\x . app (E1 ©) (Ex x)) « strict(\z . B2 x)
A =linz(Ax . app (B1 z) (B2 z)) + —lint(A\x . Ey x)) V
(=linx(Ax . x) A =linz(Ax . lam(Ay . (E © y))) A
=linz(A\x . app (E1 ©) (Ex x)) « strict(\z . E1 x)
A =linz(Ax . app (B1 z) (B2 z)) + —linz(A\x. Ey x)) V
(Hlinz(Az . z) A —linz(Az . app (Ey x) (Ey x))
A =linz(Ax . lam(Ay . (E z y))) + (Vy:exp. —linz(Ax . y) = —linz(Az. E x y))).

We can now establish exclusivity and exhaustivity of clause complementation. Let

Notp (7)) =P

Theorem 1 (Exclusivity). For every run-time context I'; D instance of a schema
S extracted from an augmented program P :

1. It is not the case that I';D Fp G and I'; D Fp- Notg (G).
2. It is not the case that I';D Fp (P AD)>Q and I';D bp- (P~ AD)>-Q.

Proof. (Sketch) By mutual induction on the structure of the derivation of I'; D Fp G
and I'; D Fp (P A D)>>Q. The proof goes through as there is no ‘bad’ interaction
between the static and dynamic definition of a predicate; namely there is no overlap
between a clause from P and from D since in every atomic assumption there must be
an occurrence of an eigenvariable and every corresponding term in a program clause
head must start with a constructor. If both clauses are dynamic, it holds because
an appropriate disequation is present; this approximates what happens in the static
case, which is based on term exclusivity.

The denial system comes in handy in the following proof.

Theorem 2 (Exhaustivity). For every substitution 6,0 and run-time context
I'; [0]D instance of a schema S extracted from an augmented program P:

1. If for all 6 I';[0]D tp [0]G, then there is a o such that I';[0]D bp- [0]Notg(G).

2.1 If, for all 8 I';[01D Vp [0]P>>[0]Q, then here is a o such that I';[o]D Fp-
[¢]Notp (D)>>[0]-Q.

2.2 If, for all 0 I';[01D Vp [0]D>>[0]Q, then here is a o such that I';[o]D bp-
[¢]Notq(D)>>[0] Q.

The proof is by mutual induction on the structure of the given derivations. As a
corollary, we are guaranteed that clause complementation satisfies the boolean rules
of negation.

Finally, we show how to eliminate from clauses the ‘v’ operator stemming from
the complementation of conjunctions, while preserving provability; this will recover
uniformity in proof-search.
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The key observation is that in this context ‘v’ can be restricted to a program
constructor inside a predicate definition; therefore it can be eliminated by simulating
unification in the definition, that is (Ql — Gl) \Y (QQ — GQ) = 9(@1 ~— G A GQ),
where 6 = mgu(Q1,Q2)-

However, the (strict) higher-order unification problem is quite complex, even more
so due to the mixed quantifier structure of HHF; since we have already parameter
(dis)equations introduced by the augmentation procedure, as well as variable-variable
(dis)equations stemming from left-linearization, we first compile clauses in an inter-
mediate language which keeps the unification problems explicit and then we perform
constraint simplification as in Twelf. Continuing with our example and simplifying
the constraints:

Notp (linzx) V Notp (linzapl) =
Slinx(Az . app (Ey z) (B2 ) ¢ strict(Az . Bz ©) A
Slinz(Azx . app (Ey z) (B2 x)) ¢ —linz(A\x . By ) A
=line(A\x . lam(Ay . E z y)).

The final definition of —linear and in turn —linx is:

—linapp : —linear(app Ey E»)
+ =linear(Ey) V —linear(Es).
=linlaml : —linear(lam(Az . E x))
+ —linz(Az . E )
V (Vy:exp. (mlinz(Ax . y) Alinear(y)) — —linear(E y)).

=linzap3 : —linx(Ax . app (Ey x) (B2 x)) < —linz(Ax. By x .E> x).

)

) (

) « strict(\
) (

) (

=linzap0 : —linx(Az . app (Ey x) (B2 x)) < strict(Az . Ey ) A strict(A\x . B> ).
=linzapl : —linz(Ax . app (E1 z) (Es x) x.Ey x) A-linz(A\x . By x).
=linzap2 : —linz(Az .app (Ey z) (Es x)) < strict(A\x . Ey x) A -linz(Az . By x).

( ) ) A Ar )

=lina(
=linzlm : =line(A\x . lam(Ay . E = y))
— (Vy:exp. —linx(Ax.y) = ~linz(A\x . E z y)).

5 Conclusions and Future Work

We have presented elimination of negation in a fragment of higher-order HHF; our
next task is to overcome some of the current restrictions, to begin with the extension
to any order, which requires a more refined notion of context. The issue of local
variables is instead more challenging. The proposal in [1] is not satisfactory and robust
enough to carry over to logical frameworks with intensional universal quantification.
Our approach will be again to synthesize a HHF definition for the clauses with local
variables which during the transformations has became eztensionally quantified. Our
final goal is to achieve negation elimination in LF.

Acknowledgments. I would like to thank Frank Pfenning for his continuous help
and guidance. The notion of context schema is inspired by Schiirmann’s treatment
of analogous material in [18].
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